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Abstract

We study the fundamental lower bond for node buffer size
in intermittently connected mobile wireless networks with
Base Station. In this kind of networks, all the mobility is
independent and identically distributed(i.i.d.), and the link-
age between two nodes is intermittent because of external
constraints. There exists Base Stations in this network fol-
lowing the uniform distribution. Given the condition that
each node has the same probability 1 − p to be inactive
during each time slot, there exists a critical value pc(λ)
for this probability from a percolation-based perspective.
When p < pc(λ), the network is in the subcritical case, and
the occupied buffer size is Θ( n

m ), where n is the number of
nodes in the network, and m is the number of base stations.
If p > pc(λ), the network is in the supercritical case, and
the occupied buffer size is Θ(1). Our work also show that
in subcritical case, for static networks without base stations
(BSs), the achievable lower bound for occupied buffer size
is Θ(

√
n
m ), and for mobile networks without base stations,

there is a achievable lower bound Θ(n) for buffer occu-
pation. For both the networks there is a achievable lower
bound for occupied buffer size Θ(1) in supercritical case.

1. Introduction

Since the field of large-scale wireless network has re-
ceived great attention in the past several years, a lot of stud-
ies about scaling properties of capacity,connectivity and de-
lay in this kind of network have been done since the seminal
work by Gupta and Kumar. However, most of the previous
works focus on the assumption of maintaining always full
connectivity, which does not match the case in real world.
In practical networks, only intermittent connectivity is guar-
anteed. For example, the mobility of users, the sleep mod-
el of terminals would cause the inactivity of nodes in the
network. Some This type of networks are referred to as

Delay/Disruption Tolerant Networks (DTNs), and some re-
lated works has been done by [1]. In [2], O. Dousse et al.
studied the latency of wireless sensor networks with uncoor-
dinated power saving mechanisms, where constraint on the
network is limited node energy and nodes switch between
active (on) mode and inactive (off) mode. In [3], W. Ren
and Q. Zhao considered a cognitive radio network where
secondary users should keep inactive until the availability
of wireless channel, and constraint for the secondary net-
works is the existence of primary users. In [4], Z. Kong and
E. M. Yeh studied a mobile wireless network where the link
between two nodes might break (turn inactive) when dis-
tance between them is out of the transmission range. One
common feature of the above three papers is that they are all
based on the theory of percolation (see [5], [6], [7]), which
will also be used in this work.

Since the inactivity of nodes, buffer size in necessary in
this kind of networks. In the multi-hop networks, packet-
s have to be stored in the relay node if the next neighbor
is inactive, which means that the minimum buffer size re-
quirements do not approach zero. Throughput capacity of
mobile wireless networks with limited node buffer has been
investigated by J. D. Herdtner and E. Chong in [8]. In [9],
S. Bodas et al. have studied scheduling methods in multi-
channel wireless networks in the small-buffer regime.

In [10], Yuanzhong Xu has showed that the achievable
lower bound for buffer size occupied in intermittently con-
nected static wireless networks is Θ(1) or Θ(

√
n), accord-

ing to the probability p for a node to be active. There exists
a critical value pc(λ) in the network with the density of λ.
When p > pc(λ), the network is in the supercritical case,
and the achievable lower bound for the occupied buffer size
is Θ(1), which is independent of the size of the network.
If p < pc(λ), the network is in the subcritical case, and
the tight lower bound for the buffer occupation is Θ(

√
n),

where n is the number of nodes in the network.
However, the previous work studies on static network

only. In the real networks such ad-hoc network, terminal-
s such as personal computers are supposed to be moving,

1-4244-0328-6/06/$20.00 c⃝2006 IEEE.



so it is necessary to take the mobility of nodes into consid-
eration. Moreover, the properties of occupied buffer size
in intermittently connected mobile wireless networks with
infrastructure support such as base stations is remain to be
studied.

In this paper, we focus on the intermittently connected
networks in which the mobility of each nodes is indepen-
dent and identically distributed(i.i.d.). Moreover, the impact
of base stations are also taken into account.

In our study, we have learned that in the subcritical
case , the achievable lower bound for buffer occupation is
Θ(

√
n
m ) in the static network with BSs, Θ(n) in the mo-

bile network without BSs, and Θ( n
m ) in the mobile network

with BSs. On the other hand, in the supercritical case, the
achievable lower bound for buffer occupation is Θ(1) for all
the three network models.

The study of buffer occupation is crucial in large scale
network because the resource of a single node is always
limited. In wireless sensor networks (WSNs), for example,
the available buffer size for each node should be considered
during designation. There are also some other interesting
results. There is no use to expend the radius of BSs to cut
down the occupied buffer size if the number of channel-
s is limited. The probability for a malicious relay node to
decode the packets from a source is independent from the
number of users or BSs in both mobile networks and static
network with BSs, while the security of network coding is
improved by the increasing number of BSs in mobile net-
works with BSs.

This paper is organized as follows. In Section 2, we
present the network model and some basic assumptions. In
Section 3, we study the static network with BSs. In Section
4, we study the buffer size requirements in mobile networks.
In Section 5, we study buffer occupation in mobile networks
with BSs. In Section 6, we discuss the effects of the radius
of BSs and the limitation of channels. The effects of the
number of users on the security of network coding is also
discussed in this Section. Finally, we conclude this paper in
Section 7.

2. Network Model and Assumptions

2.1. Node Locations and Direct Links

We consider the network with the size of L × L, with
constant node density λ. Since the number of nodes in the
network is n, we have L =

√
n
λ = Θ(

√
n). Locations of

nodes follows uniform distribution.
Each node covers a disk shaped area with radius r. To

simplify the analysis, r is treated as a same constant for all
nodes. Let Xi(1 ≤ i ≤ n) denote the random position of
node vi. Two nodes vi and vj are directly connected via a
direct link if and only if ||Xi−Xj || ≤ 2r, where ||Xi−Xj ||

is the Euclidean distance between vi and vj . The set of all
nodes in the network is denoted by N(λ,L). When L → ∞
(or n → ∞ equally), the network is denoted by N∞(λ).

Figure 1. The Active Giant Cluster.

According to continuum percolation theory, there is a
critical value for λ, λc. Only when λ > λc,there exists a
unique infinite connected cluster in N∞(λ) ( giant cluster ,
denoted by CN∞(λ). Since in this paper, we focus on the
network in which giant cluster is able to exist, the following
assumption is made.

Assumption 1 (On Node Density):Node density in the
network is large enough to guarantee percolation, i.e. λ >
λc.

In the case of static network, we mainly analyze commu-
nications of nodes within the giant cluster. However In the
case of mobile network, there is no need for a nodes to be
in the giant cluster, but taking advantage of the giant cluster
will cut down the buffer size in need, which will be shown
in the following analysis. So in this case, the giant cluster
is also assumed to be exist. We denote the nodes belonging
to the giant cluster by the term connected nodes.

When n is not infinite, we define the giant cluster as the
largest connected cluster in the network. According to con-
tinuum percolation theory again, the number of connected
nodes in N(λ,L), nc, approaches to a constant proportion
of n.Since we consider connected nodes only, we let n de-
notes nc in the following analysis, without loss of generali-
ty.

2.2. External Constraints and Node Inactivity

In this paper, taking external constraints into considera-
tion, we assume that each node switches between active s-
tate and inactive state randomly. During active state, a node
can transmit or receive messages, while during inactive state
it can neither transmit nor receive messages. Transmission
between two nodes is possible only if both the transmitter
and the receiver are active.

We assume the external constraints in the network are
in a synchronized time-slotted manner with a slot length
TEC ,which implies that the state of each node changes on-



ly at the beginning of a time slot. Further, the effects of
external constraints satisfy the following assumptions:

1) States of each active nodes vary from one time slot to
another, and are i.i.d. among different time slots.

2) The probability to be active is a constant p for all n-
odes in the network.

3) States of different nodes are i.i.d.
The network with external constraints is denoted by

CN(λ,L, p) (or CN∞(λ, p) if L → ∞).Since the possi-
bility of node inactivity, we cannot guarantee a complete
path connecting an arbitrarily selected pair of nodes all the
time. Hence, the network is intermittently connected.

2.3. Base Station

The number of BSs in the network is denoted by m. U-
niform distribution is applied to BS in this paper. Then the
network is divided into n

m cells. In each cell there is only
one BS in the center of it, as shown in Figure 2.

Figure 2. The Cells and Base Stations.

R denotes the radius of a BS. If the distance between a
node and a BS is smaller than rn + R, it is regarded that
the node is connected to the BS successfully. All the BS in
the network are connected to each other with wired linkage,
and they are always active.

The limit of channel or bandwidth is not taken into ac-
count before Section 6. The effects of R will also be dis-
cussed in Section 6, before which we let R = r to simplify
expression.

2.4. Mobility

The mobility of each nodes follows i.i.d mobility mod-
el. The positions of all the nodes vary from one time slot to
another and are i.i.d. among different time slots. This pro-
cess happens at the beginning of each time slot only, which
means that the positions of all the nodes do not change dur-
ing one time slot. The range of the location of each nodes
is assumed to be in the whole network.

In the case that mobility and BSs are both applied in the
network, we assume that every mobile node has a home cell.

At any time slot, the probability for a node to jump outside
its home cell is q. If the node cannot jump outside the home
cell, it chooses a new position in the cell at the time slot. If it
moves out of the cell successfully, it chooses a new position
in the whole network randomly (including the home cell),
but at the next time slot, it has the probability 1−q to return
to its home cell.

2.5. Traffic Pattern and Buffering

Traffic Pattern of Connected Nodes:For each connected
node in the network, as a source, it randomly chooses a per-
manent destination among other connected nodes, and this
source-destination relationship does not change over time.
Each connected node generates messages to its correspond-
ing destination node in a multi-hop fashion at a constant
rate, rg , which does not vary among different nodes.

Buffering:In each hop, if the transmitter or the receiver
is inactive, the message should be kept in the buffer of the
transmitter until both nodes are active. As we define before,
if a node (as a source) or its first intermediate node toward
destination is inactive, it cannot send any message actually.
Yet we can still assume the source node ”sends” messages
at rate rg but temporarily stored in the buffer of itself.

We define the per-node throughput capacity as the max-
imum bits per second each connected node can send to its
chosen destination node. Now we give a basic assumption
on channel capacity and per-node throughput capacity in
this paper.

Assumption 2 (On Capacity and Processing Speed):First,
channel capacity for every directly connected nodes is large
enough to be viewed as infinity, compared to the actu-
al transmission rate of each node. As a result, per-node
throughput capacity can also be viewed as infinity compared
to rg . Second, node processing speed is also infinitely large,
compared to the state-switching frequency 1

TEC
.

As Assumption 2 states, the capacity of the network and
processing speed is infinity, which implies that once a node
and its next hop turn active, they can transmit and receive
message without delay. In static network, if all nodes in one
path are active, the message can be transmitted from one
end to the other without delay. This helps us focus on the
limits posed by external constraints on node buffer size in
the network.

Maximum Buffer Occupation in Each Time Slot: Since
the capacity is infinity, buffered messages in each node are
transmitted only at the beginning of each time slot within
a very small time interval. On the other hand, the message
generation rate rg is finite and constant, and thus smooth
message buffering could happen during each time interval.
Therefore, in each time slot, the size of occupied buffer in



each node is maximum at the end of the time slot. For a con-
nected node w, we use SL

w to denote the average occupied
buffer size of w at the end of time slot, and SL to denote the
average occupied buffer size of one node in the network.

Message Slot: We call the messages generated by u dur-
ing one time slot whose destination is v a message slot ,
denoted by mu→v . If only the source or destination is spec-
ified, the notation is simplified as mu→ or m→v. Accord-
ing to the assumption above, The size of one message slot
is rgTEC .

2.6. Percolation of Active Nodes

According to Assumption 1, a giant cluster always exists
a.s. as the size of the network goes to infinity. With external
constraints, for each time slot, we consider the percolation
phenomenon among active nodes.

Since the states of nodes are i.i.d., the distribution of ac-
tive nodes in CN∞(λ, p) is according to a Poisson Point
Process with constant point density pλ.Therefore, there ex-
ists a critical value for pc(λ) = λc

λ such that:
1) If p > pc(λ), CN∞(λ, p) is in the supercritical case,

where there exists a unique infinite connected cluster of ac-
tive nodes a.s. during each time slot.Let C(CN∞(λ, p))
denote the infinite connected cluster of active nodes (ac-
tive giant cluster) at the present time slot.In this case,
C(CN∞(λ, p)) ⊆ CN∞(λ, p), i.e. the active giant clus-
ter is part of the giant cluster.

2) If p < pc(λ), CN∞(λ, p) is in the subcritical case,
where there does not exist a unique connected cluster of
active nodes a.s. during each time slot.

Let θ(λ, p|active) denote the probability that an arbi-
trary active node belongs to the active giant cluster in an
arbitrary time slot, then we have

θ(λ, p|active)

{
> 0, p > pc(λ)

= 0, p < pc(λ)

3. Lower Bound for Buffer Size in Static Net-
works with Base Stations

In this section, we study the achievable lower bound for
buffer size of connected nodes in static networks with BSs.

If the source node u and the destination node v is in the
same cell, packets are transmitted by multi-hop simply. The
probability for this case to happen is 1

m . which decreases
with the increasing number of BSs. Thus ignoring this case
will not impact the conclusion.

If they are in two different cells, three steps are taken to
finish the transmission, as shown in Figure 3.

Step 1: The source node u sends the packet to the local
BS(A) by multi-hop.

Step 2: Once the packet reaches the BS(A), it is trans-
mitted to another BS(B) in the cell which includes the des-
tination node.

Step 3: The BS(B) sends the packet to the destination
node v by multi-hop.

Figure 3. Transmission in Static Network with
Base Stations.

The main result is that the expected value of minimum
buffer occupation of each connected node is related to both
the number of nodes and that of BSs in the network in sub-
critical case, and is independent of the size of the network
in supercritical case.

In Subsection 3.1, we analyze the subcritical case, and in
Subsection 3.2, we analyze the supercritical case.

3.1. Subcritical Case

In subcritical case, there exists an achievable lower
bound for average buffer occupation, as stated in Theorem
1.

Theorem 1: In the static network with BSs, the lower
bound of the average buffer occupation satisfies

lim
L→∞

SL

L√
m

≥ b1rgTEC (1)

And it is achievable with some routing scheme that

lim
L→∞

SL

L√
m

≤ c1rgTEC (2)

b1,c1 are finite positive constants irrelevant to L.

3.1.1 The Lower Bound of the Average Buffer Occu-
pation

In this subcritical intermittently connected network, the fol-
lowing lemma on the minimum message existing time (de-
lay) can be proved [11][12].



Lemma 1: In subcritical case, the minimum latency of
message slot mu→v, Tmu→v , satisfy

lim
||Xu−Xv||→∞

Tmu→v

||Xu −Xv||
= γ1 > 0 a.s.

Proof for this lemma is based on the Subadditive Ergodic
Theorem [11], and is omitted in this paper.

First we consider the average minimum required buffer
size, S(1)

L ,in Step 1. Since the BS is supposed to be in the
center of the cell, the average distance between a arbitrary
node in the cell to the BS is

||Xn −XBS || =
1

( L√
m
)2λ

∫ L
2
√

m

0

rλ2πrdr =
π

12

L√
m

Therefore, the average minimum latency for a message s-
lot is Θ(

√
n
m ). Since messages are generated continuously,

by Little’s Law, the average number of message slots gen-
erated by one node existing in the cell in a given time s-
lot is Θ(

√
n
m ). There are Θ( n

m ) connected nodes,thus the
number of all message slots existing in a given time slot is
Θ( n

m

√
n
m ). Hence, the minimum average number of mes-

sage slots one connected node should buffer is Θ(
√

n
m ).

Since S
(1)
L = Tmu→BS

rg, we have

lim
L→∞

S
(1)
L
L√
m

≥ b1rgTEC

where b1 is positive constant independent with L.
The result for Step 3 is almost same with that for Step 1,

so we omitted the proof of it. Thus we have the result

lim
L→∞

SL

L√
m

≥ b1rgTEC

3.1.2 A Constructive Upper Bound of the Average
Buffer Occupation

Figure 4. The Source Extending Path from u
to v.

In this section, we will present a scheme in which a
Θ(

√
n
m ) buffer size requirement can be achieved in the sub-

critical case. To achieve this, we designate Source Extend-
ing Path (SEP)[10] for each source destination pair where

the number of hops is asymptotically linear to the distance
between them.

Source Extending Path (SEP):We draw a segment be-
tween the source node u and the destination node v. Then
divide the segment into a string of smaller segments of con-
stant length. The nearest connected node to each segment
endpoints is aflag node, and we connect every two neigh-
boring flag nodes by the shortest path. It has been proved
that the number of nodes in each segment is finite (see [2]).
Then we let Pu→v denotes the path of this kind between u
and v. One example is shown in Figure 4.

This scheme assures that the number of hops in Pu→v,
N(Pu→v), is asymptotically linear to the ||Xu −Xv|| (see
[2]). Thus we have

lim
L→∞

N(Pu→v)

||Xu −Xv||
≤ γ2 < ∞

γ2 is a positive constant.
We consider the occupied buffer in Step 1 first.
Consider a ring centered at BS with radius r and width

∆r, which is shown in Figure 5. Then the number of nodes
outside the ring in the cell is λ(L2 − πr2). The number of
nodes on the ring is 2πr∆rλ. Since the message rate rg is
constant, it is obvious that the buffer occupied by the u on
Pu→BS is also constant(Θ(1))[10].

Figure 5. The Method of Integration.

Then the average buffer occupation in Step 1,S(1)
L , satis-

fies

S
(1)
L =

1

( L√
m
)2

∫ L
2
√

m

0

2πrλ×N(Pu→v)×Θ(1)dr

≤ 1

( L√
m
)2

∫ L
2
√

m

0

2πrλ× γ2||Xu −Xv|| ×Θ(1)dr

= c1
L√
m

(3)



c1 is a positive constant which is independent of L.
The result for Step 3 is the same as that for Step 1, so we

draw the conclusion that

lim
L→∞

SL

L√
m

≤ c1rgTEC

Hence, Theorem 1 is proved, and it indicates that there is
an achievable lower bound of the average buffer occupation
in networks with BSs.

SL = Θ(

√
n

m
)

3.2. Supercritical Case

In supercritical case, the achievable lower bound for av-
erage buffer occupation is Θ(1). A lot of work has been
done for this case by Yuanzhong XU in [10], so the analy-
sis in this part is much simpler than the that of the previous
case.

Lemma 2: In supercritical case, the achievable lower
bound for occupied buffer size is Θ(1), which is indepen-
dent of the size of the network.

Lemma 2 indicates that in supercritical case, the total
buffer size occupied in the network is Θ(n). Since there
are Θ(2n) transmission pairs in the network, the buffer in
need by a source-destination pair is Θ(1), which is inde-
pendent of the size of the network. That is to say, in a sin-
gle cell, the buffer in need by the transmission between BS
and a node is also Θ(1). Taking the fact into consideration
that the overlying of transmission routes do not effects the
average buffer size, and the average distance between any
node and BS has been proved to be Θ( n

m )(That is to say
the average length of transmission routes is not effected by
the change that one end of a route is always BS), we can
draw the conclusion that the achievable lower bound is still
Θ(1)×Θ(2 n

m )

Θ( n
m ) = Θ(1), for both Step 1 and Step 2.

Then we come to the result that in supercritical case
the achievable lower bound for average buffer occupation
is Θ(1).

4. Buffer Size Occupation in Mobile Networks

In this section, we study the achievable lower bound for
buffer size of nodes in mobile networks for subcritical case.
In supercritical case, a transmission scheme is designed to
reach the buffer size occupation Θ(1). The scheme of Two-
hop Transmission is applied to this case.

Two-hop Transmission: In this kind of scheme, each
packet goes through one relay node that temporarily buffers
the packet until final delivery to the destination is possible.
For a sourceCdestination pair, all the other nodes can serve

as relay nodes. The goal is that in steady-state, the pack-
ets of every source node will be distributed across all the
nodes in the network, hence ensuring that every node in the
network will have packets buffered destined to every other
node (except itself). This ensures that a scheduled sender-
Creceiver pair always has a packet to send, in contrast to the
case of direct transmission. We assume that redundancy is
not allowed in this scheme, which means that one package
is transmitted to only one relay node.

The transmission is divided into two steps (Figure 6).
Step 1: Each packet is transmitted by the source to a

close-by relay node. If the close-by node happens to be the
destination node, the transmission is finished in advance.

Step 2: The packet carried by the relay node is handed
off to its destination if the relay node and the destination
node is connected.

Figure 6. Transmission in Mobile Networks.

The main result is that the expected value of minimum
buffer occupation in subcritical case is Θ(n), which means
that the buffer size in need will increase if the number of
users in the network grows. In supercritical case, the occu-
pied buffer can be cut down to Θ(1), if a special transmis-
sion scheme is applied.

In Subsection 4.1, we analyze the subcritical case, and in
Subsection 4.2, we analyze the supercritical case.

4.1. Subcritical Case

In subcritical case, there exists an achievable lower
bound for average buffer occupation, as stated in Theorem
2 and Theorem 3.

Theorem 2: In the i.i.d. mobile network where two-hop
scheme without redundancy is applied, the lower bound of
the average buffer occupation satisfies

lim
L→∞

E(
SL

L2
) ≥ b2rgTEC (4)

And it is achievable with some routing scheme that

lim
L→∞

E(
SL

L2
) ≤ c2rgTEC (5)

b2,c2 are finite positive constants irrelevant to L.



4.1.1 The Lower Bound of the Average Buffer Occu-
pation

In the work of Michael J. Neely [13], it has been proved
that the delay time in i.i.d. networks with two-hop scheme
is Θ(n), if redundancy is not allowed. We proof this result
informally here.

Lemma 3: The delay time before one packet is handed
off to the destination is 1

ln( L2

L2−π(2r)2p2
)
.

Proof : The possibility for the relay node to connect
with the destination is π(2r)2p2

L2 , which is easy to learn con-
sidering the area of the network. According to the property
of negative exponential distribution, the delay time is ex-
pected to be 1

ln( L2

L2−π(2r)2p2
)
.

Lemma 3 indicates that the delay time of one packet is
Θ(n), because

lim
L→∞

1

ln( L2

L2−π(2r)2p2
)

L2
= γ3

where γ3 is a constant.
The probability for a relay node to connect with at least

one source node in a time slot is

Pl = 1− (1− π(2r)2p2

L2
)n−2

∼ 1− e−(n−2)
π(2r)2p2

L2

→ 1− e−π(2r)2p2

, n → ∞

(6)

Then the number of packets received by the relay node dur-
ing the delay time is at least Θ(n)× (1− e−π(2r)2p2

).
Since the size of a single packet is rgTEC , the expect-

ed lower bound of buffer occupation for the i.i.d. mobile
network with two-hop transmission is

E(SL) ≥ Θ(n)× (1− e−π(2r)2p2

)× rgTEC , n → ∞

So we have

lim
L→∞

E(
SL

L2
) ≥ b2rgTEC

Then the first part of Theorem 2 has been proved.

4.1.2 A Constructive Upper Bound of the Average
Buffer Occupation

In this section, we will prove that the lower bound of Θ(n)
is achievable. We designate that each relay node can receive
more than one packets in one time slot, if it is connect to
more than one source node in this time slot.

The expected number of source nodes that are connected
to one relay node in one time slot is

Nu =
n−1∑
i=1

i× Ci
n−1 × (

π(2r)2

L2
)i(1− π(2r)2

L2
)n−1−i

≤ (1− π(2r)2

L2
)n−1 (n− 1)(n− 2)...(n− k)

(n− π(2r)2)k
× an− a− 1

n− 1

→ a(1− e−π(2r)2), n → ∞
(7)

where a and k are constants. The proof of this inequality in
detail is included in the appendix of this paper.

According to Lemma 3, the delay time is still Θ(n), so
we get the constructive upper bound of the average buffer
occupation

E(SL) ≤ Θ(n)× a(1− e−π(2r)2p2

)× rgTEC , n → ∞

Thus the second part of Theorem 2 has been proved.

lim
L→∞

E(
SL

L2
) ≤ c2rgTEC

Hence, Theorem 2 is proved, and it indicates that there is
an achievable lower bound of the average buffer occupation
in i.i.d. mobile networks.

SL = Θ(n)

4.2. Supercritical Case

If the transmission scheme is not changed, the occupied
buffer size cannot be improved even in the supercritical
case, because the giant cluster is not taken advantage of.
The buffer occupation is still Θ(n). However, it can be cut
down if some special changes are made to the transmission
scheme.

In the supercritical case, we assume that all relay nodes
knows if they are in the giant cluster, and if and only if
one relay node and the destination is in the giant cluster at
the same time, the packet will be handed off to the desti-
nation through the giant cluster directly, and therefore no
delay will be made in Step 2. One example is shown in
Figure 7.



Figure 7. Transmission in Supercritical Case.

At this new scheme, buffer occupied will be Θ(1), which
is greatly improved compared with the one in subcritical
case.

Lemma 4: In supercritical case, the delay time before
one packet is handed off to the destination is Θ(1).

Proof : According to the theory of percolation, the
probability for one node to be in the giant cluster is
θ(λ, p|active), which is a positive constant in supercritical
case. Obviously, it is independent of the number of nodes
in the network.

Thus at any time slot, the probability for a relay node and
the destination node to be in the giant cluster at the same
time is (θ(λ, p|active))2. According to the property of neg-
ative exponential distribution, the delay time is expected to
be 1

ln( 1
1−(θ(λ,p|active))2

)
, which is a constant independent of

the number of nodes in the network.
It has been proved that the expected number of nodes

that a relay node is connected to is Θ(1), then the expected
average buffer occupation is

E(SL) =

1
ln( 1

1−(θ(λ,p|active))2
)
Θ(1)Θ(1)Θ(n)

Θ(n)

= Θ(
1

ln( 1
1−(θ(λ,p|active))2 )

) = Θ(1)

(8)

Then it is proved that in supercritical case, the buffer size
occupied is Θ(1), if a new transmission scheme is applied
to make use of the giant cluster.

5. Buffer Size Occupation in Mobile Networks
With Base Stations

In this section, we study the occupied buffer size of n-
odes in mobile networks with BSs. A new scheme is ap-
plied to this case, which is a combination of the scheme in
Section 3 and 4.

The transmission is divided into three steps, as shown in
Figure 8.

Step 1: The source node u sends one packet to BS(A) by
two-hop transmission. It should be noted that the BS(A) is
not necessarily to be the local BS. Since the relay node is
able to move from cell to cell, the BS(A) is actually the first
BS that the relay node is connected to. Therefore the value
of p has no effect on Step 1.

Step 2: Once the packet reaches the BS(A), it is trans-
mitted to another BS(B) in the cell which includes the des-
tination node at the time slot.

Step 3: The BS(B) sends the packet to the destination
node v by two-hop transmission through a relay node. It
should be noted that both v and the relay node have oppor-
tunity to jump outside the cell. The number of packets that a
BS sends to a connect node must be more than one to ensure
the stability of the network.

Figure 8. Transmission in Mobile Networks
with Base Stations.

The average number of packages that a BS must send out
at a time slot is Θ(

rgTECn
m ). Since the number of nodes that

are connected to the BS at a time slot is Θ(1), which will
be proved below, the BS has to send Θ( n

m ) packets to every
connected relay node at one time slot.

The main result for this model is that the expected value
of minimum buffer occupation in subcritical case is Θ( n

m ),
if q is not 1. This result indicates that the buffer size occu-
pied is related to both the number of nodes and the number
of BSs in the network. In supercritical case, the occupied
buffer can be cut down to Θ(1), if the existence of giant
cluster is made use of.

In Subsection 5.1, we analyze the subcritical case, and in
Subsection 5.2, we analyze the supercritical case.

5.1. Subcritical Case

Since many useful theorems have been proved in the pre-
vious sections, the analysis in this section is very simple.

Before analysis, we divide the packets into two classes:
Up Packets :The packets sent from source nodes to relay

nodes. They are created during Step 1.
Down Packets :The packets sent from BSs to relay nodes.

They are created during Step 2.
For Step 1, we analyze the buffer size caused by Up

Packets, and for Step 3, buffer size needed by Down Packets
is considered.

Since the probability for a relay node to connect to a BS



is

((1− q)× π(2r)2

n
m

+ q × mπ(2r)2

n
=

π(2r)2

n
m

The delay time for Step 1 is

1

ln(
n
m

n
m−π(2r)2p2 )

→ Θ(
n

m
),

n

m
→ ∞

If n
m is constant, the delay time is also constant without the

condition n
m → ∞, so the result is still in the right form

even in this case.
Since it has been proved that the expected number of n-

odes that a relay node is connected to at any time slot is
Θ(1), the average buffer size occupied in Step 1 is

S
(UP )
L =

1

ln(
n
m

n
m−π(2r)2p2 )

×Θ(1) → Θ(
n

m
),

n

m
→ ∞

The analysis for Step 3 is a little more complicated. The
probability for the relay node and v to be in the home cell
at the same time is (1 − q)2, and the probability that they
are connected to each other successfully is π(2r)2

n
m

. The case
that one of the relay node and v is outside the home cell is
2(1 − q)q, and for this case it is impossible for the trans-
mission to be finished. If none of them are in the home cell
(q2), the probability that they are connected to each other
successfully is π(2r)2

n . Thus the probability that Step 3 is
finished at any time slot is

(1− q)2 × π(2r)2

n
m

+ 2(1− q)q × 0 + q2 × π(2r)2

n

= π(2r)2
(1− q)2m+ q2

n

(9)

Thus the expected delay time is

E(D3) =
1

ln( n/m
n/m−π(2r)2(1−q)2−π(2r)2q2/m )

If q ̸= 1, π(2r)2(1 − q)2 is a positive constant, and
π(2r)2q2/m is supposed to be little enough to be ignored
compared with π(2r)2(1− q)2, if m is large enough. Then
we have

lim
n
m→∞,n→∞

E(D3) = Θ(
n

m
)

It should be noted that if n
m is constant, D3 is also a con-

stant, thus the result Θ( n
m ) is still in the right form.

On the other hand, if q = 1, which means that all the
nodes are able to move in the whole network without any
restriction, the delay time is much longer

lim
n
m→∞,n→∞

E(D3) = lim
n→∞

1

ln( n
n−π(2r)2 )

= Θ(n)

Down Packets are created only when relay nodes are
connected to BSs, and the opportunity for a relay node to
be connected to a BS is always mπ(2r)2

n , which is indepen-
dent of q.

Since the number of packets sent by BSs to a single re-
lay node at one time slot is Θ( n

m ), the average buffer size
occupied in Step 3 is

lim
n
m→∞

E(S(DP )
L ) =


Θ(

n

m

mπ(2r)2

n

n

m
) = Θ(

n

m
), q < 1

Θ(n
mπ(2r)2

n

n

m
) = Θ(n), q = 1

Since the expect average buffer occupation is the sum of
S
(UP )
L and S

(DP )
L , we have

lim
n
m→∞,n→∞

E(SL)

= Θ(
n

m
), q ̸= 1

= Θ(n), q = 1

This result shows us that if the mobility of nodes are not
limited, the buffer size occupied is still Θ(n) even if BSs
are applied in the network. If the mobility of nodes are re-
stricted with home cell, the average buffer size in need is cut
to Θ( n

m ). The main reason accounts for this phenomenon
is that since redundancy is not allowed in the network, the
delay time is too long.

5.2. Supercritical Case

In this case the buffer size occupied is Θ(1) if the giant
cluster is made use of.

In the mobile network without BSs, it has been proved
that the average delay time for transmission is Θ(1), re-
gardless of the size of the network. So this result can be
used here directly. Since q has no effect on Step 1, The
buffer in need for Up Packets is still Θ(1).

The buffer in need for Down Packets is also Θ(1). The
proof is similar to that in the previous section. The proba-
bility for one relay node and a destination to be connected
is

(1− q)2 × θ2(λ, p|active) + 2q(1− q)× θ2(λ, p|active)
+ q2 × θ2(λ, p|active)
= θ(λ, p|active)2

(10)
which is a positive constant. So the expected delay time is
also Θ(1). Thus the expected average occupied buffer size
is SL = Θ(1), regardless whether q = 1.



6. Discussion

6.1. The Effect of the Radius of Base Stations

In the analysis for mobile networks with BSs, we assume
that the radius of BSs is R = r. However in the real world
the radius of BSs is not necessarily the same as that of nor-
mal nodes. For example, in modern communication net-
work the radius of BSs is much larger than the terminals
of users. In this section we discuss about the effect of the
changing radius of BSs.

6.1.1 Subcritical Case

In the previous work we have ignored the fact that the num-
ber of available channels is always limited in the real world.
That is reasonable in the case that R = r, because

n

m
× π(2r)2p

(
√

n/m)2
= Θ(1)

which indicates that the expected number of nodes that are
connected to a BS at a single time slot will not change with
the increasing number of users. However, this result is not
practical in the case that R is changeable. The expected
number of nodes that are able to be connected to the BS is

n

m
× π(R+ r)2p

(
√

n/m)2
= π(R+ r)2p

which would increase if R become larger. In this case we
assume that the maximum number of channels provided by
one BS is k. Then each node that is in the range of BS has a
probability k

π(R+r)2p to be connected successfully, or it has
to wait for the next chance to send packets to the BS. Then
the probability for a relay node to finish Step 1 in a single
time slot is

π(R+ r)2p
n
m

× k

π(R+ r)2p
=

k

n/m

It is interesting that the factor R disappeared during the cal-
culation.

Much similar to the previous analysis, the time it takes
to send a packet to a BS in Step 1 is 1

ln(
n/m

n/m−k
)
. Then we

have the average buffer occupation for Up Packets

E(S(UP )
L ) =

1

ln( n/m
n/m−k )

×Θ(1)

× (1− (p2
n/m− π(R+ r)2 − π(2r)2

n/m− π(R+ r)2
)

n
m−1)

= Θ(
1

ln( n/m
n/m−k )

)

(11)

The average number of packages that a BS must send out
at a time slot is Θ(

rgTECn
m ). Since the average number of

nodes that are connected to the BS at a time slot is limited
to k, the BS has to send Θ( n

mk ) Down Packets to every
connected relay node at one time slot.

In Step 3, since the number of nodes that are in the range
of a BS is π(R + r)2p, the probability that a relay node is
connected to a BS successfully is

mπ(R+ r)2p

L2
× k

π(R+ r)2p
= Θ(

km

n
)

If the destination node is in the range of the BS already, it
can be connected to BS directly without the help of relay
node. Then in the case q ̸= 1, the probability for a destina-
tion node to be connected to a BS in its home cell is

pπ(R+ r)2

n/m
× k(1− q)

π(R+ r)2p
= Θ(

km

n
)

Since the delay time for Step 3 is still n
m , the expected

occupied buffer size is

E(S(DP )
L ) = Θ(

km

n
× n

m
× n

mk
× (1− km

n
))

= Θ(
n

m
− k)

(12)

According to the result, when k is in the constant order,
then E(S(UP )

L ) = Θ( n
m ), and E(S(DP )

L ) = Θ( n
m ), so the

average buffer occupation in the whole network is still

E(SL) = Θ(
n

m
)

. which is independent of R.
If k = Θ(R2), the result is

E(S(UP )
L ) = Θ(

1

ln( n/m
n/m−(R+r)2 )

)

E(S(DP )
L ) = Θ(

n

m
−R2)

When R = Θ(
√

n
m ), E(S(1)

L ) = Θ(1), but E(S(3)
L ) =

Θ( n
m ). Then the average buffer occupation in the whole

network is still
E(SL) = Θ(

n

m
)

.
When R = Θ(1), the result is still Θ( n

m ).
In the case where q = 1, the delay for Step 3 is Θ(n),

and the probability for a destination node to be connected
to a BS in its home cell becomes

pπ(R+ r)2

n
× k

π(R+ r)2p
= Θ(

k

n
)



The following calculation does not change, so we give the
result here directly

E(S(DP )
L ) = Θ(n− k)

Since k ≤ Θ( n
m ), the buffer size occupied is always Θ(n),

regardless of R or k.
The analysis show us that even if the radius of R is

changeable and loose channel limitation is applied, the av-
erage buffer occupation cannot be improved because the
buffer in need by Down Packets still increases with the in-
creasing n

m . However, this method indeed cut down the
buffer in need because the result becomes Θ( n

m−k) instead
of Θ( n

m ).

6.1.2 Supercritical Case

In this case, the probability for a node to be able to connect
a BS is (1 − (1 − θ)k)θ, where θ denotes θ(λ, p|active).
So the probability for a node to connected with the BS in its
home cell is independent of q.

The average buffer occupied in Step 1 is

E(S(UP )
L ) = Θ(

1

ln( 1
1−θ(1−(1−θ)k)

)
)

Proof for this equation is similar to that in subcritical case,
so it is omitted in this paper.

The expected number of nodes that are able to connect a
BS at a single time slot this nθ(1 − (1 − θ)k). In the same
way of proof for subcritical case, it can be found that

E(S(DP )
L ) = θ(1− (1− θ)k)× mk

nθ(1− (1− θ)k)

n

mk

× (1− θ(1− (1− θ)k))

= 1− θ(1− (1− θ)k)
(13)

Then the expected average occupied buffer in supercriti-
cal case is

E(SL) = Θ(
1

ln( 1
1−θ(1−(1−θ)k)

)
+ 1− θ(1− (1− θ)k))

which is independent of q.

6.2. The Security for Network Coding

In this section we analysis the impact of increasing num-
ber of users on security in the network where Network Cod-
ing is applied.

Network Coding Model:In mobile networks with BSs,
once a source node u intends to send a message to a desti-
nation node v, it encode the message by creating (1 + β)α
packets, and transmits these packets to v. Once v receives
α packets, it is able to decode them and get the message.

We assume that there exist malicious relay nodes in the
network, which will decode the message from any other
sources once they get enough packets. If the average num-
ber of packets from a single source buffered in a relay node
is larger than the order of α, the network is not security.

Consider subcritical case first. According to the previ-
ous analysis, the average buffer size in static network with
BSs is Θ(

√
n
m ), which means that averagely every node

is carrying Θ(
√

1
nm ) packets from another node. Then if

α > Θ(
√

1
nm ), the network is supposed to be security, be-

cause the need for α decreases with the increasing number
of users.

In the mobile network without BSs, that would be α >
Θ(1), which indicates that a constant α is not necessarily
large enough to ensure the security of the network.

In the mobile network with BSs (q ̸= 1), since the dis-
tribution of mobile nodes are limited, the possible location
of sources are also restricted. If q = 0, all the nodes
move in their home cells only, and the requirement for α
is α > Θ(1). If q is larger but still q < 1, the result is about
to be α > Θ( 1

m ). This result show us that the need for α is
independent of the number of users in the network, and the
increasing number of BSs would help to improve the secu-
rity of the network. If q = 1, which means that all the node
can move around the network without limitation, the result
is α > Θ(1) again.

In supercritical case, almost all the buffer occupation is
Θ(1), so the minimum requirement for α is Θ( 1n ). Partic-
ularly, for mobile networks with BSs, the result becomes
α > Θ(mn ) when q = 0, which show us that too many BSs
in mobile networks may even harm the security of network
coding.

Then it occurs to us that static network with BSs plays
best among the three kind of networks for the security of
network coding.

Table 1. Main Achievements
Network Subcritical

Case
Supercritical
Case

Staticn Wireless Net-
works with BSs

Θ(
√

n
m ) Θ(1)

Mobile Wireless Net-
works

Θ(n) Θ(1)

Mobile Wireless Net-
works with BSs

Θ( n
m

)(q<1)

Θ(n)(q=1)

Θ(1)

Mobile Wireless
Networks with
BSs(changeable ra-
dius)(channel limit:
k)

Θ( 1

ln(
n/m

n/m−k
)
+

n
m

−k)(q<1)

Θ( 1

ln(
n/m

n/m−k
)
+

n−k)(q=1)

Θ( 1
ln( 1

1−θ(1−(1−θ)k)
)
+

1−θ(1−(1−θ)k))



7. Conclusion

In this paper, we have studied buffer size occupation in
intermittently connected static networks with base station-
s, mobile networks and mobile network with base stations.
Fundamental lower bound on node buffer size in the first t-
wo networks are also studied. In conclusion, all the achieve-
ments are shown in Table 1.

Moreover, the impact of changeable radius of BSs in
both subcritical case and supercritical case is analyzed. An-
other interesting study about the impact of user number on
the security of network coding is also operated, and we find
that static network with BSs plays best among the three kind
of networks for the security of network coding.
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