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Abstract—The throughput λ(n) of an ad hoc system consisting
of n static nodes randomly located in a disk of unit area is

Θ
(

W
√

n logn

)

, which converges to zero when number of nodes

goes to infinity. Although mobility can increase the overall
throughput to Θ(1), there still exists several cases that nodes
might be impossible to be mobile.

In order to compensate the decrease in throughputλ (n), we
add mobile relay nodes, which only transmit but never generate
information, to an ad hoc system consisting of purely static nodes.

In this paper, we first study static network with infinite mobile
relay nodes. Then we study static network with finite mobile relay
nodes. It is shown that the throughput of a static network with
infinite mobile relay nodes isΘ(1), and the throughput of a static
network with finite mobile relay nodes varies with the number
of mobile relay nodes.

Index Terms—Ad hoc networks, capacity, relay.

I. I NTRODUCTION

W IRELESS networks consist of a number of nodes
which communicate with each other over a wireless

channel.Ad hoc network is one type of wireless networks
which includes no wired backbone or centralized controlling
center. Each node transmits packets directly to its destination
or through several relay nodes. One simple example of ad hoc
network is collection of furnitures in buildings, including air
conditioners, refridgerators, personal computers, microwave
ovens, and possibly other ”smart” furnitures.

It is proved that the throughputλ (n) of an ad hoc net-

work consisting of static nodes isΘ

(

W√
n logn

)

, see Gupta

and Kumar [2]; and even under optimal circumstances, the
throughput is onlyΘ

(

W√
n

)

for each node for a destination
nonvarnishingly far away. Throughput per node of mobile ad
hoc wireless network is proved to reachΘ(1), see Matthias
Grossglauser and David N. C. Tse [3], which is a optimistic
result. However, in some situations, like ”smart home”, where
nodes are constituted of furnitures, it is impossible to force
nodes to be mobile. Since the probability that throughput

Θ

(

W√
n logn

)

is feasible approaches 1 asn→ ∞, a constraint

on number of nodesn is not acceptable.
One approach to compensate the decrease of throughput

λ (n) is to add some mobile relay nodes to a static ad
hoc network. These relays nodes generate no information
themselves, thus causing no transmission requirement for the
overall network, and their only job is to transmit information
between static source nodes and destination nodes. Thus a
multi-hop protocol can be replicated by a two-hop protocol.
Intuitively, this model would increase the throughputλ (n)

to a large extent. Yet a restriction on it is that the increase
of number of nodes, including static nodes and mobile nodes,
leads to increase in interference, which is the major restriction
on the throughput of ad hoc networks.

II. M ODEL

The ad hoc networks consists ofn static nodes andm
(m ≤ n) mobile relay nodes all lying in the disk of unit
area (of radius 1√

π
). Static nodes are randomly located, i.e.,

independently and uniformly distributed. Each static nodehas
a randomly chosen destination to which it wishes to send
λ (n) bits per second. Relay nodes generate no information
for transmission. The location of theith relay node at timet
is given byYi (t). Relay nodes are mobile and with infinite
storage, and we assume that the process{Yi (·)} is stationary
and ergodic with stationary distribution uniform on the disk;
moreover, the trajectories of different relays are independent
and identically distributed (i.i.d.). The destination foreach
node is independently chosen as the static node nearest to
a randomly located point, i.e., uniformly and independently
distributed. (Thus destinations are on the order to 1 m away
on average).

In a random setting, we will assume that the nodes are
homogeneous, i.e., all transmissions employ the same nominal
range or power. TheProtocol Model and Physical Model are
as follows.

1) The Protocol Model: All nodes employ a commonrange
r for all their transmissions. When the nodeXi transmits
to a nodeXj over themth subchannel, this transmission
is successfully received byXj if

a) The distance betweenXi andXj is no more than
r, i.e.,

|Xi −Xj | ≤ r. (1)

b) For every other nodeXk simultaneously transmit-
ting over the same subchannel

|Xk −Xj | ≥ (1 + ∆) r. (2)

2) The Physical Model: All nodes choose a common power
level P for all their transmissions. Let{Xk; k ∈ T } be
the subset of nodes simultaneously transmitting at some
instant over a certain subchannel. A transmission from
a nodeXi, i ∈ T , is successfully received by a node
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Xj if

P
|Xi−Xj |κ

N +
∑

k∈T
k 6=i

P

|Xk −Xj |κ
≥ β. (3)

Denote byγi,j the channel gain from nodei to nodej,
Equation 3 can be rewritten as

Pγi,j

N +
∑

k∈T
k 6=i

Pγi,j
≥ β (4)

This models a situation where a minimum signal-to-
interference ratio (SIR) ofβ is necessary for successful
receptions, the ambient noise power level isN , and
signal power decays with distancer as 1

rκ . We will
suppose thatκ > 2, which is the usual model outside a
small neighborhood of the transmitter.

3) The Throughput Capacity of Random Networks: The
notion of throughput is defined in the usual manner as
the time average of the number of bits per second that
can be transmitted by every node to its destination.

III. I MPACT ON NUMBER OF SIMULTANEOUS

SOURCE-RECEIVER PAIRS

Theorem III.1 . The simultaneous S-R pair numberNS−R is
bounded as follows:

NS−R ≤ n+m

2
(5)

Proof: Assume at timet there are totallyn1 (n1 ≤ m)
static nodes each communicating with a mobile relay node,
and other static nodes, totallyn2 communicating with their
static neighbors. We define a relay-communicating ratioθ ∈
(0, 1). Thenn1 = θn andn2 = (1 − θ)n. The total number
of S-R pairs can thus be calculated as

NS−R = n1 +
n2

2

= θn+
(1− θ)n

2

=
1

2
(1 + θ)n

=
n

2
+
n1

2

≤ n+m

2
.

The number of S-R pairs reaches the upper bound men-
tioned in Theorem III.1 whenm is equal toθn. Hence, the
relay-communicating ratioθ is m

n , which means that there
are n1 = m static nodes communicating with relay nodes
simultaneously. This reveals the fact that the more relay
nodes involved in communication simultaneously, the larger
number of S-R pairs supported by ad hoc network. Although
intuitively, this result presents part of explanation for the
impact of mobile relay nodes on static ad hoc network.

IV. N ETWORK COMMUNICATION USING ONLY RELAYS

Here we make a little change to the scheduling policyπ

presented by Matthias Grossglauser and David N. C. Tse [3]
to fit the new model. For ease of mathamtical deduction, here
we omit direct transmission between two static nodes and
only transmission from one static node to one mobile relay
node or from one mobile relay node to one static node is
permitted under this scheduling policy. For each time instant
t, the scheduling policy randomly choosenS nodes to form
the sender setS. Each sender node inS has a randomly
chosen intended destination toward which it transmits packet.
All mobile relay nodes form the receiver setR, which receives
packets from nodes inS. Each sender node inS chooses
to transmit packet to the nearest node among all nodes in
R. Whether a transmission is successful is dependent on the
ratio of power generated by sender and interference generated
by other senders. Denote byNt the number of successful
transmission.

Theorem IV.1. For the scheduling policyπ, the expected
numberE[Nt] of feasible sender-receiver pairs isΘ(n), i.e.,

lim
n→∞

E [Nt]

n
= φ > 0 (6)

Furthermore, for two arbitrary nodesi and j, the probability
that (i, j) is scheduled as a sender-receiver pair isΘ

(

1
m

)

.

Proof: Here we review the proof of Theorem III.4 in
[3] with a different model. We consider a fixed timet. Let
U1, · · · , UnS

be the random positions of the senders inS. Let
V1, · · · , VnR

be the positions of nodes in the receiver setR.
These random variables are i.i.d. uniformly distributed onthe
open disk of unit area. For each nodes ∈ S, let its intended
receiverr(s) ∈ R be the relay node that is nearest tos among
all nodes inR. Since the number of relay nodes in one ad hoc
network ism, the number of receiversnR available ism.

We now analyze the probability of successful transmission
for each chosen sender-receiver pair. By symmetry, we can
just focus on one such pair, say(1, r (1)). The event of
successful transmission depends on the positionsU1, · · · , UnS

and V1, · · · , Vm. Let Qi be the received power from sender
nodei at receiver noder(1), and

Qi =
P

|Ui − Vr(1)|κ
.

The noder(1) satisfies

r(1) = argmin
j

|U1 − Vj |.

The total interference at noder(1) is given by I =
∑

i6=1

Qi.

The SIR for the transmission from sender 1 at receiverr(1)
is given by

SIR =
Q1

N0 + I
.

We now analyze the asymptotics ofQ1 and I asn → ∞.
Now

Q1 = max
j=1,··· ,m

Zj
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whereZj = P
|U1−Vj |κ . Let us first condition onU1 = u for

someu in the open disk. A disk centered atu and of radius
r < (π−1/2 − |u|) lies entirely inside the unit disk. Then, for
everyz > r−κ and for all j, we have

Pr {Zj > z|Ui = u} = Pr
{

|Vj − u| < z−
1

κ

}

= πz−
2

κ . (7)

Conditional onU1 = u, the random variablesZi’s are i.i.d. By
a standard result on the asymptotic distribution of extremum
of i.i.d. random variables [1], the extremumQ1 of m i.i.d.
random variables whose cdf satisfies

lim
m→∞

1− FZ(x)

1− FZ(kx)
= kb (8)

satisfies

lim
m→∞

Pr {Q1 ≤ amx} = exp(−x−b) (9)

wheream is given byam = F−1
Z (1− 1

m ) = (πm)
κ
2 . Compar-

ing Equation 7 with Equation 9, the asymptotic distributionof
Q1 is

lim
m→∞

Pr{Q1 < amx|U1 = u} = FQ∗

a
(x) (10)

whereQ∗
a has a cdf

FQ∗

a
=

{

exp(−x− 2

κ ), x ≥ 0
0, x < 0.

(11)

Then, for eachx > 0, we have

lim
m→∞

Pr {Q1 < amx}

= lim
m→∞

∫

u∈D
Pr {Q1 < amx|U1 = u} du

=

∫

u∈D
lim
m→∞

Pr {Q1 < amx|U1 = u} du

=

∫

u∈D
FQ∗

α
(x) du = FQ∗

α
(x) (12)

Since F Q1

am

(x) = lim
m→∞

Pr{Q1 < amx}, we conclude that

random variableQ1

am
coverges to random variableQ∗

a. That is

(πm)−
κ
2Q1

m→∞−→ Q∗
α. (13)

Same as the result in [3], conditional onVr(1) = u, the

interferenceI =

nS
∑

i=2

satifies

[

πΓ

(

1− 2

κ

)

nS

]−κ
2

I =

[

πΓ

(

1− 2

κ

)

θn

]−κ
2

n→∞−→ I∗α (14)

As claimed by Grossglauser [3], the signal power and the
total interference are asymptotically independent. Hence, com-
bining this claimation with Equation 13 and Equation 14,
the probability of successful transmission from sender 1 to
receiverr(1) is

Pr{SIR > β} = Pr

{

Q1

N0 + I
> β

}

n→∞−→
m→∞Pr

{

Q∗
α

I∗α
> β∗

}

> 0, (15)

whereβ∗ is given by

β∗ =
(πm)

−κ
2

[

πΓ
(

1− 2
κ

)

θn
]−κ

2

β

= β

[

θψΓ

(

1− 2

κ

)]
κ
2

, (16)

whereψ ∈ (1,+∞) is the node-to-relay rationm .
The expected number of successful transmission at one time

instantt is therefore

E[Nt] = θnPr {SIR > β} , (17)

φ = θPr {SIR > β} . (18)

Furthermore, since scheduling policyπ depends only on
locations of sender nodes and receiver nodes, and since
locations of nodes{Xi} and{Yi} are i.i.d, the probability of
successful transmission between any specific sender-receiver
pair is equal, and thus,Θ

(

1
n

)

.
Since there exist totallym = n

ψ mobile relays in the
network, the probability that one sender can transmit to a
mobile relay at time slott is

Prob(one transmits to a mobile relay at time slott)

= E [Nt]×
n

ψ
= Θ

(

1

ψ

)

= Θ(1) , (19)

which is the same as Grossglauser and Tse’s result [3].

V. NETWORK WITH FINITE MOBILE RELAY NODES

Although the previous result provides us with an optimistic
vision, the assumption that the number of mobile relay nodes
m is of the same order of static nodesn is too strong.
Under many circumstances, only finite mobile relay nodes are
permitted in one network and thus an overall capacityΘ(1)
is unreachable.

It is proved by Gupta and Kumar [2] that under a Protocol
Model of noninterference, the capacity of wireless networks
with n randomly located nodes each capable of transmitting at
W bits per second and employing a common range, and each
with randomly chosen and therefore likely far away destina-

tion, is Θ

(

W√
n logn

)

. Although the mathematical induction

was done under the structure of a sphereS2 of unit space,
Gupta and Kumar proved that this result is also applicable for
nodes located on planar disk.

In this section, all nodes are deployed on a planar disk
of unit area.n static nodes are randomly located, i.e., in-
dependently and uniformly distributed, on the disk, andm
mobile relay nodes are added into the network, of which the
process{Xi (t)} is assumed to be stationary and ergodic with
stationary distributiion uniform on the disk.

Only finite mobile relay nodes are added in the ad hoc
network. The number of mobile relay nodes is denoted as
m, and unlike what we assume in Section IV,m is a variable
far smaller than the number of static nodesn. The node-to-
relay ratio, no longer a constant, is denoted asψ (n) = n

m ∈
(1,+∞).
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A. Scheduling Policy

The scheduling policyπ is as follows.

1) We fix a parametersender density θ ∈ (0, 1), and the
number of sendersnS can thus be exhibited asnS = θn.
All sender nodes form the sender setS. For each time
slot t, one node from all other static nodes is chosen as
destination of one given sender node.

2) Nodes not included in the sender setS, both static nodes
and mobile relay nodes, are included in the receiver set
R. For each time slott, each sender node inS transmits
packets to its nearest neighbor among nodes inR. Both
static neighbors and mobile relay nodes can be chosen
as receiver. It should be mentioned that even if a static
node is chosen as receiver at one particular time slot
t1 of one packetpi, it does not necessarily follow that
packetpi will be transmitted through a multihop method.
It is permitted that static nodes chosen as receiver at one
time slot of packetpi can transmit this packet to one
mobile relay node in the next time slot. The number of
static nodes inR is denoted asnR. Obviously, we have
nR = (1− θ)n.

3) On accordance to the physical model of a random
model, all sender nodes each time transmits to its chosen
receiver with unit power(Pi = 1).

4) For each time slott, we retain those successful sender-
receiver pairs (S-R pairs), and the number of these
successful S-R pairs is denoted asNt.

B. Probability of Transmission to a Mobile Relay Node

In order to combine multi-hop transmission through static
nodes and two-hop transmission through one mobile relay
node, we have to first study the probability that one given
source node chooses one mobile relay node as its receiver at
a particular time slott. According to scheduling policyπ, at
each time slott, the source nodes choose the nearest node
to them as their receiver, with no regard of whether it is a
mobile relay node or a static node. Therefore, the probability
that one given source node chooses one mobile relay node at a
particular time slott is equal to the probability that one mobile
relay node is the nearest node to the given source node. In the
following part, we useAi to denote the proposition that one
mobile relay node is the nearest node to the given souce node
Xi.

Since mobile relay nodes are distributed uniformly on the
disk, it follows that Prob(Ai) is equal to the areaScircle of the
circle with center atXi and radius of|Xi −Xneib(i)|, where
Xneib(i) denotes the nearest static neighbor node of nodeXi.
Sincen static nodes are uniformly distributed on a planar disk
of unit area, distance between neighbors isd = Θ

(

1√
n

)

. Thus

the area of the circle isScircle = Θ
(

1
n

)

. Therefore, we have

Prob(Ai) = Θ

(

1

n

)

. (20)

Since there are totallym uniformly distributed mobile relay
nodes in the network, the probability of transmission to a

mobile relay node is thus

Prob(one given source node chooses a mobile

relay node as receiver) = Θ
(m

n

)

, (21)

and the probability that a static neighbor node is chosen as
receiver is

Prob(one given source node chooses a static

neighbor node as receiver) = Θ
(

1− m

n

)

. (22)

In the following part, we denote probability in Equation 21 as
Prob(A) and probability in Equation 22 as Prob(B).

C. The Throughput at Each Node

It is proved in Section IV that under the assumption that
each source node can find one mobile relay node at any
time slot the throughput per node isλtwo−hop (n) = Θ (1),
and Gupta and Kumar proved in [2] that the throughput per
node of a static network with transmission through multihop

using static nodes as relays isλmultihop (n) = Θ

(

1√
n logn

)

.

Combining these two results, as well as Equation 21 and
Equation 22, the throughput per node can be calculated.

At each time slott, each sender node chooses one mobile
relay node as receiver with probability Prob(A), or one static
neighbor with probability Prob(B). Then, with throughput
provided by two-hop transmission and multi-hop transmission,
the overall throughput per node can be calculated. Since here
the two-hop transmission throughput and multi-hop transmis-
sion throughput are all on the condition that corresponding
relays are chosen, these two throughputs are conditional
throughput. We useλtwo−hop (n|A) to denote conditional
throughput of two-hop transmission andλmulti−hop (n|B) to
denote conditional throughput of multi-hop transmission.

Since the conditional throughput can be interpreted as
throughput with assumption that corresponding condition hap-
pens with probability 1, we can simply apply results of Gupta
and Kumar [2] and in section IV. That is

λtwo−hop (n|A) = Θ (1) (23)

λmulti−hop (n|B) = Θ

(

1√
n log n

)

. (24)

Theorem V.1. The throughput per node is

λ (n) = Θ

(

1

ψ (n)
+

1√
n log n

− 1

ψ (n)

1√
n log n

)

.

Proof: The throughput per node can viewed as a combi-
nation of two possible transmission method, each calculated
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as a conditional probability.

λ (n) = Prob(A)λtwo−hop (n|A)
+ Prob(B)λmulti−hop (n|B)

= Θ
(m

n

)

Θ(1) + Θ

(

n−m

n

)

Θ

(

1√
n log n

)

= Θ
(m

n

)

+Θ

(

n−m

n

1√
n log n

)

= Θ

(

m

n
+

1√
n log n

− m

n

1√
n log n

)

= Θ

(

1

ψ (n)
+

1√
n log n

− 1

ψ (n)

1√
n log n

)

. (25)

This result can be viewed as a generalized result combining
network with infinite relay nodes and network with finite relay
nodes. When the number of relay nodes is of same order
with the number of static nodes, that is,nm = ψ, where
ψ is a constant, Equation 25 converges toΘ(1), which is
Grossglauser and Tse’s result, and when the number of relay
nodes is far smaller than the number of static nodes, that is,
n
m = ψ (n)

n→∞−→ 0, Equation 25 converges toΘ

(

1√
n logn

)

,

which is Gupta and Kumar’s result.

VI. CONCLUSION

In this paper we study static network with mobile relays
added in order to compensate the decrease of throughput with
the increase of number of nodesn. We study two cases, the
first of which is static network with infinite mobile relay nodes,
and the second of which is static network with finite mobile
relay nodes. We show that with infinite mobile relay nodes, the
throughput can reach the upper bound of ad hoc network. Our
work provides a combination of Gupta and Kumar’s multi-hop
network and Grossglauser and Tse’s random work network.
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