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Abstract—In this paper, we study the network coding under
different mobility models for 2-hop and multi-hop schemes with
n nodes and k original packets for each pair of source-destination.
We propose two ad-hoc network mobility models- hybrid random
walk mobility models and discrete random direction mobility
models with the constraint of parameters β and α, respectively.
And we find that under 2-hop relay scheme with network coding
,there is only a logn gain on delay when the mobility model is
random walk mobility model, while there will be a delay gain
logn whatever the mobility model is when multi-hop scheme is
used. At last,we propose the network model with network coding
and infrastructure mode. And in this mode, we obtain the result
of throughput and delay, which are all illustrated as well.

I. INTRODUCTION

In this paper, we study the delay and capacity trade-offs
in mobile ad hoc network with network coding. The research
on wireless network transmission capacity, delay and their
tradeoffs has been carried out for many years. Researchers
started considering this issue because it is able to offer us an
outline of estimated network capability under different network
models, which is a guide for future developing directions
for wireless networks. Gupta and Kumar were the first ones
to come up with the notation of ”capacity” for wireless ad
hoc networks. In this paper [1], they proposed a protocol
interference unicast mobility mode and they found that the
capacity of a random wireless network with static nodes scales
as Θ( 1√

n logn
) bits per second, where n is the number of

nodes. After the unicast is studied by many researchers, they
began to consider multicast transmission because it is more
representative in industry applications. In [2] Özkasap presented
a classification of epidemic-based approaches utilized in the
MANETs with a focus on reliable multicast protocols. Later,
Li et al. [3] studied the multicast capacity of a static random
wireless network where each node sends packets to k − 1
destinations. They showed that per-node multicast capacity
is Θ(

√
1

n logn · 1√
k
) when k = O( n

logn ), and Θ( 1n ) when
k = Ω( n

logn ). In order to increase the capacity of wireless
networks, Grossglauser and Tse [4] allowed the nodes to move
in a 2-hop relaying algorithm which achieved a throughput of
Θ(1) per node. Note that the price of improvement in capacity
is the increase in delay. It has been shown in [5]that the 2-hop
relay algorithm yielded a tremendous average delay of Ω(n).
In most networking applications, a throughput obtained with
an unreasonable delay may not be of practical use. Therefore,
the key point is to achieve the optimal capacity and delay

tradeoff. Neely et al. [5] applied redundancy with 2-hop and
multi-hop i.i.d. mobility schemes to achieve a tradeoff of
delay/capacity ≥ O(n). With a less restrictive network setting
in Lin et al. [6], the capacity delay tradeoff was shown to be
delay/capacity ≥ O( 3

√
n).

During the research, more details about how to operate
the network model in a more advanced and realistic way are
considered. Ying et al.[7] achieved the same tradeoff in [6]
by employing a joint coding-scheduling algorithm. Gamal et
al.[8] considered a mobile random walk and proposed that
adjusting squarelet size and forwarding packets by multi-hop
or mobility are fundamental schemes to achieve a tradeoff.
The optimal unicast capacity and delay tradeoff has been
discussed in detail while little research has focused on such
tradeoff in the context of multicast. Hu et al. [9] first studied
multicast for ad-hoc network through nodes’ mobility, defined
as MotionCast in their paper, where nodes move according to
an i.i.d. pattern and each packet has k distinctive destinations.
They found that the per-node capacity and delay for 2-hop
algorithm without redundancy (For each time-slot, if more than
one nodes are performing as relays for a packet, they defined
there is redundancy in the network.) are Θ(1/k) and Θ(n log k),
respectively; and for 2-hop algorithm with redundancy they are
Ω(1/k

√
n log k) and Θ(

√
n log k), respectively. Besides above,

they first pointed out a tradeoff in multicast.
After a few works on pure wireless networks with nodes

mobility and various transmission algorithms, researchers began
to think about more approaches to improve the transmission
capacity and delay performances. One of the most famous
approaches is the network coding. In above network models, the
relay nodes simply receive the packets and then forward them
to the next nodes. Ahlswede et al. [10] proposed a concept of
network coding that allowed not only information replicating
but also information mixing at the intermediate nodes. Later,
Li et al. [11] proposed a linear network coding algorithm
which proved to achieve the optimal max-flow. Tracey et al.
[12] presented a distributed random linear network coding
approach for multicast. Ghaderi et al. [13]analyzed the network
coding performance against automatic repeat request scheme
for reliable multicast transmission.

However, network coding in static networks doesn’t have the
ability to improve capacity and delay tradeoffs efficiently. Liu
et al.[15],[16] demonstrated that there was no order change of
the capacity but a constant amplitude gain. In mobile networks,



Zhang et al. [17] first showed that there was a log n capacity
gain in delay tolerant networks. Based on the previous works
which are mostly depended on i.i.d. mobility model, some
challenging questions naturally raised:

• How representative is the i.i.d. mobility model in the study
and in the industry application?

• Can the capacity-delay relationship be significantly differ-
ent under some other reasonable mobility models, such as
random walk mobility model, random way-point mobility
model and Brownian motion model?

• Can the mobility time scales-fast mobility and slow
mobility-have a big influence on the capacity-delay re-
lationship?

Gaurav[18] studied the delay and capacity trade-offs in
mobile ad hoc networks in four mobility models-i.i.d mobil-
ity model, random walk mobility model, random way-point
mobility model and Brownian motion model-without Network
coding. The result is thought-provoking because they pointed
that under a given mobility model in order to achieve a per-
node capacity of ,the minimum average delay(they call it critical
delay)is inversely proportional to the characteristic path length,
which is the distance nodes travel without changing direction.

Inspired by their works, we may analysis the capacity-delay
relationship in other mobility models like random walk mobility
model. Gaurav[18] assumed that the information the source
wanted to deliver can only be replicated in the source node
and the relay nodes only play a role of holding a packet. If
we use the Network coding in analysis, the information-we
call a packet-must be coded by the source node in use of
RLC, and when the relay nodes get the packet, it also has to
code the packet in use of RLC in order to create redundancy.
The destination node finally decodes the packets after getting
enough packets to achieve the rank of decoding matrix. In this
situation, we may deliver the same amount of information in a
shorter time because the Network coding allows us to transmit
more than one packet in each time slot due to the butterfly
model. But the problem rises at the same time, with the use
of Network coding, the destination node must achieve enough
packets to decode the message, which produce a large amount
of delay. In our work, we set two mobility models to give a
global perspective on the network with network coding. And
we show that compared to the previous work, there is a capacity
gain even though no gain is achieved when network coding is
utilized.

The paper is organized as follows. In section II, we de-
scribe the network model, network coding(RLC) scheme and
introduce some critical definitions and notations. In section
III and IV, the capacity and delay in hybrid random walk
mobility model and discrete random direction mobility model
with network coding are introduced respectively. In section
V, we give a detailed analysis about the capacity and delay
with RLC under hybrid random walk mobility model. And
the analysis for discrete random direction mobility model is
presented in section VI. A discussion on the results are in
section VII. Finally we conclude in section VIII.

II. NETWORK MODEL WITH CODING SCHEME

We consider an ad hoc network consisting of n mobile nodes,
distributed uniformly on a unit square S. The square is assumed
to be a torus2,i.e., the top and bottom edges are assumed
to touch each other and similarly the left and right edges
also are assumed to touch other. We consider a homogeneous
scenario in which each node generates traffic at the same rate.
We take the 2-hop relay scheme and multi-hop relay scheme
into consideration. The communication between any source-
destination pair can possibly be carried out via multiple other
nodes, acting as relays. That is , a source node can, if possible
send a packet directly to its destination node; or, the source
node can forward the packet to one or more relay nodes; and
finally ,a relay node or the source itself can deliver the packet
to its destination node.

A. Network Models

Hybrid Random Walk Mobility Models: These models are
parametrized by a single parameter β, that takes values between
0 and 1

2 . The unit square is divided into n2β squares of area
1/n2β each which is called a cell, resulting in a discrete torus of
size nβ×nβ . Each cell is then further divided into n1−2β square
subcells of area 1/n each, as shown in Fig.1. Time is divided
into slots of equal duration. At each time slot a node is assumed
to be in one of the subcells inside a cell. Initially, each node
is equally likely to be in any of the n subcells, independently
of the other nodes. At the beginning of a slot, a node jumps
from its current subcell to one of the subcells in an adjacent
cell, chosen in an uniformly random fashion. Here we have an
explanation about the adjacent cells: Let a node be in cell(i,j),
where i, j = 0, 1, 2, ..., nβ − 1 at timeslot t, then, at time slot
t+1, the node is equally likely to be in the same cell (i,j) or any
of the four adjacent cells (i-1,j),(i+1,j),(i,j-1),(i,j+1), where the
addition and subtraction operations are performed modulo nβ .
Note that for β = 0, the above mobility model is essentially
the i.i.d. mobility model and for β = 1/2, it is the random
walk mobility model.

Discrete Random Direction Mobility Models: These model-
s are parametrized by a single parameter α, that takes values
between 0 and 1/2. The unit square S is divided into n2α

squares of area 1/n2α each (henceforth referred to as cells),
resulting in a discrete torus of size nα×nα. The initial position
of each node is assumed to be uniformly distributed within S.
The motion of each node under these models is independent and
identical to the other nodes. The motion of a node is divided
into multiple trips. At the begin of a trip, the node chooses a
direction θ uniformly between [0, 2π], and moves a distance
of n−α in that direction, with a speed of vn, and the process
repeats itself. Here we choose vn = Θ( 1√

n
) because we keep

the network area fixed and let the number of nodes increase
to infinity, which means that the average neighborhood size
scales as Θ( 1√

n
). Time is divided into slots of equal duration.

At the beginning of a slot, each node jumps from its current
cell to an adjacent cells, chosen uniformly from within the set
of adjacent cells. The motion of a node during the slot is as



Fig. 1. The division of unit square into cells and subcells; and the motion of
a node under a hybrid random walk model

follows: The node chooses start point and end point uniformly
within the current cell. During the slot, the node moves from
the start point to the end point. In our model, the duration of
a slot should be Θ(n1/2−α).

Fig. 2. An example motion path of a node under the discrete random direction
model

Model for successful transmission: For simplicity, we as-
sume that the success or failure of a transmission between a
pair of nodes is governed by the protocol model of [1].Let W be

the bandwidth of the system in bits per second. Let Xi
t denote

the position of node i, for i=1...n, at time t. Under the protocol
model, node i can communicate directly with node j at a rate
of W bits per second at time t, if and only if, the following
interference constraint is satisfied:

d(Xk
t , X

j
t ) ≥ (1 + δ)d(Xi

t , X
j
t )

for every other node k ̸= i, j that is simultaneously trans-
mitting. Here δ is some positive number; and d(x, y) is the
distance between points x = (x1, x2),y = (y1, y2)∈ S, defined
as follows:

d(x, y) = minxi∈[x],yj∈[y] || x
i − yj ||,

where [x] is set of points
(x1, x2), (x1 − 1, x2),(x1 + 1, x2),(x1, x2 − 1),(x1, x2 + 1),
and [y] is defined similarity.

Definition of throughput: A throughput λ > 0 is said to be
feasible/achievable if every node can send at a rate of at least λ
bits per second to its chosen destination. We denote by T (n),
the maximum feasible throughput w.h.p.. Given a scheme Π,
let MΠ(i, t) be the number of packets from source node i that
destination node d(i) receives in t timeslots under scheme Π,
for 1 ≤ i ≤ n. Note that this could be a random quantity
for a given realization of the network. Define the long term
throughput of S-D pair i, denoted by λi

Π(n), to be

λi
Π(n) = lim

t→∞
inf

1

t
MΠ(i, t)

Scheme Π is said to have throughput TΠ(n) if

lim
n→∞

P (λi
Π(n) ≥ TΠ(n) for all i) = 1.

Note that when network coding is utilized in scheme Π,
MΠ(i, t) is the number of successfully decoded packets re-
ceived by the destination d(i) of S-D pair i in t timeslots under
scheme Π.

Definition of delay: The delay of a packet is the time it takes
the packet to reach the destination after it leaves the source. We
do not take queueing delay at the source into consideration,
since our interest is in the network delay. Let Di

Π(j) denote
the delay of packet j of S-D pair i under scheme Π, then the
sample mean of delay for S-D pair i is

Di
Π = lim

k→∞
sup

1

k

k∑
j=1

Di
Π(j).

The average delay over all S-D pairs for a particular realization
of the random network is then DΠ = 1

n

∑n
i=1

Di
Π. The delay

for a scheme Π is the expectation of the average delay over all
S-D pairs and all random network configurations,i.e.,

DΠ(n) = E[DΠ] =
1

n

n∑
i=1

E[Di
Π].

When network coding is utilized, we consider the delay of
getting original packets. When an original packet mi belongs
to the generation M, the delay of mi under scheme Π is the
time from the first packet belonging to M leaves the source to
the original packet mi has been decoded in the destination.



B. Network Coding Operation

Random linear coding (RLC for short)[12] is applied toa
finite set of k original messages, M = {m1,m2, ···,mk}, which
is called a generation. We assume that all the k packets in M are
linearly independent. In the RLC protocol, destination nodes
start collecting several linear combinations of the messages in
M . Once the destination nodes have k independent linear com-
binations of the messages, they can recover all the messages
successfully. Let fl denote one of the encoded packets. Then

fl has the form fl =
b∑

i=1

ai ·mi where ai is the RLC vector

known to the destinations. Note that sources hold ”messages”
at first, and each source encodes k messages of its own into
an encoded packet. The transmitted units in the network are
”packets”, but not ”messages”.

For decoding purposes, the transmitting nodes also send the
random coding vectors as overhead within each packet. Each
node v collects the coding vectors for the packets it receives in a
decoding matrix Gv . A received packet is said to be innovative
if its coding vector increases the rank of the matrix Gv.

Random linear network coding scheme within a cell parti-
tioned model can be illustrated in Figure 3. Note that the source
originally has a packet with k messages. In the same cell, if
the source meets with the relays, it will send encoded packets
to the relays. The relays will take the packet moving around
until they encounter new relay or destination nodes within the
same cell. Then the relays will encode the packet and transmit
the new random linear coding messages, i.e., new massages,
to relays or destinations. Note that when relays do ”encoding”
again, they treat the received ”packets” (from the same source)
as ”messages” and encode then into a new ”packet”. The reason
why the relays encode the messages again is to introduce
the redundancy for decoding purpose. The destinations finally
decode the packets after receiving enough packets to achieve
the rank of decoding matrix.

{m1, m2, m3, ... , mk}

Source messages without coding

{a1*m1+a2*m2+a3*m3+ ... + ak*mk} {b1*m1+b2*m2+b3*m3+ ... + bk*mk}

{c1(a1+b1)*m1+c2(a2+b2)*m2+

  c3(a3+b3)*m3+ ... + ck(ak+bk)*mk}
Rec1 Rec2

random linear coding
random linear coding

random linear coding

Fig. 3. Network coding scheme

C. RLC-Based Relay Schemes

Schemes 1: 2-hop Relay with RLC: (1)k original packets in
each source node will be grouped into one generation. Each
source will send m = (1 + ϵ)k coded packets for each
generation, where ϵ is a constant. (2)When the relay nodes have
received the coded packet, it will store it in the buffer which
has infinite capacity and wait encoding and transmission. After
all the nodes have received the coded packet from the source,
it will be deleted from the buffer. (3)In each time slot, only
one of n1−2β be active. And in the active cell, transmission is
always between nodes within the same cell. (4)For an active
cell with at least two nodes, randomly assign a node as sender
and independently choose another node in the cell as receiver.
With equal probability of 1/2, the transmission is scheduled to
operate in either ”Source-to-Relay” or ”Relay-to-Destination”
mode, describing as follows:

• Source to Relay transmission: If the sender has a new
encoded packet with random linear combination of mes-
sages that has never been transmitted before, send the
packet to the receiver and delete it from the buffer. As
for the receiver which is a relay node, it collects packets
from the sender and store them in a buffer of infinite
capacity in order to await encoding and transmission. If
one transmission fails due to the lossy and erasure channel,
retransmit the packet. Otherwise, stay idle.

• Relay to Destination transmission: If the sender has a
new encoded packet with random linear combination of
messages from other nodes destined for the receiver,
transmit it. Before a relay transmit a packet to its destined
destination, it has to undergo RLC encoding again, on
all the packets in its buffer for the same destination. The
receiver that is the destination node must receive enough
innovative packets to achieve the rank k of the decoding
matrix Gv so that it can recover the original packet. If one
transmission fails due to the lossy and erasure channel,
retransmit the packet. According to the successful trans-
mission acknowledgements, if all the destinations have
received the source packet, that packet will be dropped
from the buffer in the sender. Otherwise, stay idle.

Schemes 2 Multi-hop Relay with RlC: The transmission way
for the source and relay node is similar to the 2-hop relay
scheme with network coding. The only difference is that the
number of relay nodes can be more than one.

III. THROUGHPUT-DELAY TRADEOFFS WITHOUT
NETWORKING CODING UNDER HYBRID RANDOM WALK

MODELS: RESULTS

In this section, we give a brief overview of the schemes in
[18] and present the main result about throughput and delay
under hybrid random walk models without network coding.

We first describe some definitions and assumptions in [18].
Critical Delay: Let ς be the class of scheduling and relaying
schemes under consideration. For c ∈ ς , let Dc, λc be the
average delay and per-node throughput, respectively, under
scheme c. The critical delay for the class of schemes ς , denoted



by Dς , is the minimum average delay that must be tolerated
under a given mobility model in order to achieve a per-node
capacity of ω(1/

√
n), that is

Dς = inf
c∈ς:λc=ω(1/

√
n)
Dc.

Assumption: Only the source node can initiate a replication;
i.e.,the relay nodes holding a packet do not initiate a replication.

Now, we analyze the performance of the schemes described
above. We give the main results about the throughput-delay
under hybrid random walk models without network coding
presented in [18].

Theorem 1:Under the critical-delay scheme, the delay under
the hybrid random walk models is Θ(n2β log n), and the per-
node throughput is ω(1/

√
n).

Theorem 2:Under the 2-hop delay scheme, the delay under
hybrid random walk models is Θ(n) when β < 1/2 and
Θ(n log n) when β = 1/2. And the per-node throughput is
still ω(1/

√
n).

IV. THROUGHPUT-DELAY TRADEOFFS WITHOUT
NETWORK CODING UNDER DISCRETE RANDOM

DIRECTION MODELS: RESULTS

In this section, we present the main results about throughput
and delay under discrete random direction models discussed in
[18].

Theorem 3:Under the critical-delay scheme, the delay under
the discrete random direction models is Θ(n1/2+α log n), and
the per-node throughput is ω(1/

√
n).

Theorem 4:Under the 2-hop delay scheme, the delay under
discrete random direction models is Θ(n) when 0 ≤ α < 1/2
and Θ(n log n) when α = 1/2.

V. THROUGHPUT-DELAY TRADEOFFS WITH NETWORK
CODING UNDER HYBRID RANDOM WALK

MODELS:RESULTS

In this section, we give the main results about throughput-
delay tradeoffs with RLC under hybrid random walk mobility
models and make a comparison with the former works with
RLC.

A. Throughput-Delay Tradeoffs With RLC Under 2-hop Relay
Scheme

Theorem 5: When 2-hop relay with RLC scheme is used and
k = Θ(n2β), we have T (n) = Θ(1) and D(n) = Θ(n2β) for
hybrid random walk mobility models,here 0 < β ≤ 1/2. When
β = 0, it is the i.i.d mobility model, and we have T (n) = Θ(1),
and D(n) = Θ(n)

B. Throughput-Delay Tradeoffs With RLC Under Multi-hop
Relay Scheme

Theorem 6: When multi-hop relay with RLC scheme is used,
under hybrid random walk mobility model with k = θ(n2β),
we have T (n) = θ(1) and D(n) = θ(n2β).

VI. THROUGHPUT-DELAY TRADEOFFS WITH NETWORK
CODING UNDER DISCRETE RANDOM DIRECTION

MODELS:RESULTS

A. Throughput-Delay Tradeoffs With RLC Under 2-hop Relay
Scheme

Theorem 7: Under the discrete random direction models,
2-hop relay with RLC scheme is adopted and k = Θ(n2α),
then we get T (n) = Θ(nα−1/2) and D(n) = Θ(nα+1/2), here
0 ≥ α < 1/2. And when α = 1/2, D(n) = Θ(n).

B. Throughput-Delay Tradeoffs With RLC Under Multi-hop
Relay Scheme

Theorem 8: When multi-hop relay with RLC scheme is used,
k = Θ(nα), the throughput and delay under discrete random
direction models are T (n) = Θ(nα−1/2), D(n) = Θ(n1/2)
respectively.

VII. THROUGHPUT-DELAY TRADEOFFS WITH NETWORK
CODING UNDER HYBRID RANDOM WALK

MODELS:ANALYSIS

In this section, we present details about the proofs for
the results on RLC-based scheme under hybrid random walk
mobility models which are discussed in the previous section.

A. Preliminaries
To make the analysis more apparent and easily, we need

first define some notation for the hybrid random walk mobility
models: inter-meet delay, minimal flooding delay and 2-hop
whole-meet delay. Here inter-meet time represent all schemes
while the 2-hop relay represent any schemes in which the
number of hops for each packet is 2.

Considering the hybrid random walk mobility models, the
definition for inter-meet delay is that after the nodes are dis-
tributed uniformly in the unit square, the time it costs the source
node to encounter one of any other nodes. If we go further:
when the source node encounter n2β nodes, the corresponding
time is called as 2-hop whole-meet delay. From the definition
we can see, these two time reflect the intrinsic properties of how
mobility will facilitate information propagation. And these two
factors are independent of any schemes.

Lemma 7.1: Letτ be the random variable representing the
inter-meeting time for two nodes in the same subcell of a
random walk mobility model on a 2-d torus of size nβ × nβ ,
we have

E[τ ] = Θ(n2β)

Proof: El Gamal et al. once proved that E[τ ] = Θ(n)
on a 2-d torus of size

√
n ×

√
n. Under the hybrid random

walk mobility model, there are n2β cells and every timeslot,
the node will be in any one of the n2β cells instead of the n
cells in random walk mobility model. Therefore it is easy to
come to the conclusion that E[τ ] = Θ(n2β) under the hybrid
random walk mobility model.

Lemma 7.2: The minimal flooding delay under hybrid ran-
dom walk mobility model is Θ(n2β)

Proof: We cite the following important result about rumor
spreading on torus: Theorem 3 in [44] states that following



the flooding rule mentioned above, at timeslot t, there exists
a sub-torus of size

√
t ×

√
t, where for each cell in this sub-

torus, there exists at least one red node. Therefore, in Θ(n2β)
timeslots, we can cover the whole torus of size nβ×nβ w.h.p.

Lemma 7.3: The 2-hop whole-meet time under hybrid ran-
dom walk mobility models is Θ(nβ).

Proof: Let N be the number of distinct nodes the source
node has met in n2β timeslots. From Lemma 1, we can obtain
that E[N ] = (1 − ϵ)n2β , where 0 < ϵ < 1 is a constant,
and σN = O(n2β log n). By Chebyshev inequality, for any
0 < ς < 1,

P (N ≤ (1− ς)E[N ]) ≤ σN

ς2E[N ]2
= O

(
log n

n2β

)
→ 0,

which means that N = θ(n2β)w.h.p. That is to say the 2-hop
whole-meet time under hybrid random walk mobility models
is Θ(n2β log n).

B. Proof for Main Results
Proof for 2-hop relay with RLC Under Hybrid Random

Walk Mobility Models(Theorem 5)
Proof: As already having been proved in Lemma 2that,

after N1 = Θ(n2β) timeslots, the source node has already
delivered coded packets to m1 = Θ(n2β) different nodes. From
[45], we can infer that the mixing time of a simple random walk
on a nβ × nβ torus is also Θ(n2β). Therefore, there exists a
constant ϵ such that after N2 = ϵn2β timeslots, these m1 nodes
with coded packets are uniformly distributed in the torus w.h.p.
which means that each node in the network has coded packets
with a constant probability. Then after N1 + N2 timeslots,
the destination node begins to collect coded packets. It can
be proved that after N3 = Θ(n2β) timeslots, the destination
will collect Θ(n2β) coded packets. Therefore, the whole delay
N = N1 +N2 +N3 = Θ(n2β) w.h.p..

In the hybrid random walk mobility models, each source
node sends m = Θ(n2β) coded packets for a ”big genera-
tion”[change it later], and each big generation has Θ(n2β) orig-
inal packets, then each coded packet contains Θ(1) information
of original packets. Therefore we can get T (n) = Θ(1).

Proof for Multi-hop relay with RLC Under Hybrid
Random Walk Mobility Models (Theorem 6)

Proof: There we adopt the same analysis method in the 2-
hop circumstance. The key problem is that how many timeslots
it costs the destination node to get θ(k) coded packets. Suppose
that after N timeslots, the destination nodes gets θ(k) coded
packets, then based on the Proposition the destination has
enough coded packets to recover k original packets w.h.p..
Then the delay is upper bound by N. From Zhang. we know
that E[N ] ≤ θ(k) therefore, under the hybrid random walk
mobility model, we replace k with θ(n2β). That is the delay
under hybrid random walk mobility model with RLC is θ(n2β),
where k = θ(n2β). Since we get k original packets in θ(k)
timeslots, the throughput for the network model is θ(1).

Contrast to the result in Gaurav.S[], we can see that with the
use of network coding, there is capacity gain ω(

√
n) and no

gain is found in the delay.

VIII. THROUGHPUT-DELAY TRADEOFFS WITH NETWORK
CODING UNDER DISCRETE RANDOM DIRECTION

MODELS:ANALYSIS

In this section, we present details for the proof for the results
on RLC-based scheme under discrete random direction models
which are discussed in the previous section.

Lemma 8.1: The minimal flooding delay under discrete ran-
dom direction model is Θ(n1/2+α).

Proof: As proved in lemma 5.2, if the timeslot under the
discrete random direction model is the same under the hybrid
random walk model, then the minimal flooding delay will still
be Θ(n2α). However, from the definition of discrete random
direction model we can see the timeslot is Θ(n1/2−α), therefore
the minimal flooding delay under discrete random direction
model will be Θ(n1/2−α)×Θ(n2α), that is Θ(n1/2+α).

B. Proof for Main Results
Proof for 2-hop relay with RLC Under Discrete Random

Direction Models(Theorem 7)
Proof: From the definition of discrete random direction

models and hybrid random walk models, we can see that the
timeslot is different, which are Θ(n1/2−α) and Θ(1) respective-
ly. And under the 2-hop relay scheme, we adopt the same RLC
scheme under discrete random direction models and hybrid
random walk models, the only difference is the duration of
one timeslot. Therefore we can easily calculate the delay under
discrete random direction models. That is

D(n) = Θ(n1/2−α)×Θ(n2α) = Θ(n1/2+α)

Proof for Multi-hop relay with RLC Under Discrete
Random Direction Mobility Models (Theorem 8)

Proof: Here we use the same analysis method with the
multi-hop scheme under hybrid random walk models. The key
problem is that how many timeslots do we need in order
to receive at least Θ(k) coded packets at the destination.
Similarly, we denote it as N. From Theorem 2, we have
E[N ] < Θ(k), and under discrete random direction model we
replace k with Θ(n2α). And under discrete random direction
model model the timeslot lasts Θ(n1/2−α). Therefore the
delay under discrete random direction model with RLC is
Θ(n1/2+α). Since we achieve k original coded packets at the
destination, then the destination can decode all the information,
then T (n) = Θ(n1/2−α).

IX. DISCUSSION FOR THE THROUGHPUT-DELAY WITH
NETWORK CODING SCHEME UNDER HYBRID RANDOM
WALK MODELS AND DISCRETE RANDOM DIRECTION

MODELS

The results obtained in the previous sections are summarized
in Fig.4

And we summarize the results of network coding under hy-
brid random walk models and discrete random direction models
with 2-hop and multi-hop schemes and make a comparison with
the results in [18], which are illustrated in Table I and Table II
respectively.



TABLE I
COMPARISON AMONG CAPACITY, DELAY IN 2-HOP RELAY WITH NETWORK CODING ALGORITHMS

Scheme Condition Capacity Delay
Hybrid Random Walk Models w.o. NC. for 2-hop β < 1/2 ω(1/

√
n) Θ(n)

Hybrid Random Walk Models w.o. NC. for 2-hop β = 1/2 ω(1/
√
n) Θ(n logn)

Hybrid Random Walk Models w. NC. for 2-hop β = 0 Θ(1) Θ(n)
Hybrid Random Walk Models w. NC. for 2-hop k = Θ(n2β) 0 < β ≤ 1/2 Θ(1) Θ(n2β)

Discrete Random Direction Models w.o. NC. for 2-hop 0 ≤ α < 1/2 ω(1/
√
n) Θ(n)

Discrete Random Direction Models w.o. NC. for 2-hop α = 1/2 ω(1/
√
n) Θ(n logn)

Discrete Random Direction Models w. NC. for 2-hop k = Θ(n2α) 0 ≤ α < 1/2 Θ(nα−1/2) Θ(nα+1/2)

Discrete Random Direction Models w. NC. for 2-hop α = 1/2 Θ(nα−1/2) Θ(n)

TABLE II
COMPARISON AMONG CAPACITY, DELAY IN MULTI-HOP RELAY WITH NETWORK CODING ALGORITHMS

Scheme Condition Capacity Delay
Hybrid Random Walk Models w.o. NC. for multi-hop 0 ≤ β ≤ 1/2 ω(1/

√
n) Θ(n2β logn)

Hybrid Random Walk Models w. NC. for multi-hop k = Θ(n2β) Θ(1) Θ(n2β)

Discrete Random Direction Models w.o. NC. for multi-hop 0 ≤ α ≤ 1/2 ω(1/
√
n) Θ(nα+1/2 logn)

Discrete Random Direction Models w. NC. for multi-hop k = Θ(n2α) Θ(nα−1/2) Θ(nα+1/2)

Fig. 4. The delay in case of hybrid random walk and discrete random direction
models with RLC

X. NETWORK MODEL WITH BASE STATION IN RLC

Form this section, we will adopt a new scheme to analyze
the throughput and delay for the ad-hoc network. We regular
allocate the base stations in the network and propose the 2-hop
relay algorithm to deduce the throughput and delay.

A. Network Model with Base Station

Cell Partitioned Network Model With Base Station:The w-
hole network is cell partitioned as previous hybrid random wall
models. Then m = nb(0 ≤ b ≤ 1)base stations are regularly
distributed in n2β cells.All the base stations are connected by

wires so that they can communicate in Θ(1) delay. Every cell
contain one base station at the center position, and the cell
includes n1−2β subcells. A base station can communicate with
all the nodes in the same cell at the same time, while a node
can only deliver packets to the base station when it is in the
same subcell as the destined base station. In other words, base
station has enough transmission power to cover the whole cell.
What’s more, we assume uplink and downlink use different
frequency to avoid interference. This means when base station
is transmitting packets,all the other transmissions between two
nodes or one node and a base station can still go on without
any problems. The nodes transmission schemes are the same
as previous hybrid random walk models. To make the analysis
clear, here we assume the k packets information has the order
of k = nd where 0 ≤ d ≤ 1. The source and destination
relationship will never change while nodes move.

B. 2-hop Relay Algorithm Under Hybrid Random Walk Models
With Base Stations

When we introduce the base station into the network, there
are two conditions in a subcell now: it has a base station or
not. When a node jumps into a new subcell in a timeslot, if the
subcell doesn’t have a base station, the node acts in the same
with as described in the previous section. If the cell has a base
station, then the node will act as follows:

• Source to base station transmission: If the nodes in the
subcell have packets to transmit, randomly choose such a
node as the source, and send the packet to the base station
within the subcell. If no such node exists, stay idle.

• Base station to base station transmission: As defined
above, in Θ(1) time, the base station will broadcast the
received packet to all the other base station via wires.

• Base station to destinations transmission: In this last step,
the base stations send the packets to all the destination
nodes within their corresponding cell. The transmission
ends.



XI. THROUGHPUT AND DELAY UNDER 2-HOP RELAY
ALGORITHM WITH RLC IN THE HYBRID RANDOM WALK

NETWORK WITH BASE STATIONS: RESULTS

In this section, we will present the main results under 2-hop
relay algorithm with RLC when the base stations are added to
the network. The network model is illustrated in the previous
section.

Theorem 9: In the network with base stations, under 2-hop
relay algorithm with network coding, when k = Ω(m), that is
0 ≤ b ≤ d ≤ 1, we can achieve the throughput Θ(1) and the
delay Θ(n2β+b−1 + k), where k = nd and m = nb.

Theorem 10: In the network with base stations, under 2-hop
relay algorithm with network coding ,when k = o(m), that is
0 ≤ d ≤ b ≤ 1, we can achieve the throughput Θ(1) and the
delay Θ(n2β+d−1 + k), where k = nd and m = nb.

XII. THROUGHPUT AND DELAY UNDER 2-HOP RELAY
ALGORITHM WITH RLC IN THE HYBRID RANDOM WALK

NETWORK WITH BASE STATIONS: ANALYSIS

In this section, we will give details about the proof of the
results under 2-hop relay algorithm with RLC in the network
with base stations in the previous section.

Lemma 12.1: When k = Ω(m), the input rate of each queue
in the base stations is Θ( 1

m ); and the input rate of each queue
in the base stations is Θ( 1k ) when k = o(m).

Proof: The lemma is proved in [20].
Here, we recall the definition of first hitting time and first

return time in [18].
Definition of First Hitting Time: The first hitting time for the

set of states A ⊂ SX is given by τH
A = inft ≥ 0 : X(t) ∈ A

with X(0) being distributed according to ΠX .
Definition of First Return Time: The first return time for the

set of states A ⊂ SX is given by τH
A = inft > 0 : X(t) ∈ A

with X(0) ∈ A.
Then we from the result of first hitting time and first return

time in the case of 2-D torus of size
√
n×

√
n, we can derive

the result for the 2-D torus of size nβ
√
m

× nβ
√
m

.
Lemma 12.2: Let H denote the first hitting time for a single

state on a 2-D torus of size nβ
√
m

× nβ
√
m

, then E{H} =

Θ(n
2β

m log n).
Lemma 12.3: Let H denote the first return time for a single

state on a 2-D torus of size nβ
√
m
× nβ

√
m

, then E{H} = Θ(n
2β

m ).
In the hybrid random walk models, the motion of nodes on

a 2-D torus of size nβ × nβ with m base stations regularly
distributed is equivalent of motion on a 2-D torus of size nβ

√
m
×

nβ
√
m

with a single base station.
Lemma 12.4: When k = Ω(m), we have the delay D =

Θ(n2β) and throughput λ = Θ( 1n ).
Proof: The successful transmitting of packet from the

nodes to a base station needs two procedures: The source node
is to transmit the packet to the base station and the base station
is ready to receive the packet. The probability that the source
node is scheduled to transmit the packet to the base station is
1

mq , where q is the density of nodes in the network. According

to the Lemma 6 and Lemma 7, the first hitting time of a cell
with a base station is Θ(n

2β

m log n), and the inter meeting time
of a cell with a base station is Θ(n

2β

m ). Thus the delay is
D = Θ(n

2β

m log n) + Θ(n
2β

m )( 1
mq )

−1 = Θ(n2β) .
From Lemma 5, we know the input rate of each queue in

base stations is Θ( 1
m ), during the time interval [0,T], the total

number of packets sent to base stations is Θ( 1
m ) × Tm. To

guarantee a stable network, the throughput of whole network
cannot exceed the packets that base stations are able to serve
in time interval [0,T]. Thus we have λTm ≤ Θ( 1

m )×Tm, that
is λ ≤ Θ( 1n ). Therefore, the capacity in 2-hop relay algorithm
with base stations is Θ( 1n ).

Lemma 12.5: When k = o(m), we have the delay D =
Θ(n2β + d− b) and throughput λ = Θ(nb−d−1).

Proof: When k = o(m),the probability that the source
node is scheduled to transmit the packet to the base stations
is 1

kq . The first hitting time of a cell with a base station is

Θ(n
2β

m log n), and the inter meeting time of a cell with a base
station is Θ(n

2β

m ). Thus the delay is D = Θ(n
2β

m log n) +

Θ(n
2β

m )( 1
kq )

−1 = Θ(n2β+d−b).
Since the input rate of each queue in base stations is Θ( 1k ),

during the time interval [0,T], the total number of packets sent
to base stations is Θ( 1k )×Tm. To guarantee a stable network,
the throughput of whole network cannot exceed the packets that
base stations are able to serve in time interval [0,T]. Thus we
have λTm ≤ Θ( 1k )× Tm, that is λ ≤ Θ(nb−d−1). Therefore,
the capacity in 2-hop relay algorithm with base stations is
Θ(nb−d−1).

Proof for Main Results
Proof for 2-hop relay with RLC Under Hybrid Random

Walk Mobility Models with base stations(Theorem 9) Under
the hybrid random walk models with base stations, the prob-
ability that a node meets a base station is P1 = m

n2β
1

n1−2β =
m
n = Θ(nb−1). From Theorem 5 and lemma 8, we have

λ = P1λ1+P2λ2 = Θ(nb−1)Θ(
1

n
)+Θ(1−nb−1)Θ(1) = Θ(1)

Where λ1 is the throughput when only base stations are adopted
in the hybrid random walk models while λ2 is the throughput
when only network coding is used in the hybrid random walk
models.

The delay is

D = P1D1 + P2D2 = Θ(nb−1)Θ(2β) + Θ(1− nb−1)Θ(k)

= Θ(n2β+b−1 + k)

Where D1 is the delay for hybrid random walk models with
only base stations and D2 is the delay for hybrid random walk
when network coding is used.

Proof for 2-hop relay with RLC Under Hybrid Random
Walk Mobility Models with base stations(Theorem 10)

λ = P1λ1+P2λ2 = Θ(nb−1)Θ(nb−d−1)+Θ(1−nb−1)Θ(1) = Θ(1)

The delay is

D = P1D1+P2D2 = Θ(nb−1)Θ(2β+d−b)+Θ(1−nb−1)Θ(k)



= Θ(n2β+d−1 + k)

XIII. CONCLUSION

We propose two techniques to improve the network per-
formance including capacity, delay in this paper. We design
two mobility models-hybrid random walk models and discrete
random direction models and adopted two-hop relay scheme
and multi-hop relay scheme respectively. In such network
coding models, we conclude that there is a logn gain on
delay under 2-hop relay schemes when the mobility model
is random walk mobility models. And there is log n gain on
delay in hybrid random walk mobility models under multi-hop
schemes whatever the mobility model is. As we suppose that
at the beginning of a generation, there are already k original
packets for the source to deliver, then the definition of capacity
in my work is different from the normal one, then we ignore the
comparison of capacity between models with network coding
and without network coding.

Furthermore, we study the infrastructure mode in which there
are m base stations regularly distributed in the network model.
The results show that the capacity and delay have an order gain
after we apply the infrastructure mode in the network, but the
function depends on the relationship between the number of
original packets k and the number of base stations m.

At last, we combine the network coding technique and the
infrastructure mode technique together in one network model,
and we calculate the capacity and delay performance in such
network. We find that under 2-hop relay algorithm with network
coding, when k = Ω(m), the throughput is Θ(1) and the delay
is Θ(n2β+d−1 + k). And when k = o(m), we achieve that the
throughput Θ(1) and the delay Θ(n2β+d−1 + k), here k = nd

and m = nb
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