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I. INTRODUCTION

The throughput scaling law for large-scale wireless ad hoc
networks has been extensively studied since the seminal work
of P. Gupta and P. R. Kumar [1]. They studied the random
wireless network with n static nodes randomly located in the
unit area and grouped into source-destination (S-D) pairs for
transmission. Under the multi-hop relay algorithm, the network
could achieve a per-node throughput of Θ(1/

√
n log n), with

an average delay of Θ(
√
n log n). In addition, they also showed

that when nodes are arbitrarily distributed, the maximum per-
node throughput is Θ(1/

√
n) under optimal conditions. The

capacity performance has later been improved to Θ(1/
√
n) by

Franceschetti et al. [2] using percolation theory, even when
the nodes are randomly located in the network area. After
that, many other special cases of static wireless networks have
been investigated. However, even under the optimal conditions,
the capacity performance of the fixed network is still not
very satisfying. This is mainly because in order to limit
the interference from other nodes transmitting simultaneously,
most transmissions should be carried out by using mulit-hop
fashion. So much of the traffic is used to relay packets, and
the per-node throughput could not be large enough.

Soon after P. Gupta and P. R. Kumar’s seminal work on
the capacity of wireless networks, M. Grossglauser and D. Tse
introduced mobile nodes into the classical static network in [3].
In their work, the mobile nodes are allowed to transmit only
when they are close to each other. They have shown that under
the 2-hop relay algorithm, the mobile network could achieve a
per-node throughput of Θ(1), which is much better than the
classical multi-hop static network. However, this significant
improvement of throughput capacity has been achieved at the
cost of huge delay. Later, Neely et al. [4] re-evaluate this
algorithm in a cellular structure, and show that the delay of
the 2-hop mobile network could be Θ(n).

Since mobility could improve the capacity of wireless net-
works, various mobility models and the corresponding impact
of mobility on both the capacity and delay performance of
the network have been studied in later works . These include
the i.i.d. mobility model [5], [6], [11]; Brownian mobility
model [7], [8]; random way-point mobility model [9], [10];

and random walk mobility model [11], [12].
Besides studying on specific mobility models, some works

have also studied the general mobility models, which could
characterize certain amount of mobility models. Sharma el
al. [13], studied a family of hybrid random walk models, in
which the i.i.d. mobility model and the random walk mobility
model are the two extreme cases. They also studied another
family of mobility models called the discrete random direction
models, in which the random way-point mobility model and
the Brownian mobility model are the two extreme cases of this
family of mobility models. They came up with the notion of
critical delay, i.e., the least delay to be tolerated in order to
achieve the same throughput scaling as the static network, and
shown the different value of critical delay for the two family
of mobility models.

The literatures mentioned above mainly focus on the scaling
laws for capacity and delay in a single network. In recent years,
the crowded frequency resource brings a new kind of software-
defined radio into the focus of research. According to a report
from the Federal Communication Commission (FCC) Spectrum
Task Force [14], over 90 percent of the licensed spectrum
remains idle at a given time and location. The software-defined
radio called cognitive radio (CR) could perform spectrum sens-
ing and access a wide range of licensed spectrum that are not
being used by the licensed users. In the cognitive radio network,
the primary uses have the higher priority to the spectrum, while
the secondary users could access the spectrum opportunistically
in order to limit the interference to the primary users. This new
technology could greatly improve the spectrum efficiency and
enable disparate radio communication devices onto the same
platform.

Till now, many work have been done to investigate the
capacity of large-scale static CRN, as well as the impact of CR
users to the traditional licensed users. Shi et al. [15] constructed
a homogeneous auxiliary network to estimate a lower bound
on the capacity of a heterogeneous CRN. However their model
requires the total band knowledge at any node and has not
considered the interaction between the primary and secondary
networks. Then in [16], Jeon et al. considered a licensed
primary network and a cognitive secondary network coexisting
in a planar area. By letting SUs opportunistically access the
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licensed spectrum without causing severe interference to PUs,
they show that when the secondary network is denser than the
primary network, both networks can simultaneously achieve
the same throughput scaling law as a stand-alone network.
In [17], Li and Dai further proved that even when the number
of primary users n and the number of secondary users m
are the same in order sense, the CRN could still achieve
the Θ( 1√

n
) and Θ( 1√

m
) per-node throughput for the primary

network and secondary network respectively. Later, in [18],
Huang et al. characterized the conditions for the cognitive
networks to achieve the same throughput and delay scaling
as the stand-alone networks.

Those aforementioned results are obtained on a non-
cooperative scheme without considering possible positive in-
teractions between two coexisting networks, so the capacity
and delay performance may not be further improved. Later,
Gao et al. [19] proposed a supportive cognitive network,
in which the secondary nodes may route packets for the
primary network. In the scenario where both the primary
users and secondary users are static, PUs can achieve near-
optimal capacity performance, i.e. λp = Θ(1/ log n). While
SUs may still achieve the same scaling laws as a stand-alone
ad hoc network. Since mobility could improve the capacity
scaling of ad-hoc wireless networks, thus it is natural to
consider whether mobility would influence the performance
of the CRN. Thus, in [19], the authors further considered the
condition when the secondary users are set to be mobile. Under
this scenario, the primary users could achieve the per-node
throughput scaling of λp = Θ(1/ log n), and delay scaling of
Θ(1) when SUs move according to the i.i.d. mobility model
and Θ(1/S) under random walk mobility model, where S is
the random walk step size. While the secondary users could
achieve the per-node throughput scaling of λs = Θ(1). Such
performance of capacity and delay scaling for both the primary
and secondary users is theoretically optimal. However, this
cooperative scheme requires that the number of supportive
secondary users should at least Θ(n2), which is much larger
than the number of primary users, and thus casts a heavy burden
on its implementation.

Motivated by the fact that various mobility models could
significantly influence the capacity and delay scaling of the
wireless networks, as well as the fact that cooperation among
primary users and mobile secondary users could improve the
performance of the CRN, but at the cost of large number
of secondary users. Thus we want to study a CRN where
secondary users would move under some general mobility
model, i.e., such mobility model that could characterize a
large amount of mobility models. And in order to fully utilize
the mobility of secondary users and consequently decrease
the number of secondary users, we want to come up with a
scheme that could achieve the near-optimal performance of
the primary users and secondary users but with much less
secondary users. Such scheme would not only have the optimal
scaling performance but also easier to implement due to the
relative small number of secondary users.

So in our work, we should focus on such kind of CRN
which satisfies our requirements: a static primary network and
a mobile secondary network. We imitate the heterogeneous
mobility of different transportation vehicles, and extend the
step-wise roaming process to a more generalized hierarchical
system. Our current main contributions are as follows:

• We develop a new kind of heterogeneous mobility model
for the secondary cognitive network – the hierarchical
hybrid mobility model. In this model, mobile nodes are
divided into several layers according to their mobility.
In particular, different layers correspond with different
sizes of moving area – from global to regional. Different
layer mobile nodes would have different speed, which is
proportional to the square root of their moving area; while
the mobile nodes within the same layer would have the
same speed. Specifically, when the speed of each layer
mobile nodes is maximum, then the mobile nodes are
moving according to the i.i.d. mobility model within their
moving area. While when the speed of each layer mobile
nodes is minimum, it is equivalent for them to move
according to the random walk mobility model within their
moving area.

• We propose a new class of hierarchical relay algorithm,
which originates from the Grossglauser-Tse 2-hop relay
algorithm, to make a balanced use of relay and mobility.
In this algorithm, several relays with different mobility
are used through the routing process, and the packet
approaches its destination in a step-wise fashion.

• With the help of hierarchical relay among different layers
of SUs, this algorithm can help the primary network
achieve Ω(n−δ′) per-node throughput under optimal con-
ditions. While the delay performance of primary network
is Dp = Θ

(
h2n(1+ϵ′)/h

)
under i.i.d. mobility model;

Dp = Θ
(
h2n(1+ϵ′)/h log n

)
under random walk mobility

model, where h denotes the number of different layers of
the mobility of secondary users. In both cases, an optimal
delay performance of O(nδ′′) could be achieved.

• Under this hierarchical relay algorithm, the sec-
ondary network could achieve the capacity scal-
ing of λs = Θ(h−1nϵ′−ϵ). While the delay per-
formance of the secondary network is Ds,kd

=

Θ
(
h(kd − 1)n(1+ϵ′)/h + hn(h−kd+1)(1+ϵ′)/h

)
for the

i.i.d. mobility model, where kd = 1, 2, ..., h de-
notes the layer of the destination SU. For the random
walk mobility model, with random walk step size S,
Ds,kd

= Θ
(
h(kd − 1)|logS|/S2 + hn(h−kd+1)(1+ϵ′)/h

)
,

when kd = o(h), and Ds,kd
= Θ

(
hkd|logS|/S2

)
when

kd = Θ(h).
• By achieving the near-optimal performance for both the

capacity and delay scaling of the primary network, the
hierarchial relay algorithm only needs the number of SUs
to be O(n1+ϵ), which is much less than that in [19], thus
more easy to implement.
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II. SYSTEM MODEL

In this paper, we consider a static primary network and a
multi-layer mobile secondary cognitive network coexisting in
a planar unit square area. To be specific, the primary network
consists of n static, randomly and evenly distributed PUs,
which are grouped into S-D pairs one by one. The secondary
network is divided into h layers according to different moving
range. Each layer consists of n1+ϵ mobile, randomly and evenly
distributed cognitive SUs, where ϵ can be any small positive
value. All these m = hn1+ϵ SUs are also grouped into S-D
pairs one by one.

A. Transmission Model

A typical wireless propagation channel is usually affected
by path-loss, shadowing and fading effects. In this work, we
ignore the influence of shadowing or fading for simplicity, and
assume that the channel gain depends only on the distance of
transmission. As such, the channel power gain g(d) is given as

g(d) = d−α, (1)

where d denotes the distance of transmission, α ≥ 2 represents
the path-loss exponent.

We adopt the Gaussian channel model to regulate the trans-
mission rate, which is a continuous function of the Signal to
Interference plus Noise Ratio (SINR). Specifically, the data
rate from a primary transmitter Pi to its receiver PD(i) is
determined by:

R(Pi, PD(i)) = log(1 +
Ppg(∥Pi − PD(i)∥)
N0 + Ip + Isp

), (2)

Here, Pp is the transmission power for the primary nodes,
and N0 is the ambient noise power. ∥ · ∥ denotes the Euclidian
distance for two nodes in the unit area. Moreover, Ip is the sum
interference from all the other concurrent primary transmitters
to the receiver PD(i), Isp is the sum interference from all the
current secondary transmitters to PD(i). Suppose there are Np

and Ns simultaneous primary and secondary transmitters, then
Ip is determined by:

Ip = Pp

Np∑
k=1,k ̸=i

g(∥Pk − PD(i)∥), (3)

Further if we set Ps to be the transmission power for the
secondary nodes, and Sk (1 ≤ k ≤ Ns) to be the secondary
transmitters. Then Isp is determined by:

Isp = Ps

Ns∑
k=1

g(∥Sk − PD(i)∥), (4)

Similarly, the data rate from the secondary transmitter Si to
its receiver SD(i) is defined as:

R(Si, SD(i)) = log(1 +
Psg(∥Si − SD(i)∥)
N0 + Is + Ips

), (5)

Here Is is the sum interference from all the other simul-
taneous secondary transmitters, and Ips represents the total
interference from the concurrent primary transmitters.

We assume that all nodes, be it a PU or a SU, are allowed
to transmit at the same power level, which means that Pp=Ps.

B. Cellular Structure

In this paper, we follow a cell-based algorithm, which
corresponds with hierarchical mobility model to be presented
later. So we first define h layers of cells.

We first partition the unit area into Nc,1 = n(1+ϵ′)/h

non-overlapping, rectangular cells, each covering an area of
n−(1+ϵ′)/h, where ϵ′ can be any positive value that is smaller
than ϵ. These cells are defined as 1st-layer cells. Similarly,
we partition each 1st-layer cell into N2,1 = n(1+ϵ′)/h non-
overlapping, rectangular 2nd-layer cells, each covering an area
of n−2(1+ϵ′)/h, thus the total number of 2nd-layer cells in the
unit area should be Nc,2 = n2(1+ϵ′)/h, and so forth.

In the same way, we can obtain a series of cellular structure.
For 1 ≤ k ≤ h, we have Nc,k = nk(1+ϵ′)/h kth-layer cells, as
shown in Figure 1.

1st-layer cell

2nd-layer cell

Fig. 1: Cellular Structure

In the previous part, we have assumed that all nodes transmit
at the same power level, here we set the transmission range of
these nodes to be one bottom-layer cell. In other words, any
node can only communication with another node in the same
hth-layer cell. In order to distinguish the special bottom-layer
cell from other hierarchies, we give them an alias – ‘lattice’ in
the following sections.

C. Mobility Model

The secondary cognitive network follows a special-designed
heterogeneous mobility model. In this model, SUs are divided
into h layers according to their mobility. Different layers cor-
respond with different sizes of moving area. Here the moving
area of a certain SU is defined as a rectangular region centered
at its initial position.
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In the previous subsection, we have defined a series of cells
with different sizes. Here we associate them with our proposed
mobility model. 1st-layer SUs are set to move around globally
in the unit area, while others are assumed to move regionally
within their moving area respectively. To be specific, a kth-
layer SU Sk,i, k = 2, 3, ..., h, is assumed to move around in a
(k − 1)th-layer cell.

In latter sections, we use Sk,i ∈ Ck′,j to denote Sk,i belongs
to Ck′,j , if the moving area of a kth-layer SU Sk,i is inside
a k′th-layer cell Ck′,j , k = 2, 3, ..., h, k′ = 1, 2, ..., k − 1.
Similarly, if a PU Pi is inside an kth-layer cell Ck,j , we say
that Pi belongs to Ck,j , Pi ∈ Ck,j , k = 1, 2, ..., h.

We have mainly studied two types of mobility models for
the secondary users.

(1)Two-dimensional i.i.d. mobility model: All mobile SUs,
irrespective of their layers, are supposed to move within their
moving range according to the uniform independent and identi-
cal distribution. Within one time slot, all the SUs keep static, so
that the transmission of all links keeps stable. While after this
time slot, the position of all SUs are perfectly reshuffled, i.e.,
they become randomly, evenly and independently redistributed
within their moving area, irrespective of their moving history,
as shown in Figure 2.

1st-layer SU

2nd-layer SU

Fig. 2: Moving area of Secondary Nodes with i.i.d mobility
model

(2) Two-dimensional random walk mobility model [13]:
Pick a random kth-layer SU Sk,i which moves around in the
(k − 1)-th layer cell Ck−1,j , where k = 1, 2, ...h. Divide each
Ck−1,j into 1/S2 equal size random walk cells(RW-cells), and
index each RW-cells by (i, j), where i, j ∈ 0, ..., 1/S − 1. Here
we set the value of S to be 1 < 1

S ≤ n(1+ϵ
′
)/2h. When k ranges

from 1 to h, all the (k − 1)-th layer cells would choose the
same value of S for simplicity. Here we call S the random
walk step size.

Then we say Sk,i is moving according to the random walk
mobility if within one time slot, it stays in one of the RW cells
inside Ck−1,j , denoted by (i, j). While in the next time slot,
Sk,i would move to one of its 8 adjacent RW-cells or stays

at the same RW-cell with equal probability. For simplicity, if
Sk,i hits the boundary of Ck−1,j , it will jump over the opposite
edge.

We should note here that the RW-cell is to regulate the
distance that each k-th layer SU could travel during one time
slot. So the larger the RW-cell inside each k − 1-th layer cell,
the larger the speed that the k-th layer SU would have.

From the above definition, when 1/S approaches 1, the Sk,i

will move according to the i.i.d. mobility model as defined
previously. This corresponds to the largest speed that Sk,i will
have. And when 1/S is set to be n(1+ϵ

′
)/2h, the RW-cell is

just the same as the k-th layer cell that Ck−1,j is divided into.
So Sk,i would jump from one of the k-th layer cell to the
adjacent or the same k-th layer cell in the next time slot, which
represents the smallest speed that Sk,i has.

The random walk mobility of the 1st layer secondary user in
the unit square is shown in Figure 3, and the similar condition
could be applied to the k-th layer SU moving within the (k−1)-
th layer cell, for 2 ≤ k ≤ h.

s

Fig. 3: Moving area of Secondary Nodes with random walk
mobility model

D. Capacity and Delay

The per-node throughput of a S-D pair is defined as the data
rate (in bits/time-slot) that each source node can transmit to
its destination, which depends on the network density. For the
primary network, we denote its per-node throughput by λp,
while that of the secondary network is denoted by λs.

The delay of S-D pair is defined as the average number of
time-slots passed before the packet arrives at its destination
after it leaves the source node, which also depends on the
network density. For the primary network, we use Dp to denote
its average delay. As for the secondary network, more complex
analysis is needed for different S-D pairs. Later, we will
show that the average delay of a secondary S-D pair depends
largely on the mobility of its destination node. The bigger the
moving range, the larger the delay. So we use Ds,k to denote
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the average delay of a secondary S-D pair with a kth-layer
destination.

Finally, we list the notations in Table I.

TABLE I: Definition of Symbols and Notations
Symbol Definition

n Number of primary users
m Number of secondary users
h Number of layers in the hierarchical structure
α Path-loss exponent

lattice The h-th layer (bottom layer) cell
Nc,i Number of ith-layer cells in the unit area
Ni,j Number of ith-layer cells in a jth-layer cell
Pi The ith primary user
Sk,i The ith secondary user of the kth-layer
Ck,i The ith cell of the kth-layer
U Unit area
nk Number of primary users in a kth-layer cell
mi,k Number of ith-layer secondary user in a kth-layer

cell
λp Per-node throughput of the primary network
λs Per-node throughput of the secondary network
Pp Transmission power for primary transmitters
Ps Transmission power for secondary transmitters
Dp Delay of primary S-D pairs
Ds,k Delay for secondary S-D pairs with a kth-layer

destination
Pi ∈ Ck,j Pi is inside the k-th layer cell Ck,j

Sk,i ∈ C
k
′
,j

The moving area of Sk,i is inside k
′
-th layer cell

C
k
′
,j

Ck,ik ∈ Ck,,ik, The k-th layer cell Ck,ik is inside the k
′
-th layer

cell Ck,,ik,

S Random walk step size

III. HIERARCHICAL RELAY ALGORITHM

In this section, we sketch a new hierarchical relay algorithm
for the CRN, which makes best use of the proposed mobility
model.

A. Primary Network Relay Algorithm

The primary algorithm seeks to take advantage of the sec-
ondary network extensively so as to achieve high capacity
performance with low delay for PUs. And we assume that the
secondary users could act as the relay for the primary packets,
so the positive cooperation will exist between the primary
nodes and secondary nodes.

Before going to details of the primary relay algorithm, we
first introduce a lemma which guarantees the feasibility of each
step of this algorithm.

Lemma 1: Pick a random lattice Ch,ih , assume:

Ch,ih ∈ Ch−1,ih−1
∈ ... ∈ C1,i1 .

Then at any moment, according to the proposed cellular
structure and SU distribution, for any k satisfying 1 ≤ k ≤ h,
at least one k-th layer SU would reside in Ch,ih .

The above conditions are satisfied by all lattices with high
probability.

Proof: In our cellular structure, n1+ϵ SUs of each layer
are randomly and evenly distributed into Nc,h = n1+ϵ′ lattices,
with 0 < ϵ

′
< ϵ. Pick a random lattice Ch,ih , as all the k-th

layer cells are randomly distributed, so the probability that there
are no k-th layer SUs inside it is given by:

Pr{mk,h(ih) = 0}
= (1− n−(1+ϵ′))n

1+ϵ

→ e−nϵ−ϵ′

→ 0

as n → ∞.
Since the lattice is randomly selected, so the above condition

is satisfied by all the lattices. Thus at least one k-th layer SU
could be found in any lattice, for 1 ≤ k ≤ n.

This completes the proof.

Now we sketch the relay algorithm of the primary network.
First we define some special actions through the routing

process in Table II.

TABLE II: Definition of Actions
Action Definition

T B
=⇒ R Node T transmits packet B to node R, and node R

is in the same lattice as node T at the moment

T
Ck,i

GGGGGGGGACk′,j Mobile node T moves around within kth-layer cell
Ck,i until it arrives at k′th-layer cell Ck′,j , k′ > k

T
Ck,i

GGGGGGGGBFGGGGGGGGR Mobile node T moves around within kth-layer cell
Ck,i until it encounters mobile node R in a same
lattice

Next, pick a random primary source node Pi, whose corre-
sponding destination node is Pj . Assume the location of Pj as
follows:

Pj ∈ Ch,jh ∈ Ch−1,jh−1
∈ ... ∈ C1,j1 .

Then the primary S-D pair would use the secondary users of
different layers to relay the primary packet Bp generated at Pi.
The relay algorithm is shown in Algorithm 1. And Figure 4
illustrates the complete routing path of the primary packet Bp.

Algorithm 1 Relay Algorithm for Primary Packet Bp

Input: The primary source node Pi and destiantion node Pj

Output: The h intermediate secondary relay nodes
1: Pi

Bp
=⇒ S1,u1

2: S1,u1

U
GGGGGAC1,j1

3: S1,u1

Bp
=⇒ S2,u2 ∈ C1,j1

4: for k=2 to (h− 1) do

5: Sk,uk

Ck−1,jk−1

GGGGGGGGGGGGGGACk,jk

6: Sk,uk

Bp
=⇒ Sk+1,uk+1

∈ Ck,jk
7: end for

8: Sh,uh

Ch−1,jh−1

GGGGGGGGGGGGGGACh,jh

9: Sh,uh

Bp
=⇒ Pj
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1st-layer cell

(h-1)th-layer cell
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Fig. 4: Routing Path of Primary Packet Bp under h-layer
Hierarchical Relay Algorithm

Under this algorithm, a primary packet is relayed along SUs
from the top layer to the bottom layer. In the meantime, this
packet is approaching its destination in a step-wise fashion.
This hierarchical algorithm takes best advantage of the hierar-
chical mobility model, and can greatly reduce the time needed
for the roaming process. The detailed interpretation of this
algorithm shall be presented in the next two sections.

B. Secondary Network Relay Algorithm

The secondary network relay algorithm deals with transmis-
sion requests from secondary S-D pairs, and this algorithm also
utilize the hierarchical cooperation among different layers of
secondary users.

Pick a random secondary source node Sks,i, whose corre-
sponding destination node is Skd,j , here we call the packet
from Sks,i to Skd,j , denoted by Bs,kd

, a kdth-layer secondary
packet.

Assume the location of Skd,j as follows:

Skd,j ∈ Ckd−1,jkd−1
∈ Ckd−2,jkd−2

∈ ... ∈ C1,j1 .

Then the routing process of this kdth-layer secondary packet
Bs,kd

is given in Algorithm 2.
Under this algorithm, a secondary packet is relayed along

SUs from the top layer to the hierarchy of its destination SU.
The larger mobility its destination node possesses, the less
relays it needs. This packet is not relayed further down to the
lowest layer because the time needed for two nodes to meet
at the same cell only depends on the one with larger moving
area, and thus more relay can not further reduce the roaming
time.

IV. SCHEDULING SCHEMES FOR THE HIERARCHICAL
RELAY ALGORITHM

After we have defined the hierarchical relay algorithm, we
would build up the scheduling scheme for the CRN. The
scheduling scheme would choose which primary or secondary

Algorithm 2 Relay Algorithm for Secondary Packet Bs,kd

Input: The secondary source node Sks,i and destiantion node
Skd,j

Output: The kd intermediate secondary relay nodes

1: Sks,i

Bs,kd=⇒ S1,u1

2: S1,u1

U
GGGGGAC1,j1

3: S1,u1

Bs,kd=⇒ S2,u2
∈ C1,j1

4: for k=2 to (kd − 1) do

5: Sk,uk

Ck−1,jk−1

GGGGGGGGGGGGGGACk,jk

6: Sk,uk

Bs,kd=⇒ Sk+1,uk+1
∈ Ck,jk

7: end for

8: Skd,ukd

Ckd−1,jkd−1

GGGGGGGGGGGGGGGGBFGGGGGGGGGGGGGGGG Skd,j

9: Skd,ukd

Bs,kd=⇒ Skd,j

S-D pair to be activated in each time slot, and the transmission
range of each successful transmission is restricted to be within
a lattice in our scheme. Specifically, the primary scheduling
scheme is designed to transmit the primary packets, while
the secondary scheduling scheme is to transmit the secondary
packets.

In order ensure the equal opportunity for all the lattices
to be active and limit the interference among concurrent
transmissions, a 9-TDMA scheme is adopted which is similar
to that in [2]: Divide all the lattices into 9 subsets according
to a 3 × 3 pattern, as shown in Figure 5, then the lattices in
different subset would be activated with a round-robin fashion
during a certain time period.

Fig. 5: 9-TDMA Subsets of Lattices

In our scheme, the primary time slot and secondary time
slot has the same length. Since the secondary users would act
as the relay node for the primary packets, thus in order to
guarantee the transmission opportunity for both the primary
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packets and secondary packets, we divide the secondary time
slot into two equal subslots. The first subslot is used to relay
the primary packets and the second subslot is used to deliver
the secondary packets. During each primary time slot and
secondary subslot, a 9-TDMA scheme would be adopted for
successful transmission.

In the following, the scheduling scheme for the primary
network and secondary network and established respectively.

A. Primary Scheduling Scheme

From the hierarchical relay algorithm, a primary packet is
relayed by h different layer secondary users, so the primary
scheduling scheme is associated with h + 1 phases and each
phase consumes one time slot. If a lattice is active in a certain
time period, at most one node in it is allowed to transmit during
this period. Note that when two or more relay SUs satisfy
the condition to be scheduled, one of them would be chosen
randomly and relay the primary packet during first secondary
subslot. Then the specific phases of the primary scheduling
scheme are as follow:

Phase 1: During the active period of lattice, randomly select
a source PU Pi in the lattice. Let Pi transmit a primary
packet Bp to a random 1st-layer relay SU S1,u1 in the
same lattice;

For k = 2, 3, ..., h,
Phase k: During the active period of each lattice, randomly

select a (k − 1)th-layer SU Sk−1,uk−1
in the lattice. If

Sk−1,uk−1
contains a primary packet Bp whose destina-

tion Pj belongs to the same (k − 1)-layer cell as the
designated lattice, let Sk−1,uk−1

relay Bp to a random
kth-layer relay SU Sk,uk

in the same lattice. Otherwise,
re-select another 1st-layer SU in the lattice until all
(k − 1)th-layer SUs have been tried;

Phase h+1: During the active period of each lattice, ran-
domly select a destination PU Pj in the lattice. If there is
an hth-layer relay SU Sh,uh

in the same lattice carrying
a primary packet Bp which is destined to Pj , then let Pj

receive Bp from Sh,uh
. Note that if two or more relay SUs

match this condition, we choose one of them randomly.
Otherwise, re-select another destination PU in the lattice
until all destination PUs have been tried;

B. Secondary Scheduling Scheme

First, we define the preservation region so as to keep the
interference from the secondary users to the primary users,
which has the similar idea to [19]. The definition of the
preservation region is a square that contains 9 lattices, with
the active primary transmitter or receiver at the center cell, as
shown in Figure 6.

Only the secondary transmitters outside any preservation
region can they transmit the secondary packets. Otherwise, it
should buffer the packet until it is outside the preservation re-
gion. From the definition of preservation region, the secondary
users could be scheduled only when they are outside the current
preservation regions. In the following section, we would prove

Primary TX (RX) Preservation Region

Preservation Region

Fig. 6: Illustration of the preservation region

that this constraint will not degrade the performance of the
secondary users when n approaches infinity.

Since the secondary packet would be relayed at most h times,
so the secondary scheduling scheme would consume h + 1
phases. Then the specific phases of the primary scheduling
scheme are as follow, note that when two or more SUs satisfy
the condition to be scheduled, one of them would be chosen
randomly during second secondary subslot:

Phase 1: During the active period of each lattice, randomly
select a source SU Sks,i in the lattice. Let Sks,i transmit
a secondary packet Bs,kd

to a random 1st-layer relay SU
S1,u1 in the same lattice;

For k = 2, 3, ...h,

Phase k: During the active period of each lattice, randomly
select a (k − 1)th-layer SU Sk−1,uk−1

in the lattice. If
Sk−1,uk−1

contains a (k − 1)th-layer secondary packet
Bs,k−1 whose destination Sk−1,jk−1

happens to be in
the same lattice at this moment, let Sk−1,uk−1

relay
Bs,k−1 to Sk−1,jk−1

; or if Sk−1,uk−1
contains a k′th-layer

secondary packet Bs,k′ (k ≤ k′ ≤ h) whose destination
Sk′,jk′ belongs to the same (k − 1)th-layer cell as the
designated lattice, let Sk−1,uk−1

relay Bs,k′ to a random
kth-layer relay SU Sk,uk

in the same lattice.

Phase h+1: During the active period of each lattice, ran-
domly select an hth-layer destination SU Sh,jh in the
lattice. If there is another hth-layer relay SU Sh,uh

in the
same lattice carrying a secondary packet Bs,h which is
destined to Sh,jh , then let Sh,jh receive Bs,h from Sh,uh

.

In the following two sections, we would calculate the capac-
ity and delay performance for both the primary network and
secondary network, respectively. In addition, both the condition
that SUs are moving according to i.i.d. mobility model and
random walk mobility model are considered.
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V. CAPACITY AND DELAY PERFORMANCE FOR THE
PRIMARY NETWORK

In this section, we would first evaluate the capacity scaling
of the primary network, and then study the delay performance
for the primary network when the secondary users are mov-
ing according to the i.i.d. mobility model and random walk
mobility model respectively.

A. Capacity Performance

In this part, we would first calculate the upper bound for the
number of primary users within each lattice, and then prove all
the transmitters could support a constant data rate during each
phase. Finally we would give the throughput of the primary
network.

Lemma 2 (Ji et al. [20]): Assume x nodes are placed into
y equal-sized areas randomly, evenly and independently. Let
Z(x, y) be the random variable that counts the maximum
number of nodes in any area. Then with high probability,

Z(x, y)

=


Θ(xy ), if x ≫ y log y,

Θ(log y), if x = cy log y for some constant c,
Θ( log y

log y log y
x

), if y
polylog(y) ≤ x ≪ y log y,

Θ( log y
log y

x
), if x < y

log y .

(6)

Lemma 3: According to the h-layer cellular structure, there
are at most Θ(1) PUs in any lattice with high probability.

Proof: In our h-layer cellular structure, n PUs are ran-
domly and evenly distributed into Nc,2 = n1+ϵ′ lattices.
According to the last condition in Lemma 2, the maximum
number of PUs in any lattice should be

max(n2) = Θ(
1 + ϵ′

ϵ′
) = Θ(1). (7)

Lemma 4: During all the phases of the primary scheduling
scheme, each transmitter within a lattice could support a
constant data rate .

Proof: In order to prove that every transmitter in every
phase of the scheduling scheme could support a constant data
rate, we divide the whole routing process into three parts: input,
relay and output. The input process corresponds to the Phase 1
of the scheduling scheme, and the output process corresponds
to the Phase h + 1 of the scheduling process, and the relay
processes would correspond to the intermediate Phase k, where
2 ≤ k ≤ h. Next we would prove all the transmitters in each
of the process could support a constant data rate.

First consider the input process, during which the primary
transmitters would transmit the primary packet to the 1st layer
SU in the same lattice. Since a 9-TDMA scheme is adopted,
so the data rate of the primary transmitter could be given as:

R(Pi, S1,i1) =
1

9
log(1 +

Ppg(∥Pi − S1,i1∥)
N0 + Ip + Isp

), (8)

Where Pi is the primary transmitter and S1,u1 is the 1st-layer
secondary relay node. 1

9 is introduced by dividing the primary
time slot into 9 TDMA subslots. Since we have restricted the
transmission range to be within a lattice, so the transmission
power for the primary transmitter is Pp = Plα, where P is a
constant and l is the side length of a lattice.

Since the transmission from the source primary node to the
1st-layer relay SU is within a lattice, so ∥Pi − S1,i1∥ ≤

√
2l,

thus

Ppg(∥Pi − S1,i1∥) = Plα(∥Pi − S1,i1∥)−α

≥ Plα(
√
2l)−α

= P (
√
2)−α

(9)

Then we should consider Ip, which is the sum interference
from the concurrent primary transmitters. Since the 9-TDMA
scheme is adopted, so from Fig 7, there would be at most 8
concurrent primary transmitters with a distance of at least 2l
from S1,i1 , and 16 primary transmitters with a distance at least
5l and so on. So the Ip is bounded by:

Ip =

Np∑
k=1,k ̸=i

Ppg(∥Pk − S1,ii∥)

≤
∞∑

k=1,k ̸=i

8k[(3k − 1)l]−αPlα

= 8P

∞∑
k=1,k ̸=i

k

(3k − 1)α

= R1

(10)

Here R1 is a constant. Since the path-loss exponent α is
larger than 2, so the infinite series of equation 10 converges to
a finite number.

2L

Primary Transmitter

1st Layer Secondary Relay Node

Fig. 7: Interference from the concurrent primary TXs

Next we should bound the sum interference from the
concurrent secondary transmitters. In the input process, the
preservation region is set around every primary transmitter,
and all the secondary nodes that fall into any preservation
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region are not allowed to transmit the secondary packets.
So a minimum distance of l could be guaranteed from all
the concurrent secondary transmitters to S1,i1 . And since the
secondary network also employs the 9-TDMA scheme, thus
Isp is bounded by:

Isp =

Ns∑
k=1,k ̸=i

Psg(∥Sk − S1,ii∥)

≤
∞∑

k=1,k ̸=i

8k[(3k − 2)l]−αPlα

= 8P

∞∑
k=1,k ̸=i

k

(3k − 2)α

= R2

(11)

Here R2 is a constant and the reason that equation (11)
converges is the same as equation (10).

Combining all the three terms together, we could show that
the transmission rate for the input process is bounded by

R(Pi, S1,i1) =
1

9
log(1 +

Ppg(∥Pi − S1,i1∥)
N0 + Ip + Isp

)

≥ 1

9
log(1 +

P (
√
2)−α

R1 +R2
)

= C1

(12)

As for the relay processes, the transmission rate for the
secondary relay nodes are regulated by:

R(Si,ui , Si+1,ui+1) =
1

9
log(1 +

Psg(∥Si,ui − Si+1,ui+1∥)
N0 + Is + Ips

),

(13)
Here, for 1 ≤ i ≤ h, Si,ui is the intermediate relay node

for the primary packet. According to the primary scheduling
scheme, there is no primary TXs transmitting during the relay
processes, so the term Ips equals to 0. And since the secondary
network would also employ the 9-TDMA scheme to transmit
the primary packets, so similar to equation (10), the sum
interference from all the concurrent secondary transmitters to
Si+1,ui+1 is also bounded by a constant. Thus, the transmission
rate for the relay process is also a constant C2.

Finally, we would consider the output process, during which
the h-th layer relay SU would transmit the packet to the primary
destination node. The transmission rate is regulated by:

R(Sh,uh
, Pj) =

1

9
log(1 +

Psg(∥Sh,uh
− Pj∥)

N0 + Is + Ips
), (14)

During this phase, the Ips is again 0 for the same reason as
the relay process. In addition, since we have set the preservation
region around the primary receivers, so a minimum distance
of l could be guaranteed for all the concurrent secondary
transmitters to Pj . And as the 9-TDMA scheme is chosen, thus
this could lead to a finite Is. Consequently, the transmission
rate in the output process is also a constant C3.

Since during the input, relay and output process, all the
transmitters could support a constant data rate, that finishes
the proof.

According to the primary scheduling scheme and the results
of Lemma 3 10, we can derive the following theorem that
counts the throughput of the primary network.

Theorem 1: Under the generalized h-layer hierarchical re-
lay algorithm, the primary network can achieve the following
per-node throughput with high probability:

λp = Θ

(
1

h

)
, (15)

Proof: During the primary scheduling phases, since every
transmitter could transmit the packet with a constant rate, thus
we assume that any node could transmit at a rate of R bits per
time-slot. Then since each scheduling phase would consume
1

h+1 fraction of the complete scheduling cycle, thus the per-
node throughput during each time slot is degraded by 1

h+1 . And
according to Lemma 3, the number of source PUs in any lattice
does not exceed Θ(1) with high probability. Thus the per-node
throughput for the primary S-D pair is of Θ( R

1·(h+1) ) = Θ( 1h ).

B. Delay Performance

In this part, we would give the delay performance for the
primary network under the condition that the secondary nodes
are moving according to the i.i.d. mobility model and random
walk mobility model respectively.

1) The i.i.d mobility model:
In this part, we would evaluate the delay performance of the

primary network when the secondary nodes are moving under
the i.i.d. mobility model.

Lemma 5: Let a node T move around in y equal-sized cells
according to the i.i.d. mobility model. The position of this
node changes once every time-slot. Then the average number
of time-slots t it takes for this node to arrive at a certain cell
C from its original position should be

E(t) = y. (16)

Proof: First we calculate the probability that node T
arrives at cell C for the first time at the tth time-slot,

p(t) =
1

y
(
y − 1

y
)t−1.

Then we can calculate the expected value of t by performing
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an integration,

E(t) =
+∞∑
i=1

i× p(i)

=
+∞∑
i=1

+∞∑
j=i

p(j)

=
+∞∑
i=1

1

y
(
y − 1

y
)i−1 1

1− y−1
y

=
+∞∑
i=1

(
y − 1

y
)i−1

= y.

Corollary 1: Let two nodes T and R move around in y
equal-sized cells according to the i.i.d. mobility model. The
position of these two nodes change once every time-slot. Then
the average number of time-slots t′ it takes for the two nodes
to encounter in a same cell should follow

E(t′) = y. (17)

Proof: Since the nodes are moving according to the
i.i.d. mobility model, thus the probability that the two nodes
encounter in a same cell is

p = C1
y(

1

y
)2. (18)

So the probability that the two nodes first encounter in the
same cell at the t-th time slot is given by:

p(t) =
1

y
(
y − 1

y
)t−1.

Then the following proof is the same to Lemma 5.
By using the Lemma 5, we can calculate the delay perfor-

mance of the primary network.
Theorem 2: Under the generalized h-layer hierarchical re-

lay algorithm, when the secondary users are moving according
to the i.i.d mobility model, the primary network can achieve
the following average delay with high probability:

Dp = Θ
(
h2n(1+ϵ′)/h

)
, (19)

Proof: Here we shall analyze the routing process of a
random primary packet Bp. In the proposed algorithm, the
delay is caused by two kind of events: hopping and roaming.
However, each hop consumes only 1 time-slot, which is much
shorter than each roaming step, Dh ≪ Dr, so we just ignore
the hopping delay and mainly focus on the roaming delay.

Specifically, we follow the 3 steps below to evaluate the
average delay:

• Along its journey, Bp is relayed by h intermediate sec-
ondary nodes, and thus experiences h roaming periods;

• During each roaming period, the relay SU is assumed to
move around among n(1+ϵ′)/h equal-sized cells, and thus
causes an average roaming delay of n(1+ϵ′)/h;

• Finally, considering that hops among relay SUs of dif-
ferent layers can only take place in one corresponding
primary scheduling phase, we need to add an multiplier
of (h + 1) to each average roaming delay, i.e., Dr =
(h+ 1)n(1+ϵ′)/h.

Sum these up, we derive that the primary network can
achieve an average delay performance of

Dp = hDr

= h(h+ 1)n(1+ϵ′)/h

= Θ
(
h2n(1+ϵ′)/h

)
.

(20)

2) The random walk mobility model:
In this part, the delay performance when the secondary users

are moving according to the random walk mobility model
would be derived.

First, we would introduce the definition of first hitting time
and first return time, which would be used to calculate the
delay performance. Consider a random walk on a 2-d torus
with random walk step size S, which means the torus is
equally divided into 1

S × 1
S random walk cells. Then the

state of the random walk would correspond to a Markov
chain x(t), which take values in X . Here X is defined as
X = {(x, y) : x, y = 0, 1, ..., 1

S − 1. According to [21], we get
the following definitions:

Definition 1: (First hitting time) The first hitting of an
arbitrary state x ⊂ X is defined by:

τx = inf{t ≥ 0 : x(t) = x} (21)

Definition 2: (First return time) The first return of an arbi-
trary state x ⊂ X is defined by:

τ+x = inf{t ≥ 1 : x(t) = x}, (22)

where x(0)=x.
Since the secondary users are uniformly distributed in their

corresponding moving area, thus we could refer to the follow-
ing lemma from [8] that provides the expectation for the first
hitting time and first return time of a single state.

Lemma 6: Consider the random walk on a 2-D torus with
step size S, and x is an arbitrary state on this torus, namely an
arbitrary random walk cell in the torus. Then the expectation
of the first hitting time to enter state x is:

E(τx) = Θ(|logS|/S2), (23)

Lemma 7: Consider a random walk on a 2-D torus with step
size S, and x is the initial state of the random walk. Then the
expectation of the first return time to re-enter state x is:

E(τ+x ) = Θ(1/S2). (24)

From the given lemmas regarding the first hitting time and
first return time, the delay of performance of the primary
network could be derived as follow:

Theorem 3: When all the secondary users are moving ac-
cording to the random walk mobility model, with a common
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random walk step size S within their own moving area. Then
under the generalized h-layer hierarchical relay algorithm, the
primary network can achieve the following average delay with
high probability:

Dp = Θ(h2log|S|/S2), (25)

Proof: Suppose the routing path of the primary packet Bp

is
Pi ⇒ S1,u1

⇒ S2,u2
⇒ ... ⇒ Sh,uh

⇒ Pj ,

Where Pi and Pj are the primary source node and primary
destination node respectively, while Sk,uk

, k=1,2,...h are the
intermediate secondary relay nodes.

Further assume the location of Pj satisfies:

Pj ∈ Ch,ih ∈ Ch−1,ih−1
∈ ... ∈ C1,i1 .

Next we would analyze the roaming process of the secondary
mobile relays. For k = 1, 2, ...h−1, consider the secondary user
Sk,uk

which moves within the (k − 1)-th layer cell Ck−1,ik−1
.

Until Sk,uk
has entered Ck,ik , i.e., the k-th layer cell that the

primary destination node is located, it will relay the packet
to the (k + 1)-th layer secondary user Sk+1,uk+1

in the same
lattice.

Suppose Ck−1,ik−1
is divided into 1

S2 random walk cells,
where 1 < 1/S2 < n(1+ϵ

′
)/h, and x0 is the random walk

cell that contains Ck,ik . If we denote the probability p to be
p=Pr(Sk,uk

enters Ck,ik | Sk,uk
enters x0), τx0 and τ jx0

to be the
first hitting time and j-th return time of x0. Then the average
delay for Sk,uk

to enter Ck,ik , denoted by Tk, should be:

Tk = τx0
p+ (τx0

+ τ1x0
)(1− p)p+ ...

+ (τx0 + τ1x0
+ ...+ τ jx0

)(1− p)jp+ ...
(26)

It could be derived that p = n−(1+ϵ
′
)/h

S2 , E(τx0) =
Θ(|logS|/S2) and E(τ jx) = Θ(1/S2). Thus,

E(Tk) = E[τx0p+ (τx0 + τ1x0
)(1− p)p+ ...

+ (τx0 + τ1x0
+ ...+ τ jx0

)(1− p)jp+ ...]

= E(τx0) + E(τ1x0
)
1− p

p

= Θ(|logS|/S2) + Θ(1/S2)S2n(1+ϵ
′
)/h −Θ(1/S2)

= Θ(|logS|/S2).
(27)

The final step, i.e., the h-th layer SU Sh,uh
transmit the

packet to the primary destination node Pj , would also incur
the same delay as equation (27). So the primary packet would
relay h times and every relay step would take 1

h+1 fraction of
the primary scheduling scheme, thus the average delay for the
primary network is:

Dp = Θ(h(h+ 1)log|S|/S2)

= Θ(h2log|S|/S2)
(28)

VI. CAPACITY AND DELAY PERFORMANCE FOR THE
SECONDARY NETWORK

In this section, we would use the similar method as the
previous section to evaluate the capacity and delay performance
of the secondary network. The secondary network is different
from the primary network because the secondary users should
access the spectrum opportunistically, i.e., only when the
secondary user is outside the current preservation regions can
it transmit the secondary packet. Thus, before calculating the
capacity and delay scaling of the secondary network, a critical
step is to ensure that all the secondary users would have the
opportunity to transmit the secondary packets, as shown in the
following lemma.

Lemma 8: With high probability, a randomly chosen sec-
ondary user is outside the preservation of the concurrent
primary transmitters or receivers.

Proof: Consider a randomly chosen secondary user Sk,i,
and denote the probability that Sk,i is outside any current
preservation region by P . It could be seen that P also equals to
the probability that no primary transmitter or receiver resides
in 9 lattices that centered at Sk,i. Since all the primary users
are randomly deployed, thus the lower bound of P could be
calculated as follow:

P ≥ (1− 9n−(1+ϵ
′
))n

= {[1− 9n−(1+ϵ
′
)]
− 1

9n(1+ϵ
′
) }9n

−(1+ϵ
′
)n

→ e
9n

n1+ϵ
′

→ 1.

(29)

Equation 29 holds when n approaches ∞. Consequently, the
randomly chosen SU should be outside the preservation regions
with high probability.

Since we have guaranteed the transmission opportunity for
the secondary users, the next step is to calculate the capacity
and delay performance of the secondary network.

A. Capacity Performance

Similar to section V-A, first we use the following lemma to
estimate the upper bound of secondary users in the lattice.

Lemma 9: According to the h-layer cellular structure, there
are at most Θ(hnϵ−ϵ′) SUs in any lattice with high probability.

This lemma could be easily derived using the result of
Lemma 2. Next we can prove the following lemma that can
guarantee a constant data rate for the secondary transmitters or
relay nodes.

Lemma 10: During all the phases of the secondary schedul-
ing scheme, each secondary transmitter or relay node within a
lattice could support a constant data rate.

Proof: Similar to the method of lemma 10, we can also
divide the secondary scheduling scheme into input, output
and relay processes. During each phase, the data rate of the
secondary transmitter Si to its corresponding relay or receiver
SD(i) is regulated by
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R(Si, SD(i)) =
1

9
log(1 +

Psg(∥Si − SD(i)∥)
N0 + Is + Ips

), (30)

Since the secondary network also employ a 9-TDMA
scheme, thus Is could be bounded by a constant. Since the
secondary transmitters are outside the preservation region, thus
Ips can also be bounded by a constant. Thus, the secondary
transmitter could support a constant data rate during all the
phases of the secondary scheduling sheme.

According to the secondary scheduling scheme and the
results of former lemmas, we can derive the following theorem
that counts the throughput of the secondary network.

Theorem 4: Under the generalized h-layer hierarchical re-
lay algorithm, the secondary network can achieve the following
per-node throughput with high probability:

λs = Θ
(
h−1nϵ′−ϵ

)
. (31)

Proof: During the secondary scheduling phases, we as-
sume that any node could transmit at a rate of R bits per
time-slot. The per-node throughput during each time slot is
degraded by 1

h+1 since each scheduling phase would consume
1

h+1 fraction of the complete scheduling cycle. Then according
to Lemma 9, the number of source SUs in any lattice does not
exceed Θ(hnϵ−ϵ′) with high probability. Thus the per-node
throughput for the primary S-D pair is of λs = Θ

(
h−1nϵ′−ϵ

)
.

B. Delay Performance

In this part, the delay performance of the secondary network
is derived. From the secondary scheduling scheme, because dif-
ferent layer destination SU would experience different number
of relays, thus the delay performance of the secondary users
should depend on which layer the destination SU is. Similar to
section V-B, we would consider the case that secondary users
are moving according to the i.i.d. mobility model and random
walk mobility model separately.

1) The i.i.d mobility model:
Theorem 5: Under the generalized h-layer hierarchical re-

lay algorithm, when the secondary users are moving according
to the i.i.d. mobility model, the CRN can achieve the following
average delay with high probability:

Ds,kd
= Θ

(
h(kd − 1)n(1+ϵ′)/h + hn(h−kd+1)(1+ϵ′)/h

)
,

(32)
for the secondary network, where kd is the layer of the
destination SU, here kd = 1, 2, ..., h.

Proof: The delay performance of the secondary network is
somewhat different from that of the primary network, because
secondary packets with different destinations should follow
different routing processes. We can divide the routing process
of a kdth-layer secondary packet Bs,kd

2 parts:
In the first part, Bs,kd

is relayed along intermediate SUs in
the same way as a primary packet, from a 1st-layer SU to a
kdth-layer SU. Along this journey, Bs,kd

experiences (kd − 1)

roaming periods. So this part causes an average delay of (h+
1)(kd − 1)n(1+ϵ′)/h.

In the second part, Bs,kd
is carried by a kdth-layer re-

lay SU Skd,ukd
. Skd,ukd

moves around among Nh,kd−1 =

n(h−kd+1)(1+ϵ′)/h lattices until it encounters Skd,j in a same
lattice. According to corollary 1, this part is accompanied by
an average delay of (h+ 1)n(h−kd+1)(1+ϵ′)/h.

Add the two parts up, we derive that a kdth-layer secondary
packet can achieve an average delay performance of

Ds,kd
= (h+ 1)(kd − 1)n(1+ϵ′)/h + (h+ 1)n(h−kd+1)(1+ϵ′)/h

= Θ
(
h(kd − 1)n(1+ϵ′)/h + hn(h−kd+1)(1+ϵ′)/h

)
.

(33)

This finishes the proof.
2) The random walk mobility model:
Theorem 6: Under the generalized h-layer hierarchical re-

lay algorithm, when the secondary users are moving according
to the random walk mobility model with random walk step size
S, the CRN can achieve the following average delay with high
probability:

Ds,kd
= Θ

(
h(kd − 1)|logS|/S2 + hn(h−kd+1)(1+ϵ′)/h

)
,

(34)
for the secondary network, when kd = o(h), and

Ds,kd
= Θ

(
hkd|logS|/S2

)
. (35)

for the secondary network when kd = Θ(h).
Proof: For a random kdth-layer secondary packet Bs,kd

,
we can divide the routing process of Bs,kd

into 2 parts:
In the first part, Bs,kd

is relayed along intermediate SUs in
the same way as a primary packet, from a 1st-layer SU to a
kdth-layer SU. Along this journey, Bs,kd

experiences (kd − 1)
roaming periods. Recall the result of equation (27), each roam-
ing step would consume an average delay of Θ(|logS|/S2).
So this part causes an average delay of D1 = (h + 1)(kd −
1)|logS|/S2.

In the second part, the packet Bs,kd
is carried by Skd,ukd

,
while Skd,ukd

and the secondary destination node Skd,j both
move within the kd − 1-th layer cell Ckd−1,jkd−1

, according
to the random walk mobility. And Skd,ukd

would relay the
packet to Skd,j when they have come into the same lattice. So
the delay of the second part should be the time for Skd,ukd

and Skd,j to meet in the same lattice, when they both move
according to random walk on a 1

S × 1
S 2-D torus. We denote

this delay by D2.
To make Skd,ukd

and Skd,j encounter in the same lattice,
they need to come into the same random walk cell first. If
they come within the same lattice, Skd,ukd

would relay the
packet to Skd,j . However, if they are in the same random walk
cell but not the same lattice, they need to continue roaming in
Ckd−1,jkd−1

until they come to another same kd-th layer cell.
At this time, if they are in the same lattice, they could relay
the packet, or the previous process would continue.
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Thus, the delay for this process should be:

D2 = τsp+(τs+τI1)(1−p)p+...+(τs+τI1+...+τIj )(1−p)jp+...
(36)

In equation 36, τs denotes the time for the two nodes to enter
in a same kd-th layer cell, both start from two random positions.
In addition, τIj denotes the j-th successive inter-meeting time
of Skd,ukd

and Skd,j to enter into a same random walk cell.
And p is the probability that the two SUs come into the same
lattice when they move into the same random walk cell.

For a random walk on the 2-D torus, the expectation of τs
is on the same order as the first hitting time for an arbitrary
state. Thus from lemma 6, E(τs) = Θ

(
|logS|/S2

)
. While

from lemma 7, E(τIj ) = Θ
(
1/S2

)
, for j = 1, 2, .....

Moreover, since the area of Ckd−1,jkd−1
is n−(kd−1)(1+ϵ

′
)/h,

so the area of the random walk cell in Ckd−1,jkd−1
is

n−(kd−1)(1+ϵ
′
)/h/ 1

S2 . Consequently, the number of lattices
within a random walk cell is N = S2n−(kd−1−h)(1+ϵ

′
)/h, and

the probability that the two SUs enter the same lattice when
the enter the same random walk cell is:

p = C1
N (

1

N
)2

=
1

N

=
n(kd−1−h)(1+ϵ

′
)/h

S2

(37)

.
So if we take the expectation on both sides of equation 36,

we could get the expectation of D2:

E(D2) = E(τs)[p+ (1− p)p+ ...+ (1− p)i + ...]+

E(τIj )[(1− p)p+ 2(1− p)2p+ ...+ j(1− p)jp+ ...]

= E(τs) +
1− p

p
E(τIj ).

(38)

Substitute the values of each term into equation 38, we would
derive that:

E(D2) = E(τs) +
1− p

p
E(τIj )

= Θ
(
log|S|/S2

)
+Θ

(
1/S2

)
S2n−(kd−1−h)(1+ϵ

′
)/h

−Θ
(
1/S2

)
.

=

{
Θ
(
n(h+1−kd)(1+ϵ

′
)/h
)
, if kd = o(h),

Θ
(
|logS|/S2

)
, if kd = Θ(h).

(39)

Moreover, since the hop among Skd,ukd
and Skd,j takes 1

of the (h+1) phases of the scheduling scheme, so we would
multiply (h+ 1) to D2 to get the delay of the second part.

Summing D1 and (h + 1)D2 together, the delay for the
secondary network could be derived.

This completes the proof.

VII. OPTIMAL CONDITION

Now that we have obtained the expression of the capacity
and delay performance under the generalized h-layer hierar-
chical relay algorithm, we shall compute the optimal condition
of the CRN by assigning an appropriate number of hierarchies
to our model. Since the intuition for dividing the secondary
users into several layers is to utilize the hierarchical relay
of the SUs to reduce the delay while maintaining a good
capacity performance, so we choose the optimal number of
layer h = log2 n. And from this choice, we can get the
following theorem:

Theorem 7: With h = log2 n, the primary network may
achieve a per-node throughput of

λp = Ω(n−δ′), (40)

with an average delay of

Dp = O(nδ′′), (41)

where δ′ and δ′′ can be any positive values.
Proof: Let h = log2 n, then according to Equation (31),

the capacity of the primary network should be

λp = Θ

(
1

h

)
= Ω

(
n−δ′

)
.

On the other hand, according to Equation (19), the corre-
sponding delay under i.i.d. mobility model should be

Dp = Θ
(
h2n(1+ϵ′)/h

)
= Θ

(
(log2 n)

2 × 21+ϵ′
)

= O
(
nδ′′
)
.

When the SUs are moving according to the random walk
mobility model, we consider the condition for choosing the
minimum random walk step size, i.e., 1

S2 = n(1+ϵ
′
)/h, then

the delay performance is:

Dp = Θ
(
h2|logS|/S2

)
= Θ

(
h2 × 1 + ϵ

′

h
× log(n)× n(1+ϵ

′
)/h

)
= Θ((log n)2)

= O
(
nδ′′
)
.

Theorem 8: With h = log2 n, the secondary network could
achieve a per-node throughput of

λs = Ω(n−ϵ′′), (42)

with an average delay of

Ds = O(n1+ϵ′′′), (43)

when kd = o(h), and

Ds = O(nδ′′), (44)

when kd = Θ(h).
Here δ′′ can be any positive value, and ϵ′′′ > ϵ′ > 0,ϵ′′ >

ϵ− ϵ′ > 0 .
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VIII. DISCUSSION

After deriving all the results regarding our CRN, we would
have following discussion over the hierarchical relay algorithm:
(1) The choice of h = log2 n is indeed optimal. Since if we
choose h to be a constant, then the layer of the secondary users
would be constant, so from Equation (19), it can be noticed that
we cannot achieve an arbitrary small delay performance for the
primary users. And if we choose h = Ω(log2 n), this choice
may reduce the capacity of the primary network according
to equation (31). Consequently, h = log2 n is a reasonable
number layer, which could reduce the delay while maintaining
a good capacity performance.

(2) From the optimal condition, we can see that for the
primary network, the hierarchical relay algorithm could help
the primary users achieving a near-optimal performance both
in the capacity and delay performance. This suggest that the
hierarchical cooperation could significantly increase the overall
performance of the primary network.

(3) From the optimal condition of the secondary network, the
secondary network could also achieve a near-optimal capacity
performance, as long as ϵ and ϵ′ are chosen to be close
enough. As to the delay performance, we can notice that there
is gap between the condition when the layer of destination
kd is chosen to o(h) and when kd is Θ(h). This gap is
mainly introduced by the last step of the relay process for the
secondary packets. Since we have constrained the transmission
range to be within one lattice, so the smaller kd is, the larger
number of lattices would reside in the (kd − 1)-th layer cell
where the destination SU resides. Thus, the probability for the
kd-th layer relay node to encounter with the destination node
will decrease, which could lead to a larger delay. As to the
case when kd is larger Θ(h), the delay performance of the
secondary users could also be near-optimal.

(4) Compared to the results of [16], which achieves the same
results as the stand-alone network for both the primary users
and secondary users, our CRN could have better capacity and
delay performance. The increase in capacity is mainly due
to the cooperation between the PU and SU, as well as the
choice for the transmission range, i.e., the area of one lattice.
And the low delay is mainly due to the hierarchical relay of
the secondary users, so that the packet could approach the
destination in a step-wise fashion.

(5) Compared to the results of [19], which requires the
number of SUs to be Θ(n2), our CRN could achieve the near-
optimal performance with less supportive SUs, i.e., Θ(n1+ϵ).
And this improvement is crucial for deploying the cognitive
radio network which make the structure easier to implement.

(6) Possible future work: 1. In our network model, all the
SUs are equally and strictly divided into h-layers, which aims
to regulate their speed or moving range. This regulation is
intuitive, as in our real world, nearly all the mobile nodes would
have different speed, or moving area. Such as the difference
between airplane, cars, bicycles and pedestrians. However, our
assumptions on partitioning the network into these regularly
placed layered cells may not be representative enough. So

the next step we could study the situation where all the
nodes would possess different moving speed or moving area,
which could be follow a certain distribution. Such case could
characterize our mobility model in this work, but of course
more technically challenging. 2. In cognitive radio network,
a very critical consideration is how to control the interference
from the secondary users to primary users, so that both network
could achieve a reasonable performance. Up to know, most
works considering the capacity and delay scaling solve this
problem by defining the preservation regions, which has the
similar idea with our work. However, is the preservation region
the only way to solve this problem, is there any more effective
way to solve this problem? So this question might be another
point consider. Maybe we can introduce some other elements
like base station to the CRN, so the relay could be assisted by
the base stations.
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