
Project 2: An Optimal Pricing Mechanism in
Cognitive Radio Network With Congestion Control

Mo Dong

Abstract—In this paper, I design a novel pricing mechanism
for primary spectrum operator(PSO) in cognitive radio network
to cope with the heterogeneous types of secondary users(SU)
and their strategic behavior in CDMA sense. In cognitive radio
networks, how to pricing a spectrum usage, particularly transmis-
sion power in the CDMA channel in my work, for secondary users
is an essential problem to solve. However, all the previous works
on this topic only consider the linear pricing mechanism and
thus hamper the possibility of further extraction of SU’s value,
or generate profits. My work now extends the pricing function
to non-linear pricing mechanism and form a quasi-Stackelberg
Game between SU and PSO. I indeed notice that there are many
works that utilize Stackelberg Game as an approach towards the
pricing mechanism. However, my works is significantly different
from the previous ones because they all fall into the traditional
follower model and use the backward induction to derive the
equilibrium solution of this game. My work, however, gives the
PSO a positive position in pricing by using the non-linear pricing
and help PSO achieve the desired, but rational, profits in the
presence of selfish and strategic SUs. What’s more, my work
also considers the heterogonous QoS requirement for users and
the impact of congestion in the whole network. My work give
the result of PSO’s optimal profits in this game and the pricing
mechanism he should use to achieve it despite of the selfishness of
SUs. Simulation result shows that the revenue generated by my
mechanism is 40% larger than the previous Stackelberg Game
approaches.

I. SUMMARY AND RECENT WORK REPORT

This report summarize a result of my work in the last
semester. I think this work is worth developing because it is
connected to the pricing mechanism of transmission power in
cognitive radio network. And the performance of my mech-
anism is shown to be with significant improvement towards
the original works. I believe that this work will be appreciated
by the cognitive service provider because I give them a new
mechanism to make more money

As I illustrated in the last section of this report, complete
information is a too strong assumptions and the simulation is
not extensive. Therefore, I know it can only be a project-level
report for our class.

My recent work is not this, however, because I find it
is hard to extent to incomplete or asymmetry information
networks. My recent work are:(1) Consider the effect of the
time-varying QoS of SU in the pricing and auction mechanism.
All the previous works assume SU’s QoS of the service is
static with time. However, the QoS may change due to the
mobility of SU, the presence PU and some other factors. I
want to incorporate this time-varying property of QoS in the
modeling of auction or pricing game. I believe this will be
a mile-stone level work in CR if I can finish it. I am now

working on a proper mathematical model to define the time-
varying behavior.(2)The k-connectivity of the cognitive radio
network is a fundamental question of the CR and I am also
very interested in this.

II. INTRODUCTION

NOTE: This is a brief report for the this problem.
Though the motivation and mean technical parts are
illustrated, some trivial and time consuming proofs are
omitted and all citation works are also omitted.

With the ongoing growth in wireless communication ser-
vices, the demand for radio spectrum increases dramatically.
However, the spectrum resource is limited and most of them
has already been licensed to existing operators. Former studies
show that the actual licensed spectrum remains unoccupied
for large periods of time []. Thus, cognitive radio (CR)
networks were proposed [] in order to efficiently exploit these
spectrum holes and distribute the spectrum resource among
the secondary users (SUs). In cognitive radio networks, how
to pricing a spectrum usage, particularly transmission power
in my work, for secondary users is an essential problem to
solve. CITATIONS OMITTED.

However, all the previous works on this topic only consider
the linear pricing mechanism and thus hamper the possibility
of further extraction of SU’s value, or generate profits. My
work now extends the pricing function to non-linear pricing
mechanism and form a quasi-Stackelberg Game between SU
and PSO. I indeed notice that there are many works that
utilize Stackelberg Game as an approach towards the pricing
mechanism. CITATIONS OMITTED However, my works is
significantly different from the previous ones because they all
fall into the traditional follower model and use the backward
induction to derive the equilibrium solution of this game. My
work, however, gives the PSO a positive position in pricing by
using the non-linear pricing and help PSO achieve the desired,
but rational, profits in the presence of selfish and strategic
SUs. What’s more, my work also considers the heterogonous
QoS requirement for users and the impact of congestion in
the whole network. My work give the result of PSO’s optimal
profits in this game and the pricing mechanism he should use
to achieve it despite of the selfishness of SUs. Simulation result
shows that the revenue generated by my mechanism is 40%
larger than the previous Stackelberg Game approaches.

My work makes the following contributions:
• This mechanism utilize the non-linear pricing into the

transmission power pricing mechanism of cognitive radio
network under CDMA network settings and thus use a



more realistic mechanism for the PSO to lease spectrum.
In our work, the PSO can firstly derive his optimal
revenue by only knowing the user type of secondary
users and then design a non-linear pricing mechanism to
achieve this desired profit. The previous work all assume
the iterative actions of PSO and SU and this assumption
is unrealistic in real network scenarios.

• This mechanism consider the different type of SUs’
QoS requirement under this network settings and also
takes into account the congestion effect of secondary
users network. And this assumption render this work
more technical complexity and more practical value to
be implemented in the real network.

• I prove that the optimal solution of the revenue the 40%
higher than the traditional Stackelberg Game approach.
What’s more, I also notice that due to the indifference
effect of the users choice, the optimal solution can not
be fully achieved but can only be approximate with any
arbitrary approximation rate.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Network Setting, SUs’ Utility Function and PSO’s Revenue

We consider a cognitive radio network under CDMA sense
and incorporate the concept of primary spectrum opera-
tor(PSO) into our model. The primary spectrum operator in
our network setting acts as an agent of the primary users.
He collects all the spectrum opportunity exist in the network
and lease them to the secondary users. This network setting
of the CR is almost a widely accepted framework for the
real implementation of the CRN. CITATION OMITTED. We
assume that the whole system works in an CDMA manner.
We assume the total power capacity of the cognitive radio
network is P and the PSO will divide the power capacity to
N SUs denoted as SU = {SU1, SU2, ·, SUN}. To illustrate the
problem more clearly, we need to define two concept: SU’s
utility and the PSO’s revenue.

Definition 1. The utility of SUi is defined as follow:

Ui(pi, p−i, ci) = Ti log(1 + pi)−
1

P − pi − p−i
− ci(pi) (1)

where the Ti indicates the type of SUs, pi is the transmission
power allocated to the SUi, p−i =

∑N
j=1 pj −pi and ci is the

price function of SUi indicating how much he needs to pay
in order to get the service.

Remarks: In definition 1, the utility is consist of 3 part.
The first term use log arithmetic utility function, which is a
widely used utility function, to indicate the raw utility of the
service received by SUi and the multiplied factor Ti illustrate
the heterogenous property of SUs. The second term is called
congestion control factor. In this network model, we assume
that the whole power gap could not be fully utilized because
this will cause severe interference to the PU when they get
back to the network and the network cannot cater to time-
varying usage requirement. Tough hold this factor is rational
in piratical view, this model introduce inherent coupling effect
in the system and thus introduce more technical complexity.

The third term is cost of the usage of SUi and this function
is not fixed for all users but varies by PSO pricing design
mechanism. Additionally, I indeed notice that this model is
actually rather deviated from the physical layer but I will still
use this model because it is a good abstraction of the actually
utility function. And because this is only a project.

Definition 2: The revenue of the PSO is defined as∑N
i=1 ci(pi).
Remarks: Though the definition of the PSO’s profits is

simple, it is critical to notice that this ci is a pricing function
of pi. What’s more, different from the previous pricing mech-
anism, where ci = αpi is a linear function, my definition give
the pricing function an important flexibility to be non-linear
function of pi and thus have many surprising effects.

B. Pricing Design Game—The Quasi-Stackelberg Game

In this project report, I will firstly use the complete infor-
mation assumption that all the SU’s Ti is known to the PSO.
Though it is a strong assumption, but it is easy to convey
my mean idea and the extension to incomplete information or
even asymmetry incomplete information is not hard due to the
existing extension framework from complete information game
to incomplete information game(The stochastic distribution of
Ti is known to PSO).

In this network, while each SU tries to maximize his utility
by choosing how much transmission power he wants to buy(bi)
from PSO, the PSO’s task is different from the previous work
where the PSO acts negatively by using backward induction
to figure out the optimal pricing. In my mechanism, PSO can
act actively to design a set of pricing function for every kind
of users and maximizing his own revenue. In another word,
the PSO tries to induce the SUs to buy the amount of goods
that can maxmizing his own revenue. However, there are many
coupling effects in it and I will firstly give the formal definition
of this game.

Definition 3. The mentioned quasi-Stackelberg Game be-
tween SUs and PSO is defined as follow. The player set of this
game is N SU and the single PSO. The out come of this game
is denoted as R = {(pr1, cr1), (pr2, c

r
2), ..., (prN , c

r
N )}, where the

tuple (pri , c
r
i ) means that for SUi, he buys pri transmission

power from the PSO and pays cri .
The PSO’s objective is to maximizing his own revenue

of this game by achieving the outcome fits the following
constraint optimization problem:

{(pri , cri )}Ni=1 = arg max
pi≥0,

P
i pi<B,ci≥0

N∑
j=1

cj (2)

s.tUi(pi, p−i, ci) ≥ Ui(0, p−i, ci) (3)

Assume that PSO can find this solution and the next step
for him to do is to give different SU a different pricing policy
so that he can a achieve this desired profit. Considering the
SUs are all selfish and only wants to maximizing their own
utility so that the pricing mechanism must fit the following



equations to achieve the optimal solution R.

arg max
0≤pi≤P−pr

−i

Ui(pi, p−i, ci) = pri , (4)

ci(pri ) = cri , (5)

ci(0) = 0. (6)

IV. PSO PROFIT OPTIMIZATION WITH A ASYMPTOTIC
SOLUTION

In this section, we will examine the possible optimal profit
can be achieved by the PSO in this network settings. Note
that we can denote the power threshold of the whole CDMA
channel as P = Npc. The rational behind this assumption is
that the provider will increase the total spectrum opportunity
linearly as the total user grow. For analytical clearance, we will
here set the pc to be 1 and conduct the analysis in the specific
situation. Therefore we have P = N for all the equations
above.

A. Decomposition of the Optimization Problems

Theorem 1. The optimization problem illustrated in (2) and
(3) is equivalent to the following two steps: First, we can get
the optimal power by solving:

{pri }Ni=1 = arg max
pi≥0,

PN
j=1 pi≤N

S(p1, p2, ..., pn), (7)

where S(p1, p2, ..., pn) =
∑N
j=1 F̂ (pi, p−i, Ti), and

F̂ (pi, p−i, Ti) = Ti log(1 + pi) − 1
N−pi−p−i

+ 1
N−p−i

.
Then the optimal pricing can be obtained from

cri = F̂ (pri , p
r
−i, Ti) (8)

Proof: OMITTED.

B. Solution of the Asymptotic Optimal Transmission Power Set

In this part, we assume N to be sufficiently large and the
rationality behind this assumption is that:(1) As we mentioned
that the provider will provide the spectrum opportunity pro-
portional to the SUs;(2)For any arbitrary N there can not
guarantee and explicit solution for this.

Firstly, we assume there is a solution to (7) and thus the
derivative of F̂ must fit:

F̂pi
=

Ti
1 + pi

− N

(N − x̄)2
+

∑
j 6=i

1
(N − p−j)2

= 0 (9)

where p̄ =
∑N
j=1 pi.Note that the p̄ is a function of N . And

suppose there is two constant (α, β), we have

lim
n→∞

N − ¯p(N)
Nα

= β (10)

Then we have the asymptotic solution with (9) and (10).
Then, we denote Tav(N) =

∑
j=1NTi/N and assume that∑

j=1NT
2
i /Nconverge to a limiters as N ⇀∞.

I will now omitted the proof that the (10) hold only when
0 < α ≤ 1

3 and β > 0. We now give another assumption
that limN→∞

pi(N)

N− ¯p(N)=0
, this seems to be an irrational as-

sumption but I will show that the solution actually satisfies

this assumption. Then we have: limN→∞(N − ¯p(N))−2 =
limN→∞(N − ¯p(N))−2(1 + pi

N−p̄i
) = 0 Thereore, from (9)

we have: Ti

1+pi(N) ∼
Tj

1+pj(N) ∼
nTav

N+p̂(N) and we got:

pi(n) ∼ Ti
Tav

(1 +
p̄

N
)− 1, i ∈ N (11)

Combing (10),(11) and(9), we use the Taylor Series expansion
and have β−2N1−2α − Tav/2 ∼

∑
j(βN

α + 2Ti

Tav− − 1)−2 =
β−2N1−2α − 2β−3N1−3α + o(N1−3α) . Therefore we got
α = 1

3 andβ = 4
1
3T
− 1

3
av . That is to say the optimal solution is

as follow:

¯p(N) ∼ N − 4
1
3T
− 1

3
av N

1
3 (12)

pi(N) ∼ 2Ti
Tav
− 1− 4

1
3T
− 4

3
av TiN

−2
3 (13)

if and only if:

Ti >
Tav
2

(14)

Then the solution satisfies the assumption that
limN→∞

pi(N)

N− ¯p(N)=0
.

Theorem 2 The solution from (12)-(14) is the optimal
solution of the revenue generation problem of PSO.

Proof: I can prove that this unique positive solution fits first-
order condition is the global optimal solution. However, the
proof will be time-consuming and will be omitted.

C. Pricing Policy Design to Achieve the Optimal Revenue

Now for the profit maximizing problem depicted in the
beginning, we have solve the first phase that is to calculate
the optimal power usage of SUs to get the optimal profits
for the PSO. Now we will move to the second phase of this
optimization problem to get the actual optimal revenue of the
PSO. However, this is rather simple because we can directly
use equation (8) to get the revenue.

cri (N) ∼ Ti log(2Ti/Tav)−(4
1
3TiT

− 1
3

av +4−
2
3T

2
3
av)N−

2
3 (15)

Then the total profit can be evaluated as

=
∑N
i=1 ri(16)Using the Taylor expasion we have

ĉr ∼
N∑
j=1

Tj log(2Ti)−3(4−
2
3T

2
3
av)N

1
3 +T−1

av

∑
j

T 2
i /N−3Tav/4

(17)
Considering the

∑N
j=1 2Tj/Tav = 2N , we have

ĉ ∼
∑
j

Tj log(
2Tj
Tav

) ≥ Tav(log 2)N (18)

where the quality holds iff Ti = Tav.
Now, we already have the optimal revenue the PSO can

achieve for the amount of N transmission power. However,
the above discussion only consider the optimal solution itself
but not mention how to achieve the solution. However, whether
this revenue is achievable or not is a critical question to solve.



Because all the users are strategic and will not follow any
compel or order, the PSO must design a proper pricing policy
for different type of users and thus can induce the users to
converge to the optimal revenue solution-R.

By (6),(5)and (8) we have that

Ui(0, pr−i, c(0)) = Ui(pri , p
r
−i, c(p

r
i )) (19)

Therefore, SUs will be indifferent to these two choices and
there is a possibility that SU will not participate in this game.
No participant means no profits for PSO. As a result, the
optimal solution cannot be guaranteed. Fortunately, I discover
that if the PSO can make a slight compromise on the profit
such that substituting (pri , c

r
i ) with (pri , c

r
i − δ) whereδ is an

arbitrary small positive number. Then the (pri , c
r
i − δ) become

the unique utility maximizing point for SUi and thus he will
stick to this point. Therefore, the optimal profit of PSO can
be achieved with arbitrary approximation.

Now I will give an specific example of ci. Note that is a
strictly concave function, there is no linear function ci such
that ci goes through (0, 0) and (pri , c

r
i ). This means that the all

the previous works concerning the Stackelberg Game using the
linear pricing cannot give a solution that is optimal solution in
my paper. Considering the fact that if p?i fits F̂pi

(p?i , p
r
−i, Ti) =

0 than F̂ will reach the global maximum. We can let cri take the
value of F̂ (pri ) everywhere except ci(0) = 0 and ci(pri ) = cri
and this pricing will induce the SUs to choose the optimal
solution for PSO.

V. EVALUATION OF THE PROPOSED MECHANISM

With the optimal linear pricing, the PSO can achieve a
very close approximation of the optimal revenue. Now I will
compare the total profit of my mechanism with that of the
traditional linear pricing mechanism. The optimal revenue of
the tractional Stackelberg Game with linear pricing can be
written as follow:

ĉl ∼ TavN −
1
2
w2N (20)

where w =
∑
j T

1
2
j /N

It can be proved that c̄r > c̄l and when the Ti = Tav for
all i, the improvement of our non-linear pricing mechanism
towards the original linear optimal one is 38.2%. This proof
is also omitted because of the time being. And we anticipate
that in the presence of the heterogenous SUs the improvement
can be larger because the non-linear pricing reflect the hetero-
geneity much better than the linear one. However, numerical
solution is not done yet.

VI. EXTENSION TO NON-COMPLETE INFORMATION
GAME(NOT SOLVED TOTALLY)

In the previous sections, we talked about the how to apply
the non-linear incentive based scheme to a incomplete game.
It is not likely that the PU knows complete information about
the SU network because the SU network is highly volatile with
time and space. We assume the PU can only know the distri-
bution of the SUs’ type but not the exact information about the

SUs network. We now assume that we can classify SU into m
discrete types. And SU i is of type T li for ′ ∈ 1, 2, 3....,m with
probability of ql > 0. And

∑m
l=1 ql = 1. We thus deal here

with a discrete distribution. Let us assume, without loss of any
generality, that T 1 > T 2 > ..... > Tm > 0. With incomplete
information, the service provider only knows this distribution,
but not the users’ true types. Furthermore, we assume that
each users’ true type is private information to himself such
that the other users only knows the distribution too.

A. Incomplete Information Game Problem Formulation

With incomplete information, the PSO’s objective is to
maximize the expected total profit. Also, he cannot have price
discrimination fro different users according to their true types.
Thus, he should have the same pricing policy, , for any users,
which consist of m optimal flow-charge pairs, one pair for
each possible user type:

{(xlt)}ml=1 = max
0≤xl,rl≥0

m
l=1n

m∑
l=1

qlr
l (21)

However, this problem is very hard to solve and not be solved
yet.

VII. CONCLUSION AND FUTURE WORK

This paper give a pricing mechanism for the PSO as an
active participant in the pricing game. In our mechanism, the
PSO can firstly calculate the optimal revenue he can achieve in
this network and than design a non-linear pricing policy to in-
duce SUs to choose the optimal solution. This mechanism has
significant improvement to the previous pricing mechanisms.

However, the complete information assumption is a too
strong assumption of this paper. In practical view, it is impossi-
ble for PSO to know all the SU’s QoS requirement. Therefore,
if the mechanism can extend to the incomplete information
scenario, it will be much more valuable.


