
Android application:
Smart Stopwatch

Name: Fuxing Liu
Student ID: 5100309301

Name: Meidan Zhao
Student ID: 5100309543

Contents

1 Application background 1

1.1 Two application scenarios . 1

1.2 The importance of an Android-based stopwatch 2

2 Design principles 3

2.1 User interface . 3

2.2 Basic ideas about Smart Stopwatch . 3

2.2.1 Easy to manipulate . 4

2.2.2 Calculate everyone’s result automatically 5

2.2.3 Can be customized . 5

2.2.4 Directly perceived . 6

2.3 Function hierarchy . 6

3 Software realization 8

3.1 Timing component: Chronometer . 8

3.2 Use Bundle to connect between Activities 9

3.3 Synchronization . 11

4 Further discussion 13

4.1 Flaws to be improved . 13

4.2 Outlook of Smart Stopwatch . 13

1

Abstract

In order to time quickly and accurately, we urgently need a reliable timing tool with
a certain function. However, the current timer is either too simple - it can do nothing
except timing, or too expensive - not suitable or necessary in some smaller application
occasions. To make it possible to calculate and record individual result automatically,
we have Android system to expand the cell phones timer function, making the timer
function more powerful, inexpensive, and universally applied. At the moment, the
new timer can not only record the time, but also store additional information and or-
ganize them. This report is a design illustration of an Android application named
“Smart Stopwatch”, which is based on the actual requirements of an automatical stop-
watch.

Chapter 1

Application background

1.1 Two application scenarios

The value of an application is measured by its practicability, i.e., whether it is useful
in certain circumstances. Before the designing illustration part, let us look back two
scenarios in our daily life.

Scenario 1: In the outdoor stadium, there are more than 20 girls who are ready to
take the 4×400 meters relay race. As the track is only 400 meters, each girl has to finish
one lap. The most unlucky one would be the timekeeper. He must stand at the finish
line along the whole race. Whenever there is a girl running over the finish line, the
timekeeper must press the traditional stopwatch, and shout a number representing
the ranking. After the race, all the girls must report their ranking number, in order
to register each result. But that is not the end of timekeeper’s work. He still has to
make some effort to calculate each girl’s time and sort them in order. For example, the
personal result of No.102 athlete is the total time when No.103 running by minus the
total time when No.102 running by. This procedure is both complex and vulnerable.
What if a girl lied about her ranking by purpose? What if once the timekeeper presses
the stop-watch not hard enough and the time is not recorded by the watch? Every
small mistake in this procedure can result in a fatal error of the whole timing system.

Scenario 2: Same thing happens in university sports festival-a 4×100 meters relay
race. We not only want to record each groups performance, but also want to record
every team members individual result. Every 100 meters there will be a timekeeper,
who must record the individual number, the group number and the time of an athlete
when he running through this stopwatch. With the help of pen and paper. it seems not
so complex. However, since the requirements of timing accuracy and speed becomes
higher and higher, this is no longer a easy task. What is more, if you want to get a
whole ranking of this race, you have to synthesize all the records from 4 timekeepers
and make some effort in calculating. Why not develop an application on cell phone to
realize this stop-watch function?

1

1.2 The importance of an Android-based stopwatch

From the above two scenarios we know, one thing is very important in such races:
dependable timing system. The runners, or the athletes, they care much about their
own performance as well as others’. Besides, the accuracy of the race result relates to
fairness.

In a running race which is not such professional(as scenario 2 shows, a relay race
held in a university), a traditional method is widely used, that is, one timekeeper with
a few stopwatches and a result board. However, this timing system has fatal weakness:
the procedure is complex and vulnerable as scenario 1 shows. What is worse, when a
group of people run over the finish line at the same time, it is hardly possible to record
everyone’s time correctly and accurately. So this kind of timing system is out of date.

Someone may argue that there is already a very good solution: RFID(Radio Fre-
quency Identification) timing carpet. This carpet does have lots of advantages, as you
know, it can record one‘s time automatically as the man runs over it. However, on-
ly one factor prevents it from widely use, that is, the price. An RFID timing carpet
deserves thousands of dollars. Not every organizing committee could afford it or is
willing to pay for it.

Thus, we urgently need a reliable timing tool with certain characteristics–powerful,
inexpensive, and universally applied. This is our starting point of the Android application–
Smart Stopwatch.

2

Chapter 2

Design principles

2.1 User interface

UI(User Interface) allows interacts between software and users, i.e., it is regarded
as the connection part. This part is so significant that we put it precedence over oth-
er parts. The details will be shown in next two sections, here we just give the brief
instructions about three UIs in Smart Stopwatch.

In the middle(Figure 2.1(b)) is the main interface. After the stopwatch is initialized,
each time an athlete runs over the finishing line, you can press the corresponding but-
ton then his/her time is recorded here. Note that in a normal race, pause is obviously
not allowed. So the pause button does not exist. There are only start and reset buttons.
The left one(Figure 2.1(a)) is the customization interface, and the team name you type
in will appear in next interfaces. After you stop the timer, a summarize interface is
shown in Figure 2.1(c). The time used by each person is shown from the fastest to the
slowest.

2.2 Basic ideas about Smart Stopwatch

An application based on cell phone provide the benefits of portability, efficiency and
low-consumption. The Android platform also has its own advantages: it is an open-
source operating system and developers can look over other’s design for reference.
After combined the existing application with own ideas, a more powerful application
is born. In fact, the basic stopwatch function is synthesized in Android developing
toolkits. That is to say, we do not have to re-write the basic function from the bottom
layer. We should focus on the ideas.

3

(a) the team name UI (b) the main UI (c) the summarizing UI

Figure 2.1: UI of Smart Stopwatch

After discussing the shortcomings of current timing systems, we stretch out these
descriptions as the basic rules of Smart Stopwatch:

• Easy to manipulate

• Calculate everyone’s result automatically

• Can be customized

• Directly perceived

And we will give a concise description one by one.

2.2.1 Easy to manipulate

Traditional stopwatch, no matter mechanical or electronic, requires a rather complex
procedure to manipulate it. In general, each button on the traditional stopwatch has
multiplex functions, and sometimes you have to look up the instruction to get used
to it. This problem can be solved easily with the help of Android platform. Here we
place several buttons on the screen, and each button represents one racer(for example,
the button in row 2, column 3 and signed with number 3 represents the third racer in
team 2). In other word, there is a one-to-one relationship between racers and buttons.
The timekeeper just need to press the corresponding button when a racer running over
the finishing line. In this way, the manipulation is visibly simplified.

4

(a) customization in the team
name UI

(b) results in the main UI

Figure 2.2: Customization

2.2.2 Calculate everyone’s result automatically

Another complex procedure in traditional timing system is calculating. Each racer’s
result must be calculated by substraction, so lots of time is wasted. Besides, a small
mistake can cause ripple effects and all other results go wrong. However, in Smart
Stopwatch, this is no longer a stubborn problem. This software can calculate each
racer’s result automatically and immediately. After you pressed a certain button, you
can check the result of the corresponding racer in the summarizing UI, and it is in
real-time.

2.2.3 Can be customized

If there are more than five teams at the same time, one single screen cannot contain
all the buttons and textboxes, and the timekeeper must scroll the screen to reach all
buttons. Thus, the misoperation rate will be higher without a clear sign about button
information. Among the three UIs, the team name UI is used for customization. After
you typed the team’s name in the textbox, the buttons and result information in next
two UIs will be updated immediately. From Figure 2.2 we can see that every button
is distinguished with each other, thus the potential misoperation is avoided. Because
team names are shown in buttons and results, no matter how many teams or how
many racers exist, this application can handle all of them.

5

(a) results in the main UI (b) results in the summarizing
UI

Figure 2.3: Directly perceived

2.2.4 Directly perceived

Another benefit of customization is that the results are directly perceived. We still
use the example in Figure 2.2, a race between three universities. Figure 2.3 shows the
results during the race. From Figure 2.3(a), we can see the total time when every racer
is running by is recorded in sequence. We can easily get the information that SJTU
team got first and only FDU team has not finished the race. And in Figure 2.3(b) we
can see the summarizing results after the last one returns to finishing line. The result of
every racer is calculated and sorted in order. In fact, this is exactly the final result, the
ranking of teams and racers are shown. So the Smart Stopwatch is directly perceived.

2.3 Function hierarchy

In this Smart Stopwatch application, we have accomplished the basic timing func-
tion: each button corresponds to one racer, calculate the result of each racer auto-
matically, team name can be customized, the final ranking is directly perceived, etc.
However, this is not all of the design. These functions are all based on the tradition-
al stopwatch, and we want something different. After measurement and calculation,
what is our next goal to achieve in this application?

Let us review the scenario 2 in previous chapter. In that a 4×100 meters relay race,
for the handover happens in different places, if you want to get the result of each stage,
you still have to arrange 4 timekeepers and synthesize all the records from those four

6

Figure 2.4: The function hierarchy

after the race, and some manual operation is still necessary. Why not let those ter-
minals work simultaneously? This is the final function of Smart Stopwatch: synchro-
nization. The whole function hierarchy is shown in Figure 2.4, and details will be
discussed in next chapter.

7

Chapter 3

Software realization

3.1 Timing component: Chronometer

Chronometer is an timing component provided by Android Developing Toolkit.
This component can display a period of time in CharSequence format, but it is not relat-
ed to the current time. Chronometer only cares about how long has it been since the
starting point. Apparently, Chronometer is exactly suitable for this Smart Stopwatch
application.

When the start button is pressed, the Chronometer is triggered and started working.
In normal circumstances, the base time is set to zero. The main challenge appears in the
stopping part. Actually, the Chronometer should never stop in the whole process, for a
real race never pauses. So after one button was pressed, the Chronometer only record
the current time and continues working. We define several TickListeners bounded to
the Chronometer, as long as the corresponding button was pressed, the current time
is recorded in a char sequence and can be calculated after processing. The processed
record is saved in integer format, and can be subtracted or sorted to meet different
demands. Some critical source codes are shown below:

start.setOnClickListener(new OnClickListener()
{

@Override
public void onClick(View source)
{

ch.setBase(SystemClock.
elapsedRealtime());

ch.start();
}

});

reset.setOnClickListener(new OnClickListener()
{

public void onClick(View source)
{

8

ch.setBase(SystemClock.
elapsedRealtime());

ch.stop();
}

});

int score11;

st11.setOnClickListener(new OnClickListener()
{

public void onClick(View source)
{

CharSequence temp = ch.getText();
String str=temp.toString();

int score11=Integer.parseInt(str,0)*600+
Integer.parseInt(str,1)*60

+Integer.parseInt(
str,3)*10+Integer
.parseInt(str,4);

s11.setText(" "+temp+"s ");
}

});

3.2 Use Bundle to connect between Activities

Activity is a significant concept and major component in Android development. An
application usually contains several Activities, and each Activity shows different op-
erating interface to the users. A proper configuration of Activities is necessary to a
well-designed application. After configuration, the data sharing between Activities is
the major challenge. In this Smart Stopwatch application, the data sharing is essen-
tial to customization function–the team names that user typed in in the first Activity
must be transmitted to other two Activities, and configure the names of buttons and
textboxes. Besides, the team name should be revised in real time.

In our application, we use Bundle to carry information(called Intent in Android)
between Activities. In order to put certain data into Bundle, we must do some encryp-
tion first. Briefly speaking, establish a class to save the information(in this application
is the team name). After configuration of the class, each team name can be put in an
object of this class, and can be transmitted to other Activities by Bundle. Part of source
codes are shown below, only team 1 is given for simplicity.

package org.crazyt.model;
import java.io.Serializable;
public class Person implements Serializable
{

private static final long serialVersionUID = 1L;

private String team1;

9

public Person()
{
}

public Person(String team1)
{

this.team1 = team1;
}

public String getName1()
{

return team1;
}
public void setName1(String name1)
{

this.team1 = name1;
}

}

public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
setContentView(R.layout.result);
TextView name1 = (TextView)findViewById(R.id.name1);

Intent intent = getIntent();
Bundle data = intent.getExtras();
Person p = (Person)data.getSerializable("person");
name1.setText("Team 1: " + p.getName1() + " ");

final Chronometer ch = (Chronometer)findViewById(R.
id.test);

Button start = (Button)findViewById(R.id.start);
Button reset = (Button)findViewById(R.id.reset);

Button st11 = (Button)findViewById(R.id.st11);
Button st12 = (Button)findViewById(R.id.st12);
Button st13 = (Button)findViewById(R.id.st13);
Button st14 = (Button)findViewById(R.id.st14);

st11.setText(" " + p.getName1() + " 1 ");
st12.setText(" " + p.getName1() + " 2 ");
st13.setText(" " + p.getName1() + " 3 ");
st14.setText(" " + p.getName1() + " 4 ");

final TextView s11 = (TextView)findViewById(R.id.s11
);

final TextView s12 = (TextView)findViewById(R.id.s12
);

final TextView s13 = (TextView)findViewById(R.id.s13
);

final TextView s14 = (TextView)findViewById(R.id.s14
);

}

10

3.3 Synchronization

To meet the specific demands of Smart Stopwatch, we finally choose WLAN direct
to realize the synchronization function. WLAN direct is a new method to build con-
nections in local area. This method is first called WLAN P2P, for a terminal which
support WLAN service can invite other terminal to join in the WLAN. But the data
can share by all the group.

As we know, there are several mature method to establish connection between two
mobile terminals, such as Bluetooth, mobile hotspot and cloud server. Among these
methods, Why we choose the WLAN direct to achieve the synchronization function?
Here we make a comparison between WLAN direct and Bluetooth.

WLAN Direct Bluetooth
Category WLAN WPAN

Cover range < 100m < 10m
Transmission rate 100Mbps 1Mbps

Service Multiple terminals P2P

From the table above, we can see that WLAN direct is a wireless local area network
method, it uses RF(radio frequency) to make connection among terminals in the same
area, so it is a widely-used technology to transmit data. Bluetooth, at the same time,
belongs to WPAN, which is abbreviation of wireless personal area network. PAN is the
last procedure in wireless communication, and is seen as the solution of last one meter
in data transmission. So we can know that the cover range of Bluetooth is relatively
small, only several meters, which is much smaller than the cover range of WLAN
direct. Besides, the transmission rate of Bluetooth is rather slow, approximately 1/100
times of that of WLAN direct. What is more, Bluetooth is a P2P(person-to-person)
service, the data is only shared by two terminals each time. But WLAN direct can
support many terminals to share same data at one time. Here WLAN direct shows
plenty of advantages over Bluetooth.

However, for WLAN direct is not a mature technology, the function is still in devel-
opment and not all terminals support this service. To test our assumption, we have
to use the help of a third party application called “ShanChuan”. Figure 3.1 is the
UI of“ShanChuan” when we manipulate three terminals to share same data. Using
WLAN direct and “ShanChuan”, we can share results between two terminals. Each
time a terminal records a time, a same record appears in the other terminal and the
two terminals keep synchronous as long as the connection exists. This is very useful
when more than one timekeepers are needed in the race.

11

Figure 3.1: The UI of a third party application “ShanChuan”

12

Chapter 4

Further discussion

4.1 Flaws to be improved

For this is the first time we use Java language and Android development toolkit,
some details in this application are not so fine. For example, we have not considered
the screen rotation yet. If the screen is rotated during the application working, all
the recorded data will be erased and the timer will restart from zero. And if Smart
Stopwatch is running in background for a rather long time, this application will be
stopped by Android system and all the data you have recorded will be lost. There
is still one detail to be improved: an Undo button should be added in the main UI.
For the buttons are close to each other, it is common to press the wrong button. If the
corresponding time has not recorded yet, then you can still press the button again to
refresh the record time. But if the time has been recorded, then the original record will
be lost. An Undo button is the best solution to avoid this kind of misoperation.

4.2 Outlook of Smart Stopwatch

There are many other extensions of this application. First is the totally replacement
of traditional stopwatch. Since smart mobilephone is held by everyone today, this
application can be applied in many cases. When you are jogging, you can record the
time lap by lap and check your current speed by Smart Stopwatch, in order to keep a
constant velocity. It also works in the training of athletes, coaches can get the real-time
information about athletes without expensive equipments, a smart mobilephone can
do all of this.

Smart Stopwatch also can be used for speed detection. Suppose there are two termi-
nals beside a expressway, they are near to each other and are synchronized by WLAN
direct. When a car drives by, the difference between the two record times can tell us
about the speed. Besides, it may bring the revolution of timing carpet. Combined with

13

the newly developed NFC(Near Field Communication) technology, Smart Stopwatch
can even replace traditional timing carpet with this auto-identification timing carpet.

14

References

[1] Crazy Android lectures(2nd Edition), Li Gang, Publishing house of electronics
industry.

[2] http://www.android-study.com

[3] http://www.developer.android.com

15

