Wireless Project Report

Scalability of Software Defined Network

Lin Zhou
5100309339

Lei Zhang
5100309405

2013,/06,01

Abstract

Software Defined Network decouples control plane
from data plane and facilitate the control to the
whole network.With the number of switches in SDN
increases,there’s no way to avoid the question of
scalability. We focused on this problem and analyzed
several solutions to this problem and finally formed
our model HMKH(Hybrid Model Based on Kan-
doo and Hyperflow). HMKH can change dynamically
with the network requests and solve the scalability
problem in many cases.

1 Scalability in SDN and Existed
Solutions

1.1 Brief Introduction to SDN

SDN is an approach to building computer network-
ing equipment and software that separates and ab-
stracts elements of these systems. These elements
are called the control plane and the data plane.
SDN allows network administrators to manage net-
work services more easily through abstraction of
lower level functionality into virtual services. This
replaces having to manually configure hardware.
This has become more important with the emer-
gence of virtualization which an enterprise data cen-
ter may need to create and configure virtual ma-
chines (VMs) remotely, and configure firewall rules
or network addresses in response. Many approaches
exist to resolve this issue such as Virtual LANs but
this may also introduce management issues.SDN al-
lows network administrators to have programmable
central control of network traffic without requir-
ing physical access to the network’s hardware de-

vices. SDN decouples the system that makes deci-
sions about where traffic is sent (the control plane)
from the underlying system that forwards traffic to
the selected destination (the data plane).The inven-
tors and vendors of these systems claim that this
technology simplifies networking and enables new
applications, such as network virtualization in which
the control plane is separated from the data plane
and implemented in a software application.

1.2 The Origin of the Scalability Prob-
lems in SDIN

There have always been concerns about perfor-
mance and scalability since its inception.

The common perception that control in SDN is cen-
tralized leads to concerns about SDN scalability and
resiliency. After all, regardless of the controller ca-
pability, a central controller does not scale as the
network grows (increase the number of switches,
flows, bandwidth, etc.) and will fail to handle all
the incoming requests while providing the same ser-
vice guarantees. Additionally, early benchmarks on
NOX (the first SDN controller), which showed it
could only handle 30,000 flow initiations per second
[1] while maintaining a sub-10 ms flow install time,
intensified such concerns.

1.3 Current Solutions to this Problem
1.3.1 DIFANE

The DIFANE architecture consists of a controller
that generates the rules and allocates them to
the authority switches. The basic architecture of
DIFANE is as shown in Figure 1. Upon receiving
traffic that does mnot match the cached rules,
the ingress switch encapsulates and redirects the

packet to the appropriate authority switch based
on the partition information. The authority switch
handles the packet in the data plane and sends
feedback to the ingress switch to cache the relevant
rule(s) locally. Subsequent packets matching the
cached rules can be encapsulated and forwarded
directly to the egress switch.

Advantages:

(1) DIFANE achieves small delay for the first
packet of a flow by always keeping packets in the
fast path.

(2) DIFANE achieves significantly higher through-
put than NOX.

(3) DIFANE scales with the number of authority
switches.

(4) DIFANE recovers quickly from authority switch
failure.

Disadvantages:

(1)A number of authority switches are needed for
the large networks we evaluated.

(2)DIFANE does not address the issue of global
visibility of flow states and statistics. The types of
management solutions we would like to enable rely
on global visibility and therefore it is unlikely they
can be built on top of DIFANE.

Controller Il

Distribute i
partition L]

mformation',,v"" \/\nstall \\ T
e llauthorlty
i1 rules
/ vy Authonty
\eS . Swnch |
W Authority |
Switch

A3
ﬁd\e -

Y &
Ingress
:; Switch
Subsequent .

Packets — _——

First o
Packet o\ﬂet warg Egress
e

Switch

Hit cached rules and forward

1.3.2 DevoFlow

DevoFlow enables scalable implementation of these
solutions by reducing the number of flows that inter-
act with the control-plane. By pushing responsibil-
ity over most flows to switches and adding efficient
statistics collection mechanisms to identify signifi-
cant flows, which are the only flows managed by the
central controller, it can solve the scalability prob-
lem.

Advantages:

It can reduce the load of the controller.
Disadvantages:

(1) The significant flows should represent a small
fraction of the total flows, but how many flows
would be sufficient to achieve the desired results in
different environments.

(2)It is hard to build a efficient statistics collection
mechanisms.

1.3.3 HyperFlow

HyperFlow is logically centralized but physically
distributed,as shown in Figure 2.

HyperFlow provides scalability while keeping
network control logically centralized: all the con-
trollers share the same consistent network-wide
view and locally serve requests without actively
contacting any remote node, thus minimizing the
flow setup times. Additionally, HyperFlow does not
require any changes to the OpenFlow standard and
only needs minor modifications to existing control
applications.

Advantages:

(1)HyperFlow enables network operators deploy
any number of controllers to tune the performance
of the control plane based on their needs.
(2)HyperFlow keeps the network control logic cen-
tralized and localizes all decisions to each controller
to minimize control plane response time.
Disadvantages:

(1)HyperFlow doesnt change the number of the
switches which controller controls.

Figure 2: High-level overview of HyperFlow

1.3.4 Kandoo

Kandoo is a framework for preserving scalability
without changing switches.

Kandoo creates a two-level hierarchy for controllers:
(i) local controllers execute local applications as
close as possible to switches, and (ii) a logically cen-
tralized root controller runs non-local control ap-
plications. As illustrated in Figure 3, several lo-
cal controllers are deployed throughout the network;
each of these controllers controls one or a handful
of switches. The root controller, on the other hand,
controls all local controllers.

Advantages:

The main advantage of Kandoo is that it gives net-
work operators the freedom to configure the deploy-
ment model of control plane functionalities based on
the characteristics of control applications. Briefly to
say, Kandoo makes the offloading of control appli-
cations efficient and scalable.

Disadvantages:

The main disadvantage of Kandoo is that it cannot
help any control applications that require network-
wide state (even though it does not hurt them, ei-
ther).

{ Root Controller
e, () \)
Events
Local Local Local
Controller || Controller Controller

ety (o Cp U})

Switch] Switch Switch Switch Switch

Figure 3: Kandoo’s Two Levels of Controllers. Lo-
cal controllers handle frequent events, while a logi-
cally centralized root controller handles rare events.

2 Goals and Model Design

As talked above,current solutions to scalability have
their own advantages and disadvantages.The purely
centralized Devoflow and Difane can only increase
the scalability to some extent and switches are mod-
ified;The transition from centralized to distributed
mechanism Kandoo can solve the problem where
the percentage of requests from switches for the
network-wide view information is relatively low;The
totally distributed Hyperflow can scale with the
number of switches theoretically but suffer from an-
other problem of synchronization time which would

affect the scalability capability a lot.

To solve this problem,we should have a model which
can scale regardless of the percentage of requests
for network-wide view.First,this model should scale
to infinity if the number of switches goes to infin-
ity while still offer the effective control of the net-
work.This situation is met in Data Center where the
density of switches is pretty high but the area is rel-
atively small.Second,this model should be robust to
switch failure and controller failure and has mecha-
nism to solve these failures.Third,this model should
be robust to network partition and fusion.

To achieve the above goals,we devise the model in
figure 4.Simply speaking,we replace each controller
in Hyperflow with the hierarchical model of Kandoo
in a wireless instead of wired connection.Compared
to Hyperflow,the number of switches each controller
with network-wide view increase and compared with
Kandoo,the scalability capability improves greatly.

root)
controller Sitet
local loc; local
controller congfoller controlleér, controller
sssswitch switch| switch| switch|switch
Site2 / SiteS\
Fd ™
root root

controller controller

local local local local loca local local

con}r{ller cont[ijller con?oller cWr

sssswitch switch| |switch| switch|switch||| |sswitch

local

control controller coryrol\er co}tJoIIer

switch| |switch| |switch

Figure 4: HMKH Model

3 Details of the HMKH

3.1 Assumptions

Before we further talk about the details of this
model,we have several assumptions to make.

1. The communications are all wireless and wire-
less communication detail is not the coverage
of this report.

2. Any switches controlled by a root controller in

a site is in the control range of that root con-
troller.

3. The direct neighbours of any root controller
are within the communication range of the root
controller.

And these assumptions are the base for the discus-
sions below.

3.2 Controllers and Applications

We have two kinds of controllers in our model:local
controllers and root controllers .

e local controller
Each local controller gathers information about
the switches controlled by it including their
neighbour and the distance between a switch
and their neighbours,save these information
and send it to its root controller.

e root controller

Root controller in a site not only has the in-
formation of switches in its site and the topol-
ogy of the connections(the direct neighbour of
a switch and the distance) from its local con-
trollers but also get information about other
sites from communication with the other root
controllers. Therefore,every root controller has
the information of all the switches in the net-
work.

And respectively,we sort information and applica-
tions into two kinds.

e local-view information and local applica-
tions
local information:information kept by a local
controller,namely the information about the
subnetwork of the local controller.
local applications:apps need local-view infor-
mation

e network-view information and global ap-
plications
network-view information:information kept by
a root controller,namely the information about
the whole network.
global applications:apps need network-view in-
formation

4 Implementations of HMKH

Each switch is openflow switch and act as forward-
ing elements.We have initiation to set up the net-
work,the procedure to keep the network and the
mechanism to deal with failures in the network.

4.1 Initiation

Before initiation,all the switches and controllers are
already where they are and have their own unique
device number(used as ip).The initiation is divided
into two steps which happen simultaneously:

1. root controller finds local controllers:

FEach root controller broadcasts a request in-
cluded its device number and location informa-
tion.Once a local controller receives this type of
request for the first time,it sets the source root
controller as its root controller, note down the
root controller device number in its root con-
troller register and calculate its distance to its
root controller.

2. local controller finds switches:

Each local controller broadcasts a request in-
cluded its device number and local informa-
tion.Once a switch receives this type of request
for the first time,it sets the source local con-
troller as its local controller and note down the
local controller device number in its local con-
troller register.

After this,we have the network established as figure4
on page3.

4.2 Holding Procedure

4.2.1 Periodic Communications
Failure-free Mechanism

and

Each root controller broadcast with period T, with
its device number and a sequence number to show its
existence.Once a local controller receives this from
its root controller,it responds with its own deice
number and a sequence number.

e Root Controller Failure
Once a local controller can’t get this kind of in-
formation for 3 consecutive periods,it believes
the root controller fails and broadcasts with the
root controller device number,its own device
number and its distance to the original root

controller to other local controllers in the same
site showing that it wants to be the new root
controller.

The local controller li changes its root con-
troller to the source local controller only when
it receives a request with smaller distance to
the original root controller than kept candi-
date’s distance to the original root controller
and stops sending request to be a root if it sends
before.

A candidate local controller becomes the root
controller only when it gets response from all
the other local controllers in the site which is
indicated by that it never receives request to be
a root from other local controllers in the same
site. After this,the local controller which is clos-
est to the original root controller will be the
new root controller.

e Local Controller Failure

Once a root controller can’t get response from a
local controller for 3 consecutive periods,it be-
lieves the local controller fails.

The local controller assigns the switches orig-
inally controlled by the failed local controller
to the local controller which is nearest to the
failed one by sending command to the assigned
local controller.And the local controller broad-
cast the local controller change information to
the desired switches.Once a switch gets that,it
changes its local controller device number to
the source local controller.

4.2.2 Network Change Information

The main idea is that the root controllers all hold
the network-wide information.Thus,once the net-
work changes,whether the controllers or switches
change,the root controllers should synchronize these
information.To achieve this,once a root controller
detects such change,it should broadcast a network
change information to all the other root controllers.
If a switch is detected failed by a local controller,it
reports this to its root controller.The root controller
broadcast once it gets this report.This is also true
for a switch is added.

Another important use of this mechanism is in net-
work fusion.If we fuse network A with B,the root
controllers will get information from the other net-
work.Once it gets this,it broadcasts to other root
controllers so that all the root controllers in the new

network will have the new network-view informa-
tion.

4.2.3 Applications

We use application route here to explain HMKH
more specifically.As discussed above,we have local
route and global route apps.

Local route application asks route within the range
of the same local controller.Once a local controller
gets this kind of request from its controlled switch,it
calculates and responds with the path.Then the
switch broadcasts the data along the path.

Similar things happen when global route applica-
tion asks for route.But the difference is that local
controller first forward this request to its root con-
troller. The root controller then calculates the path
and sends to the local controller.Finnaly,the local
controller sends the request switch the full path.

4.2.4 Data Cache Mechanism

To avoid data forward failure during the period of
controller failure ,we have the cache mechanisms.

e local controller failure:if a switch can’t get re-
sponse from local controller,it will cache the
data and retransmit the request until the local
controller is okay.

e root controller failure:once a local controller
finds the root controller fails,it will cache all the
requests to the root until a new root is elected
or it becomes the root controller.

5 Evaluations of HMKH

We first give assumptions about the ability of con-
trollers:each controller can process at most k re-
quests per second.

To evaluate HMKH,we should first have a scenario.

e totally n switches to serve and each switch
sends s number of requests per second

e the probability for each switch to ask for
network-view state is p

In this scenario,we have s x nm requests to con-
trollers and s * n * p of them need network-view
state.Therefore,we need m = =72

7~ root controllers
for HMKH and we need ;1**72 local controllers.

Compared with Kandoo which only has one root
controller,we have the advantage of scalability for if
m is greater that 1,Kandoo will not work well.

Compared with Hyperflow,we need W less
root controllers which have high overhead to syn-

chronize network-wide state.

6 Conclusions

HMKH has better performance over the current
mechanisms like Kandoo and Hyperflow as shown
in evaluations.The advantage of it is that it takes
advantages of other mechanisms and avoids the dis-
advantages successfully. The question of scalability
lies not only in how many switches a controller sys-
tem can serve,but also the number of switches a con-
troller with network-view state can serve.Hyperflow
successfully achieves the former while Kandoo does
better in latter.However,with HMKH,we do both.
But before the use of our model,the number of root
controllers and local controllers should be calculated
or estimated given the number of requests from
switches and the percentage of requests for network-
view state.With that information,we can better de-
termine the number and location of controllers to
better serve the switches and minimize the over-
head,which is not included in the coverage of this
report.

If in a rather dense network where all the root con-
trollers can reach each other via wireless communi-
cation, HMKH can change from Kandoo to Hyper-
flow given the requests from the switches dynami-
cally.

If the sum of requests to two root controllers is
less that one threshold,we could incorporate these
two root controllers:one of them with smaller num-
ber of requests first send incorporate request to the
other root controller.The destination root controller
once gets this will first check whether combination is
reasonable by compared to the threshold.If reason-
able,it sends a incorporation command to the source
root controller.The source root controller once gets
this will broadcast to its original local controllers
of the root controller change information and then
change itself as a local controller of the destination
root controller.In this way,two root controllers in-
corporate.

For the opposite situation,if a root controller gets
requests more than another threshold,it will broad-
cast to its local controllers to elect another root con-

trollers in the same mechanism as root controller
failure.After this,a root controller is separated into
two.

With this two process,a network with very small
percentage of requests to root controllers will finally
become a Kandoo model.Similarly,a network with
nearly 100 percentage of requests to root controllers
will finally form a Hyperflow model.The dynamic
change between this can make best use of each root
controllers.

References

[1] A. Tavakkoli et al , ” Applying NOX to the Dat-
acenter,” Proc. ACM HotNets-VIII Wksp, 2009.
[2]T.Koponen et al,”Onix:A Distributed Control
Platform for Large-Scale Production Networks,”
Proc. 9th USENIX OSDI Conf, 2010, pp. 1C6.
[3]Minlan Yu et al,”Scalable Flow-Based Network-
ing with DIFANE,”Proc. ACM SIGCOMM Com-
puter Communication Review,2011.

[4] Tootoonchian et al,”HyperFlow: A distributed
control plane for OpenFlow,” Proc. Proceedings of
the 2010 internet network management conference
on Research on enterprise networking,2010.
[b]Hassas Yeganeh et al,”Kandoo: a framework for
efficient and scalable offloading of control applica-
tions,” Proc. Proceedings of the first workshop on
Hot topics in software defined networks,2012.
[6]Curtis et al,” DevoFlow: scaling flow management
for high-performance networks,” Proc. SIGCOMM-
Computer Communication Review,2011.

