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Abstract—In this paper, we investigate the delay-throughput
tradeoffs in correlated mobility ad-hoc network. We consider
three regimes under correlated mobility: 1)cluster sparse regime,
2)cluster dense regime, and 3)cluster critical regime. Given a
delay constraint D, we characterize the maximum throughput
the whole network can sustain and find that heterogeneous can
increase the delay-throughput tradeoffs.

I. INTRODUCTION

During the last few years, there has been tremendous
interests in the researches about mobile ad-hoc networks
(MANETs) by the store-carry-forward transmission paradigm ,
due to their future requests. The applications include non-real-
time and delay-tolerated servers in vehicle network, mobile
machine-to-machine network, mobile device-to-device net-
work, Internet of things, smart phone network, etc..

In these MANETs where the store-carry-forward paradigm
is adopted, nodes receive data from other nodes, store them in
the physical storage medium, carry them by moving spatially
and forward them to other suitable nodes. A lot of wireless
resources are consumed when the data are transferred via mul-
tiple hops. However data are transferred by nodes mobilities by
the store-carry-forward paradigm. So the store-carry-forward
paradigm can improve the throughput at the cost of the delay.
Thus for non-real-time and delay-tolerated applications, it is
a good solution to transmit by store-carry-forward paradigm.

In the work [2], the concept of correlated mobility was
first demonstrated. Three models cluster sparse regime, cluster
dense regime, and cluster critical regime are introduced. In
their work, it has shown us the maximum throughput and the
corresponding delay of cluster sparse and dense regime, and
found that cluster sparse may increase the delay-throughput
tradeoff, leading to that correlated mobility can help to in-
crease the network performance. But in their work, the detailed
tradeoff haven’t been shown, the model of cluster critical
regime haven’t been considered, and the cluster dense net-
work shown not perform better than the uniformly distributed
network.

In this paper, we interested in the detailed tradeoff under
correlated mobility model. We try to reveal the tradeoff
under three regimes cluster sparse, cluster dense. The main
contributions of this paper consist of the following parts:

1) We provide the detailed delay-throughput tradeoff under
cluster sparse, cluster dense, and cluster critical regime,
not only the maximum throughput.

2) We found that the cluster dense and cluster critical
regime can also help to better the delay-throughput
tradeoff performance, not only the cluster sparse one.

3) We show that under the cluster dense regime, the delay-
throughput tradeoff can be totally better than the uni-
formly distributed one if we choose some certain system
parameters.

II. NETWORK AND MOBILITY MODEL

A. Network Topology

We consider n nodes moving over a square with area n, the
n nodes, however, are divided into m = Θ(nv) (0 ≤ v < 1)
groups. Each group covers a circular area with radius R =
Θ(nβ) (0 ≤ β ≤ 1/2).

We assume time is divided into time slots of unit duration.
At each time slot, the position of nodes are assumed to be static
and the mobility of each node comply correlated mobility,
which is first introduced in [2]. We describe the mobility for
node i in cluster j with two steps: i) the center of cluster j’s
position are i.i.d. and are uniformly chosen among the whole
network area at each time slot; ii) node i’s position are i.i.d
and are uniformly chosen among the area cluster j covered.
The above two steps are called group movement and node
movement respectively; the combination of them describe the
correlated mobility in our work.

We also assume slow mobility model during our data
transmission; radio transmission is much faster than node
mobility, that is multihop schedule can be operated within a
single time slot.

TABLE I: System Parameter.

n number of nodes

m number of cluster

v Growth exponent of m : m = Θ(nv), 0 < v ≤ 1

q Average number of node per cluster, q = n/m = Θ(n1−v)

R cluster radius

β growth exponent of R: R = Θ(nβ)

B. Transmission Protocol

To limit the interference, we adopt the protocol model pro-
posed in [1]. Let Xi denote the position of node i (i = 1, ..., n)
and |Xi − Xj | denote the Euclidean distance between i and



j. A sender i can transmit at W bit/second successfully to a
destination j when

|Xj −Xk| ≤ (1 + ∆)|Xi −Xj |

for any other simultaneously active transmitters k, where ∆ is
a positive number.

C. Traffic Model

We assume all sources communicate with their destinations
at same rate λ and D̄ denote the average delay over all
messages among all source-destination pairs.

Definition of Asymptotic Capacity and Delay: Let λi (i =
1, ..., n) denote the sustainable rate of data flow for node i and
Db (b = 1, ..., λnT ) denote the sustainable data delay for mes-
sage b at time T . Assume that λ = min{λ1, λ2, ..., λn−1, λn}
and D̄ =

∑λnT
b=1 Db/λnT . Then λ = Θ(f(n)) is defined as

the asymptotic throughput if there exist constant c > c′ > 0,
that

lim
n→∞

Pr(λ = cf(n) is achievable) < 1,

lim
n→∞

Pr(λ = c′f(n) is achievable) = 1.

And D̄ = Θ(g(n)) is defined as the asymptotic delay as well

III. UPPER BOUND OF THE CLUSTER SPARSE REGIME

We divide our model into three regimes. Cluster sparse
regime when v + 2β < 1 (i.e., mR2 = o(n)), cluster dense
regime when v + 2β > 1, and cluster critical regime when
v + 2β = 1. In this section we consider the tradeoff upper
bound under cluster sparse regime.

Under cluster sparse regime, m clusters only cover a neg-
ligible fraction of whole network area. In the other aspect,
density in the cluster is relatively high (the density is about
n/(mR2) = ω(1)) and overlaps between different clusters are
sporadic.

A. Scheduling policy

In this section, we will first design a scheduling policy
generalizing the policy in [2], which refer to some scheduling
parameters. We then propose several lemmas to exclude the
parameters don’t affect the asymptotic throughput and delay.

Nodes in different cluster have little chance to communicate,
owing to the cluster sparse regime. For a traffic stream s →
d, we denote Cs as the cluster containing s and Cd as the
cluster containing d. We assume Cs 6= Cd, which maximize
the character of correlated mobility. Our original scheduling
policy is shown as follow:

1) s create Rs duplication nodes as relays in Cs with
muticast.

2) When relays meet a cluster Ck (k = 1, ..., Rc
s, where

Rc
s is the maximum number of clusters containing

relay) not containing duplication node, a duplication will
be created in Ck with one-hop unicast.

3) New-created relay in Ck create Rk duplication nodes in
Ck with broadcast.

4) When a relay meet Cd, a duplication will be created in
Cd with one-hop unicast.

5) New-created relay in Cd create Rds duplication nodes
in Cd with broadcast.

6) When Rd relays are captured by the destination with
range ls, the message will be transmitted to destination
with a hs-hop mutihop transmission

Our policy can be divided into two parts: sending message
form Cs to Cd and sending message within Cd. The network
topology of the second part is similar as uniform distribution
like [3], so we should focus on the first part which reflect the
character of correlated mobility.

In the first part, there exist many duplication nodes. We use
term ”inter-cluster duplication” to denote the cluster containing
duplication nodes; we use term ”intra-cluster duplication”
to denote the duplication nodes in a certain cluster. In our
original policy the number of inter-cluster duplication is
Rc

s and the number of intra-cluster duplication is a set
{Rs, R1, ..., RRcs , Rd}. As radio resource is needed to create
duplication node, Lemma 3.1 will help us determine some
duplication value.

Lemma 3.1: Under cluster sparse regime, the most intra-
cluster duplication {Rs, R1, ..., RRcs , Rd} (not including Rd)
will decrease the asymptotic throughput without decreasing
the asymptotic delay.

We will show detailed prove of Lemma 3.1 in Lemma 6.2.
Now we just let it as something we have already proved.
So Rk = 1 (k = s, 1, 2, ..., Rc

d). We can particularly use
”intra-cluster duplication” to denote duplication in Cd, and
our scheduling policy become:

1) When s and relays meet a cluster Ck (k = 1, ..., Rc
s,

where Rc
s is the number of inter-cluster duplication)

not containing duplication node, a duplication will be
created in Ck with one-hop unicast.

2) When a relay meet Cd, a duplication will be created in
Cd with one-hop unicast.

3) New-created relay in Cd create Rds duplication nodes
in Cd with broadcast.

4) When Rd
s relays are captured by the destination with

range ls, the message will be transmitted to destination
with a hs-hop mutihop transmission

B. Tradeoff for delay

This section will prove a fundamental tradeoff about de-
lay, which is one of the cornerstone for deriving the upper
bound of delay-throughput tradeoff. We will first divide whole
scheduling policy into three parts corresponding to three parts
of delay. We will then find which part dominate the delay.
At last, we will get the tradeoff between delay and related
scheduling parameters.

Our scheduling policy can be divided into three parts. Ds
I

stands for the delay of creating Rcs inter-cluster duplications,
Ds
II stands for the delay of Rcs inter-cluster duplications

transmitting message to Cd, and Ds
III stands for the delay

of transmission within Cd.



As for Ds
I , we assume that Ds

I =
∑Rc

s

k=1D
s
Ik, where Ds

Ik

stands for the delay of creating kth inter-cluster duplication.
We denote P sI (k) as the probability that, when we have
already created k − 1 inter-cluster duplications, inter-cluster
duplications meet a cluster not containing duplication. From

Fig. 1: Transmission between two clusters.

Fig. 1, we can get that

P sI (k) = 1−
(

1− πk(2R+ r)2

n

)m−k
(1)

Then it’s easy to get Ds
Ik = 1/P sI (k), which leads to

Ds
I =

Rc
s∑

k=1

1

1− (1− πk(2R+ r)2/n)m−k

≤
Rc

s∑
k=1

n

πk(m− k)(2R+ r)2

=
n

πm(2R+ r)2

Rc
s∑

k=1

1

k
+

1

m− k

≤ Θ
( n

mR2

(
ln

Rc
sm

m−Rcs
+ γ
))

where γ is the Euler constant and r is the transmission range
for a single hop.

As for Dk
II , the delay needed for Rc inter-cluster duplication

transmitting data to Cd can be formulated by

Ds
II =

1

1− (1− π(R− r)2/n)Rc
s

≤ Θ
( n

Rc
sR2

)
Similarly,

Ds
III =

R2

Rd
sl2

Considering these three delays Ds
I , Ds

II , and Ds
III , the total

delay Ds under cluster sparse regime is max{Ds
I , D

s
II , D

s
III}.

However Ds
I max = Θ(n logm/mR2) and Ds

II min =
Θ(n/mR2), which means Ds

I will not exceed Ds
II by a

logarithmic factor. Omitting the logarithmic factor, we get

Ds
b = max{Ds

IIb, D
s
IIIb}

where b stands for a particular bit.
A more sophisticated strategy is ”opportunistic duplication

scheme” that at each time slot t, if one of the relays get a
chance to communicate with Cd or destination node, message
will be transmitted to Cd or destination node from the relay.
Otherwise, duplication will be created as normal. This scheme
may get a better result for Ds

I +Ds
II and Ds

III . However the
following lemma show that this scheme can only improve the
delay with a log n factor.

Lemma 3.2: Under the cluster sparse regime, the delay for
a particular bit b and its scheduling parameters comply the
following inequality

cs1 log nE[Ds
b ] ≤ max

{
n

R2E[Rc
s
b]
,

R2

E[Rd
s
b]E[lsb + mR2

n2 ]2

}
(2)

where cs1 is a positive constant and variable Xs
b denote the

variable X under cluster sparse regime for a particular bit b.
The proof of Lemma 3.2 is reported in Appendix A.

C. Tradeoff for radio resource

This section will prove another fundamental tradeoff about
radio resource. We will first recall the disjoint disk. We will
then focus on some special property for cluster sparse regime.
At last, we will get the tradeoff between delay and related
scheduling parameters.

As we use protocol model as our communication model,
disjoint disk is a specific model describing limited radio
resource, which is first proved in [1].

Consider that nodes i, j directly transmit to nodes k and
l, respectively, at the same time. Then, according to the
interference constraint:

|Xj −Xk| ≥ (1 + ∆)|Xi −Xk|
|Xi −Xl| ≥ (1 + ∆)|Xj −Xl|

Hence,

|Xj −Xi| ≥ |Xj −Xk| − |Xi −Xk|
≥ ∆|Xi −Xk|

Therefore,

|Xj −Xi| ≥
∆

2
(|Xi −Xk|+ |Xj −Xl|)

A disks of radius ∆|Xi − Xk|/2, where i, j is a sending-
receiving pair, centering at sender are disjoint from each other.

Under the cluster sparse cluster, a phenomenon is that nodes
only cover a small part of network area at each time slot, and
this phenomenon leads to two properties we need to notice as
we derive the tradeoff.

One is that the area of radio resource we use is only
Θ(mR2), not Θ(n) as the uniform distributed one. The other
is that [2] have proved that a certain cluster has only a
probability of mR2/n to meet other clusters. When creating
a inter-cluster duplication, n/(mR2) chances are needed to
operate successfully. Creating Rcsb inter cluster duplications is
equivalent to transmitting nRcsb/(mR

2) times.



Lemma 3.3: Under cluster sparse regime and concerning
radio resource, the throughput for a particular bit b and its
scheduling parameters comply the following inequality

λsnT∑
b=1

∆2

4

E[Rd
s
b]

n
+E[

λsnT∑
b=1

hsb+
nRc

s
b

mR2∑
h=1

π∆2

4

rhb
2

mR2
] ≤ cs2WT log n

(3)
where cs2 is a positive number, hsb is the number of transmission
hops after message being captured by destination node, and
rhb is the transmission range of each hop, h = 1, ..., hsb .

Since no node can transmit and receive
Proof is similar to Appendix B in [3], so we omit it for

simplification.

D. Tradeoff for Half Duplex and Mutihop

Since no node can transmit and receive at the same time
and over same frequency, the following inequality holds,

Lemma 3.4: The following inequality holds,

λsnT∑
b=1

hsb+
nRc

s
b

mR2∑
h=1

1 ≤ WT

2
n (4)

The following inequality holds for the nature of multihop.
Lemma 3.5: The following inequality holds,

λsnT∑
b=1

hsb∑
h=1

rhb ≥ lsb (5)

E. Upper bound on delay-throughput tradeoff

The upper bound under cluster sparse regime can be derived
from the basic tradeoff we have proven. In this section, we will
separate our proof into two parts. One is Ds

III ≥ Ds
II and the

other is Ds
III < Ds

II .
Lemma 3.6: Under cluster sparse regime, when Ds

III ≥
Ds
II , let D̄s denote the mean delay averaged over all bits and

let λs be the throughput of each source-destination pair. The
following upper bound holds,

(λs)
3 ≤ Θ(

mD̄s

n
log3 n)

Proof: From Lemma 3.2, when Ds
III ≥ Ds

II , we have

cs1 log nE[Ds
b ] ≤

R2

E[Rd
s
b](E[lsb ] + mR2

n2 )2

λsnT∑
b=1

E[Rd
s
b] ≥

1

cs1 log n

λsnT∑
b=1

R2

(E[lsb ] + mR2

n2 )2E[Ds
b ]

≥ R2

cs1 log n

∑λsnT
b=1 1∑λsnT

b=1 E[Ds
b ]

×
(
∑λsnT
b=1 1)3

(
∑λsnT
b=1 (E[lsb ] + mR2

n2 ))2
(6)

=
R2

cs1 log n

(
∑λsnT
b=1 1)3

D̄s(
∑λsnT
b=1 (E[lsb ] + mR2

n2 ))2

Inequality (6) is deduced by using Jensen’s Inequality and
Hölder’s Inequality. From Lemma 3.3 and Cauchy-Schwartz
inequality, we get

π∆2

2WTnmR2
(

λsnT∑
b=1

E[

hsb+
nRc

s
b

mR2∑
h=1

rhb ])2

+

λsnT∑
b=1

∆2

4

E[Rd
s
b]

n
≤ cs2WT log n

Case 1: when hsb ≥
nRc

s
b

mR2 , then

λsnT∑
b=1

∆2

4

E[Rd
s
b]

n
+

π∆2

2WTnmR2
(

λsnT∑
b=1

E[lsb ])
2 ≤ cs2WT log n

∆2R2

4cs1n log n

(
∑λsnT
b=1 1)3

D̄s(
∑λsnT
b=1 (E[lsb ] + mR2

n2 ))2

+
π∆2

2WTnmR2
(
λsnT∑
b=1

E[lsb ])
2 ≤ cs2WT log n

If
∑λsnT
b=1 [lsb ] < λsmR2T/n,

∆2R2

4cs1n log n

(λsnT )3n2

D̄s(λsmR2T )2
≤ cs2WT log n

∆2λsn4T

4cs1D̄
sm2R2 log n

≤ cs2WT log n

λs ≤ 4cs1c
s
2WTD̄sm2R2 log2 n

∆2n4T
(7)

If
∑λsnT
b=1 [lsb ] ≥ λsmR2T/n,

∆2R2

4cs1n log n

(
∑λsnT
b=1 1)3

D̄s(
∑λsnT
b=1 (E[lsb ])

+
π∆2

2WTnmR2
(

λsnT∑
b=1

E[lsb ])
2 ≤ cs2WT log n√

π∆2T 2

8cs1W log n

(λs)3n

mD̄s
≤ cs2WT log n (8)

(λs)3 ≤ 8cs1(cs2)2W 3mD̄s log3 n

π∆2n
(9)

Case 2: when hsb ≤
nRc

s
b

mR2 , then
The hop number hsb for each bit will not consume the

radio resource asymptoticly, it will, however, decrease the
capture range and increase the delay. So we assume hsb =
Θ(nRc

s
b/(mR

2)); all hsb and nRcsb/(mR
2) in the above Lem-

mas are interchangeable, as we consider asymptotic capacity
and delay.

Finally compare the two inequalities (7) and (9). Inequality
(9) be the upper bound for delay-throughput tradeoff when
Ds
III ≥ Ds

II .

(λs)3 ≤ Θ
(mD̄s

n
log3 n

)



Lemma 3.7: Under cluster sparse regime, when Ds
III <

Ds
II , let D̄s denote the mean delay averaged over all bits and

let λs be the throughput of each source-destination pair. The
following upper bound holds,

λs ≤ Θ(
mR4D̄s

n2
log3 n)

Proof: From Lemma 3.2, when Ds
III < Ds

II , we have

cs1 log nE[Ds
b ] ≤

n

R2E[Rc
s
b]

λsnT∑
b=1

E[Rc
s
b] ≥

1

cs1 log n

λsnT∑
b=1

n

R2E[Ds
b ]

≥ n

cs1 log nR2

(
∑λsnT
b=1 1)2∑λsnT

b=1 E[Ds
b ]

(10)

=
n(
∑λsnT
b=1 1)

cs1 log nR2D̄s
(11)

Inequality 10 is deduced using Jensen’s Inequality. From
Lemma 3.3 and assume hsb = nγnRc

s
b/(mR

2), (1 ≤ hsb ≤
n/m) we get

π∆2

4mnR2

λsnT∑
b=1

E[

(1+nγ )nRc
s
b

mR2∑
h=1

nrhb
2
]

+

λsnT∑
b=1

∆2

4

E[Rd
s
b]

n
≤ cs2WT log n

π∆2n

4m2R4

λsnT∑
b=1

(1 + nγ)E[Rc
s
br
h
b

2
]

log n

+

λsnT∑
b=1

∆2

4

E[Rd
s
b]

n
≤ cs2WT log n (12)

π∆2n

4m2R4

λsnT∑
b=1

(1 + nγ)E[Rc
s
b]E[rhb ]2

log n

+

λsnT∑
b=1

∆2

4

E[Rd
s
b]

n
≤ cs2WT log n (13)

Inequality (12) using Chernoff bound and Inequality (13) using
Hölder’s Inequality. If the first term in Inequality (13) domain,
using Inequality (11)

π∆2n(1 + nγ)

4m2R4 log2 n

nλsnT

cs1R
2D̄s

E[rhb ]2 ≤ cs2WT log n

λs ≤ 4cs1c
s
2WT

π∆2

m2R6D̄s

n3

× log3 n

(1 + nγ)E[rhb ]
(14)

Less the E[rsb ] and γ are, better the tradeoff will be,
E[rsb ], however has a minimum Θ(

√
m/nR). Because small

E[rsb ] will cause connectivity problem [1]. The Inequality (14)

become

λs ≤ 4cs1c
s
2WT

π∆2

mR4D̄s log3 n

n2

λs ≤ Θ(
mR4D̄s

n2
log3 n) (15)

If the second term in Inequality (13) domain, it is easy to
get λs ≤ o(mR

4D̄s

n2 log3 n). Then we get the result Inequality
(15)

Theorem 3.1: Under cluster sparse regime, let D̄s denote
the mean delay averaged over all bits and let λs be the
throughput of each source-destination pair. The following
upper bound holds,{

(λs)3 ≤ Θ(mD̄
s

n log3 n) Ds
III ≥ Ds

II

λs ≤ Θ(mR
4D̄s

n2 log3 n) Ds
III < Ds

II

Proof: Using Lemma 3.6 and Lemma 3.7, we can get the
Theorem directly

IV. DETAILED UPPER BOUND OF THE CLUSTER SPARSE
REGIME

In this section, we will develop a achievable lower bound
that is close to upper bound. The study in upper bound help
us achieve this target.

A. Optimal values of key parameters
We assume that the mean delay is Θ(nd). By Theorem 3.1,

we will have

TABLE II: The order of the optimal values of the parameters
under cluster sparse regime when Ds

III ≥ Ds
II .

Rd
s
b : # of Intra-cluster duplications of Cd Θ(n

1−d−v
3 )

Rcsb : # of Inter-cluster duplications Θ(n1−d−2β/ logn)

lsb : Capture Range Θ(n
v+6β−2d−1

6 / log
1
2 n)

hsb : # of Hops Θ(n
1−v−d

3 / logn)

rhb : Transmission range of Each Hop Θ(n
v−1+2β

2 log
1
2 n)

TABLE III: The order of the optimal values of the parameters
under cluster sparse regime when Ds

III < Ds
II .

Rd
s
b : # of Intra-cluster duplications of Cd Θ(n2−v−4β−d/ log3 n)

Rcsb : # of Inter-cluster duplications Θ(n1−d−2β/ logn)

lsb : Capture Range Θ(min{R,n
3−v−6β−2d

2 / logn)

hsb : # of Hops Θ(min{n
1−v
2 , n2−v−4β−d/ logn})

rhb : Transmission range of Each Hop Θ(n
v−1+2β

2 )

In order to get the tight upper bound of tradeoff, Inequality
(2), (4), (5) and (8) should get equality, and some constrains
with lsb and rhb should be considered. By solving these equa-
tions making inequalities tight with constraints, we can get the
optimal value for key parameters. As these process are trivial,
we omit it for simplification and show Table II and Table III
directly.



B. Detailed tradeoff with optimal values

In this section, we will get a detailed picture about the
tradeoff with the optimal value of key parameters. As a blurry
separation (Ds

III ≥ Ds
II and Ds

III < Ds
II ) is used in Theorem

3.1, which isn’t a intuitional expression, we will use the value
of key parameter to decide the precise separation of our upper
bound.

The key parameters suffer some common constraints, Rcsb ≤
m, Rdsb ≤ q, lsb ≤ R and hsb ≥ 1. Other constraints are
different for two situations Ds

III ≥ Ds
II and Ds

III < Ds
II , so

we will discuss them separately.
Case 1: When Ds

III ≥ Ds
II

We solve the common constraints with the value of key
parameters in Table II, discarding the meaningless result. We
have d ≥ −v − 2β and d ≤ 1 − v, which are equivalent to
D̄s ≥ n/(mR2) and D̄s ≤ n/m. These two are the nature
lower bound [2] and upper bound of D̄s for our cluster spare
regime.

However there exist two other constraints. One is Ds
III ≥

Ds
II and the other is hsb ≥ nRc

s
b/(mR

2). The first come also
into the nature bound D̄s ≥ n/(mR2) and the second one
come into d ≥ 5/2− v − 6β, which is one of our targets. So
our tradeoff can be partly written as

(λs)3 ≤ Θ(
mD̄s

n
log3 n) d ≥ 5

2
− v − 6β (16)

Case 2: when Ds
III < Ds

II

We omit the solution of common constraint, which become
the nature bound of our network. Another constraint is Ds

III <
Ds
II , which become d < 5/2− v − 6β. Hence

λs ≤ Θ(
mR2D̄s

n2
log3 n) d <

5

2
− v − 6β (17)

Theorem 4.1: Under cluster sparse regime, let D̄s denote
the mean delay averaged over all bits and let λs be the
throughput of each source-destination pair. Assume all the key
parameters are same for all bits. The following upper bound
holds, {

(λs)3 ≤ Θ(mD̄
s

n log3 n) d ≥ 5
2 − v − 6β

λs ≤ Θ(mR
4D̄s

n2 log3 n) d < 5
2 − v − 6β

Proof: Using Inequality (16) and Inequality (17), we can
get the Theorem directly

V. LOWER BOUND OF THE CLUSTER SPARSE REGIME

We have get the upper bound and the optimal value of key
parameters, so will construct a achieving scheme and prove
the scheme can achieve our upper bound by only a logarithmic
factor.

Tradeoff achieving scheme: We will divide our normal
time slot into three subsolts. The operation of each slot are
shown below.

1) The nodes (source node or duplication) create inter-
cluster duplications and the destination cluster Cd re-
ceive data from inter-cluster duplication, using one hop
transmission manner with transmission range rhb .

2) Rd
s
b Intra-cluster duplications is created during this

subslot, using multicast manner.
3) Intra-cluster is captured by a range lsb and transmit to

the destination, using hsb-hop multihop manner.
The key parameters in our scheme using the optimal value

in Table II and Table III. The operation in each slot are similar
to the scheduling policy in our upper bound.

In each subslot, we tessellate the network into several cells.
For each cast, we employ a cellular time-division multi-access
(TDMA) transmission scheme such that each cell is scheduled
to be active regularly according to cell time-slots. When a
cell is activated, nodes within it are allowed to transmit to
nodes inside the same cell or neighbouring cells. The TDMA
transmission scheme allow each cell have a 1/cs3 amount of
time to transmit, where cs3 is a constant being independent
of the tessellation information. We describe how our scheme
achieve the tradeoff then.

1) In the 1st subslot, we divide each cluster Θ(R2) into
T2 = q = n1−v equal-area cells. Assume that each mes-
sage has a length of λs/ log2 n ≤ mR2/(nRc

s
b), and all

transmission are employed by one-hop unicast. So each node
can transmit at least nRcsb/(mR

2) messages when it has a
chance to transmit Each cluster have at least a chance of
Θ(mR2/(n log n)) per time slot to communicate with other
clusters, which indicates at least Rcsb/ log n messages can
be sent per slot and network can sustain λs/ log2 n per slot
throughput. If each time the network cannot sustain mR2/n
per-node throughput of inter-cluster communication, we call
this ErrorsI . If a message cannot be sent to its Cd during
Θ(Ds

II) time slots, we call this ErrorsII .
2) & 3) In the 2rd and 3th subslot, all messages are

transmitted in their Cd. Nodes in a certain cluster follow the
uniform distribution.The achievable lower bound under uni-
form condition have been studied widely that the network can
achieve Θ(λs/ log n) throughput with Θ(D̄s) delay. However,
exists a problem. If different clusters overlap at a certain area,
they will take turns to transmit. ErrorsIII denote more that cs4
overlap at a certain area, where cs4 is a positive number.

We start to prove three errors ErrorsI , ErrorsII , and ErrorsIII
come to 0 as n→∞

Lemma 5.1: the network can sustain mR2/(n log n) per-
node throughput of inter-cluster communication as n → ∞,
which indicates P[ErrorsI ]→ 0, as n→∞

Proof: Let Λi (i = 1, 2, ..., n2/(mR2)) be the amount
of data can be transmit under a cell with area of mR2/n in
the network. And Λ =

∑n2/(mR2)
i=1 Λi.

The probability that at least two nodes from different
clusters staying in the same cell area:

E[Λi] =
(
1− (1− R2

n
)m
)(

1− (1− R2

n
)m−1

)(
1− (1− r2

R2
)q
)2

=
m2R4

n2

By Chernoff bound, we can get that:

P[Λ <
mR2

log n
] ≤ 1

emR2/4



When n → ∞, P[Λ < mR2/ log n] → 0, which means
that our network can at least sustain a per-node throughput
of mR2/(n log n) of inter-cluster communication. Leads to
P[ErrorsIII ]→ 0, as n→∞

Lemma 5.2: Under the cluster sparse regime. A message
can be sent to its Cd with delay Ds

II ≤ 2n/(RcR
2), which

indicates P[ErrorsII ]→ 0, as n→∞.
Proof: We have already proven that E[Ds

II ] =
n/(Rc

s
bR

2) in Lemma 3.2. Assume Xd
i be the independent

random variable taking on values 0 or 1 with probability
1Rc

s
bR

2/n to be 1. Xd =
∑n/(Rc

s
bR

2)
i=1 Xd

i . By using mul-
tiplicative form of Chernoff bound,

P[Xd >
2n

Rc
s
bR

2
] < (

e2

27
)

n
Rc
s
b
R2

Therefore

P[Ds
II >

2n

Rc
s
bR

2
] < (

e2

27

)n1−v−2β

When n → ∞, Pr[Ds
II > 2n/(Rc

s
bR

2)] → 0, which
means a message can be sent to its Cd with delay Ds

II ≤
2n/(Rc

s
bR

2), indicating P[ErrorsIII ]→ 0, as n→∞
Lemma 5.3: Under cluster-sparse regime, each time slot

network have no more than cs4 number of cluster overlap,
where cs4 is a constant being independent of system parameter,
which indicates P[ErrorsIII ]→ 0, as n→∞.

Proof: From Fig 1, we know that if two cluster have a
overlap part, their cluster center must stay in an circle with
radius R. Using Chernoff’s bound, let Xo =

∑m
i=1X

o
i be a

random variable, with parameter m and R2/n (the probability
of success of each Xo

i ).

P[Xo > c2] < e−
cs4

2n

2mR2

With n → ∞, P[Xo > cs4] → 0. The overlap in cluster
sparse regime only affect the tradeoff with a constant factor,
which indicates P[ErrorsIII ]→ 0, as n→∞.

P[ErrorsI ], P[ErrorsII ], and P[ErrorsIII ] all come to 0, as
n→∞. The following theorem holds.

Theorem 5.1: The above scheme allows each node get a
throughput of Θ(λs/ log2 n) with delay Θ(D̄s). The proba-
bility come to 1, as n→∞.

VI. UPPER BOUND OF THE CLUSTER DENSE REGIME

Cluster dense regime (i.e. v + 2β > 1) shows a different
property from that under cluster sparse regime. The clusters
here have a high probability to overlap. [4] tells us that
every point in the network is covered by Θ(mR2/n) =
Θ(nv+2β−1) clusters w.h.p, which indicates that nodes are
almost distributed uniformly over the network domain. So the
mean distance between two closet nodes is Θ(1). However it
isn’t truly uniform distribution indeed. The correlated mobility
model show some special phenomena which improve the
delay-throughput tradeoff.

A. Scheduling policy

In this section, we will first show some special phenomena
under cluster dense regime. Then we will use these phenomena
to design our scheduling policy.

The phenomena that every point in the network is covered
by Θ(mR2/n) = Θ(nv+2β−1) clusters w.h.p seems is helpful
for us to create inter-cluster duplications under cluster dense
regime. However it is not.

Lemma 6.1: Under cluster dense regime, an area of Θ(R2)
is covered by Θ(mR2/n) cluster.

Proof: We assume Xoc
i denote the event that a cluster

and a certain area Θ(R2) in the network overlap.and Xoc =∑m
i=1X

oc
i . From Fig. 1, we can get

P[Xoc
i = 1] =

(2R+ r)2

n
= Θ(

R2

n
)

Using the multiplicative form of chernoff bound, we have

P[Xoc >
2mR2

n
] < (

e

27
)
mR2

n

P[Xoc <
mR2

2

n
] < e−

mR2

8n

An area of Θ(R2) is covered by Θ(mR2/n) cluster come
to probability 1 when n→∞

Lemma 6.2: The probability that a source cluster send a
message to a certain cluster is independent of the number
of nodes in source cluster containing the message, assuming
transmitting range r = o(R).

Fig. 2: Upper bound of inter-cluster transmission when only
one node in source cluster contain message.

Proof: Fig.1 shows the situation where all nodes in source
cluster contain message. The probability become Θ((2R +
r)2/n) = Θ(R2/n)

Fig.2 shows the situation where only node in source cluster
contains message. The probability become Θ((R− r)2/n) =
Θ(R2/n)



These two properties discourage us if we want to create
inter-cluster duplication with traditional broadcast or one-hop
unicast manner. The latter one fail to utilize the cluster overlap
under cluster dense regime. The former one perform bad if we
want to create more than mR2/n inter-cluster duplications.
Unless we set the broadcast range larger than R, which is
obviously a kind of wasting radio resource, we can only
mR2/n inter-cluster duplications.

So we use u time broadcast with broadcast area Ad ∈
[1,mR2/n]. This operation perform well under cluster dense
regime.

Lemma 6.3: If we have already created inter-cluster dupli-
cations in Rx ≤ Θ(m) cluster, each point will still be covered
by at least mR2/(2n) clusters not containing duplication.

Proof: Assume Xec =
∑mR2/n
i=1 Xec

i is the number of
cluster not containing duplications cover a certain point in the
network, as there exists still m − Rx = Θ(m) cluster not
containing duplication. With chernoff’s bound,

Pr[Xec <
mR2

2n
] < e−

mR2

8n

So each point will still be covered by at least mR2/(2n)
clusters not containing duplication, as n→∞.

We may create at most Θ(m) inter-cluster duplications,
so u times broadcast will be effectively operated. Each time
when doing broadcast, duplications and source node can
cooperate to create duplications. So we can create Θ(Aud)
inter-cluster duplications during u times broadcast, where Ad
is the broadcast area.

Now we introduce the scheduling policy under cluster-dense
regime:

1) Nodes containing a certain message create inter-cluster
duplications with u times broadcast until it is captured .

2) When inter-cluster relays are captured by any node in
Cd with range l1d, message will be transmitted to the
node with a h1

d-hop multihop transmission.
3) New-created relay in Cd create Rdd duplications in Cd

with broadcast.
4) When Rd

d relays are captured by the destination with
range l2d, the message will be transmitted to destination
with a l2d-hop multihop transmission.

In the following analysis, we divide our schedule into two
parts. One is 1)-2) (Part I) and the other is 3)-4) (Part II). We
will analyse them respectively.

B. Tradeoff for delay of Part I

In this section, we will first divide the process of Part I into
two parts and then find the tradeoff between delay and related
scheduling parameter respectively.

Our scheduling policy can be divided into two parts by the
scheduling step. Dd

I1 stands for the delay of creating Rcd inter-
cluster duplications, Dd

II1 stands for the delay of Rcd inter-
cluster duplications transmitting message to node in Cd.
Dd
I1 is the delay for u times broadcast. Rcs = Ad

u will
be created within u times (Ad ∈ [1,mR2/n]). When Rc

d =

ω(1) = na and Ad = nα, where a and α are two constants
greater than 0. Hence

u =
log na

log nα
=
a

α
= Θ(1)

When Rc
d = Θ(1), we let broadcast area Ad = Θ(Rc

d),
so Dd

I1 is still bounded by Θ(1), which indicates the Dd
I1 is

negligible.
Dd
II is the delay for nodes in Cd catch one of the relays,

so

Dd
II1 =

1

(1− (1− R2

n )Rc
d
)
ld1

2n/m
R2

≤ m

Rc
dld1

2

Even we use the ”opportunistic duplication scheme”, delay
can only be improved with a log n factor.

Lemma 6.4: Under the cluster dense regime, the delay for a
particular bit b of Part I and its scheduling parameters comply
the following inequality

cd1 log nE[Ds
b1] ≤ m

E[Rc
d
b ]E[h1

d
b + 1

n2 ]2
(18)

where cd1 is a positive constant and variable Xd
b denote the

variable X under cluster dense regime for a particular bit b.
The proof of Lemma 6.4 is similar to Appendix A, so we omit
it for simplification.

C. Tradeoff for Radio Resource, Half Duplex and Mutihop of
Part I

The radio resource of u times broadcast is similar to
traditional broadcast. So we can get the tradeoff as that under
cluster sparse regime.

Lemma 6.5: Under cluster dense regime and concerning
radio resource, the following inequality holds

λd1nT∑
b=1

∆2

4

E[Rc
d
b ]

n
+ E[

λd1nT∑
b=1

h1
d
b∑

h=1

π∆2

4

rhb
2

n
] ≤ cd2WT log n

(19)
where cd2 is a positive number, h1

d
b is the number of transmis-

sion hops after message being captured by the node in Cd,
and rhb is the transmission range of each hop.

Since no node can transmit and receive at the same time
and over same frequency, the following inequality holds,

Lemma 6.6: The following inequality holds,

λd1nT∑
b=1

h1
d
b∑

h=1

1 ≤ WT

2
n (20)

The following inequality holds for the nature of multihop.
Lemma 6.7: The following inequality holds,

λd1nT∑
b=1

h1
d
b∑

h=1

rhb ≥ l1
d
b (21)



D. Detailed upper bound on delay-throughput tradeoff of Part
I

In this section, we will first derive the one part of tradeoff
on the basis of fundamental tradeoff. We then get the optimal
value of key parameters. We finally get the other part of
tradeoff by optimal value and constraint of the key parameters.

From Lemma 6.4, we have

λd1nT∑
b=1

E[Rc
d
b ] ≥

1

cd1 log n

λd1nT∑
b=1

m

(E[l1
s
b] + 1

n2 )2E[Dd
1b]

≥ m

cd1 log n

∑λd1nT
b=1 1∑λd1nT

b=1 E[Dd
1b]

×
(
∑λd1nT
b=1 1)3

(
∑λd1nT
b=1 (E[l1

d
b ] + 1

n2 ))2
(22)

=
m

cd1 log n

(
∑λd1nT
b=1 1)3

D̄s
1(
∑λs1nT
b=1 (E[l1

s
b] + 1

n2 ))2

Inequality (22) is deduced by using Jensen’s Inequality and
Hölder’s Inequality. From Lemma 6.5 and Cauchy-Schwartz
inequality, we get

λd1nT∑
b=1

∆2

4

E[Rc
d
b ]

n
+

π∆2

2WTn2
(

λd1nT∑
b=1

E[l1
d
b ])

2 ≤ cd2WT log n

∆2m

4cd1n log n

(
∑λd1nT
b=1 1)3

D̄d
1(
∑λd1nT
b=1 (E[l1

d
b ] + 1

n2 ))2

+
π∆2

2WTn2
(

λd1nT∑
b=1

E[l1
d
b ])

2 ≤ cs2WT log n

If
∑λd1nT
b=1 [l1

d
b ] < λd1T/n,

∆2m

4cd1n log n

(λd1nT )3n2

D̄d
1(λd1T )2

≤ cd2WT log n

λd1 ≤
4cd1c

d
2WTD̄d

1 log2 n

∆2n5mT
(23)

If
∑λd1nT
b=1 [l1

d
b ] ≥ λd1T/n,

∆2m

4cd1n log n

(
∑λd1nT
b=1 1)3

D̄d
1(
∑λd1nT
b=1 (E[l1

d
b ])

2

+
π∆2

2WTn2
(

λd1nT∑
b=1

E[l1
d
b ])

2 ≤ cd2WT log n√
π∆2T 2

8cd1W log n

(λd1)3m

D̄d
1

≤ cd2WT log n (24)

(λd1)3 ≤ 8cd1c
d
2

2
W 3D̄s

1 log3 n

π∆2m
(25)

Compare the two inequalities (23) and (25), hence

(λd1)3 ≤ Θ(
D̄d

1

m
log3 n)

But it is the final result for delay-throughput tradeoff under
cluster dense regime. We assume that the mean delay is Θ(nd).
In order to get the tight upper bound of the tradeoff, Inequality
(18), (20), (21) and (24) should get equality.

TABLE IV: The order of the optimal values of the parameters
under Part I of cluster dense regime I.

Rcsb : # of Inter-cluster duplications Θ(n
v−d
3 / logn)

l1
s
b : Capture Range Θ(n

v−d
3 / log

1
2 n)

h1
s
b : # of Hops Θ(n

v−d
3 / logn)

rhb : Transmission range of Each Hop Θ(1 log
1
2 n)

There exists two constraints for our key parameters 1 ≤
Rc

d
b ≤ m and 1 ≤ l1

d
b ≤

√
mR2/n. By using optimal value

in Table V and omitting the logarithmic factor, we get d ≥
(3−v−6β)/2. That means that if we reach d < (3−v−6β)/2,
l1
d
b =

√
mR2/n should maintain. Then Lemma 6.4 become

cd1 log nE[Ds
b1] ≤ n

E[Rc
d
b ]R

2

And Lemma 6.5 comes into

λd1nT∑
b=1

∆2

4

E[Rc
d
b ]

n
+

π∆2

2WTn2
(

λd1nT∑
b=1

√
mR2

n
)2 ≤ cd2WT log n

Θ(
λd1n

R2D̄d
1 log2 n

+
(λd1)2mR2

n log2 n
) ≤ log n

λd1 ≤
R2D̄d

1

n
log3 n

TABLE V: The order of the optimal values of the parameters
under Part I of cluster dense regime II.

Rcsb : # of Inter-cluster duplications Θ(n1−2β−d/ logn)

l1
s
b : Capture Range Θ(n

v+2β−1
2 / log

1
2 n)

h1
s
b : # of Hops Θ(n

v+2β−1
2 / logn)

rhb : Transmission range of Each Hop Θ(1 log
1
2 n)

Theorem 6.1: Under cluster sparse regime, let D̄d
1 denote

the mean delay averaged over all bits and let λd1 be the
throughput of each source-destination pair. Assume all the key
parameters are same for all bits. In Part I, the following upper
bound holds, (λd1)3 ≤ Θ(

D̄d1
m log3 n) d ≥ 3−v−6β

2 β

λd1 ≤ Θ(
R2D̄d1
n log3 n) d < 3−v−6β

2 β



E. Tradeoff for delay of Part II

Dd
I2 is the delay for Rdd intra-cluster duplications being

captured by the destination with range ld2 . We can get

Dd
I2 =

1

(1− (1− ld2
2

R2 )Rd
d
)

≤ R2

Rd
dld2

2

Even we use the opportunistic duplication scheme, delay
can only be improved with a log n factor.

Lemma 6.8: Under the cluster dense regime, the delay for a
particular bit b of Part II and its scheduling parameters comply
the following inequality

cd3 log nE[Ds
b2] ≤ R2

E[Rd
d
b ]E[l2

d
b + 1

n2 ]2
(26)

where cd1 is a positive constant and variable Xs
b denote the

variable X under cluster dense regime for a particular bit b.

F. Tradeoff for Radio Resource, Half Duplex and Mutihop of
Part II

The radio resource and some key parameters follow the
tradeoff

Lemma 6.9: Under cluster dense regime and concerning
radio resource, the following inequality holds

λd2nT∑
b=1

∆2

4

mR2

n E[Rd
d
b ]

n
+ E[

λd2nT∑
b=1

h2
d
b∑

h=1

π∆2

4

rhb
2

n
] ≤ cd4WT log n

(27)
where cd4 is a positive number, h2

s
b is the number of trans-

mission hops after message being captured by the destination,
and rhb is the transmission range of each hop.

Since no node can transmit and receive at the same time
and over same frequency, the following inequality holds,

Lemma 6.10: The following inequality holds,

λd2nT∑
b=1

h2
d
b∑

h=1

1 ≤ WT

2
n (28)

The following inequality holds for the nature of multihop.
Lemma 6.11: The following inequality holds,

λd2nT∑
b=1

h2
d
b∑

h=1

rhb ≥ l2
d
b (29)

G. Detailed upper bound on delay-throughput tradeoff of Part
II

In this section, we will first derive the one part of tradeoff
on the basis of fundamental tradeoff. We then get the optimal
value of key parameters. We finally get the other part of
tradeoff by optimal value and constraint of the key parameters.

From Lemma 6.8, we have

λd2nT∑
b=1

E[Rd
d
b ] ≥

1

cd3 log n

λd2nT∑
b=1

R2

(E[l2
s
b] + 1

n2 )2E[Dd
2b]

≥ R2

cd3 log n

(
∑λd2nT
b=1 1)3

D̄s
2(
∑λs2nT
b=1 (E[l2

s
b] + 1

n2 ))2

From Lemma 6.9 and Cauchy-Schwartz inequality, we get

λd2nT∑
b=1

∆2

4

mR2E[Rd
d
b ]

n2
+

π∆2

2WTn2
(

λd2nT∑
b=1

E[l2
d
b ])

2 ≤ cd4WT log n

∆2mR4

4cd3n
2 log n

(
∑λd2nT
b=1 1)3

D̄d
2(
∑λd2nT
b=1 (E[l2

d
b ] + 1

n2 ))2

+
π∆2

2WTn2
(

λd2nT∑
b=1

E[l2
d
b ])

2 ≤ cs4WT log n

If
∑λd2nT
b=1 [l2

d
b ] < λd2T/n,

∆2mR4

4cd3n
2 log n

(λd2nT )3n2

D̄d
2(λdT )2

≤ cd4WT log n

λd2 ≤
4cd3c

d
4WTD̄d

1 log2 n

∆2n4mR2T
(30)

If
∑λd2nT
b=1 [l2

d
b ] ≥ λd2T/n,

∆2mR2

4cd1n
2 log n

(
∑λd2nT
b=1 1)3

D̄d
2(
∑λd2nT
b=1 (E[l2

d
b ])

2

+
π∆2

2WTn2
(

λd2nT∑
b=1

E[l2
d
b ])

2 ≤ cd4WT log n√
π∆2T 2

8cd3W log n

(λd2)3mR2

nD̄d
2

≤ cd4WT log n (31)

(λd2)3 ≤ 8cd3c
d
4

2
W 3nD̄s

2 log3 n

π∆2mR2

(32)

Compare the two inequalities (30) and (32), hence

(λd1)3 ≤ Θ(
nD̄d

1

mR2
log3 n)

But it is the final result for delay-throughput tradeoff under
cluster dense regime. We assume that the mean delay is Θ(nd).
In order to get the tight upper bound of the tradeoff, Inequality
(26), (28), (29) and (31) should get equality.

There exists two constraints for our key parameters 1 ≤
Rd

d
b ≤ n/m and 1 ≤ l2db ≤ R. By using optimal value in Table

VI and omitting the logarithmic factor, we get d ≤ 2−2v−2β.
That means that if we reach d > 2−2v−2β, Rddb = 1 should
maintain. Then Lemma 6.8 become

cd3 log nE[Ds
b2] ≤ R2

E[l2
d
b ]

2



And Lemma 6.9 comes into

λd2nT∑
b=1

∆2

4

mR2

n2
+

π∆2

2WTn2
(

λd2nT∑
b=1

l2
h
b )2 ≤ cd4WT log n

Θ(
(λd2)2R2

D̄d
1 log2 n

+
λd2mR

2

n log2 n
) ≤ log n

(λd2)2 ≤ D̄d
2

R2
log3 n

TABLE VI: The order of the optimal values of the parameters
under Part II of cluster dense regime I.

Rd
s
b : # of Inter-cluster duplications Θ(n

2−2v−2β−d
3 / logn)

l2
s
b : Capture Range Θ(n

v+4β−1−d
3 / log

1
2 n)

h2
s
b : # of Hops Θ(n

v+4β−1−d
3 / logn)

rhb : Transmission range of Each Hop Θ(1 log
1
2 n)

TABLE VII: The order of the optimal values of the parameters
under Part II of cluster dense regime II.

Rd
s
b : # of Inter-cluster duplications Θ(1)

l2
s
b : Capture Range Θ(n

2β−d
2 / log

1
2 n)

h2
s
b : # of Hops Θ(n

2β−d
2 / logn)

rhb : Transmission range of Each Hop Θ(1 log
1
2 n)

Theorem 6.2: Under cluster sparse regime, let D̄d
2 denote

the mean delay averaged over all bits and let λd2 be the
throughput of each source-destination pair. Assume all the key
parameters are same for all bits. In Part II, the following upper
bound holds, (λd2)2 ≤ Θ(

D̄d2
R2 log3 n) d ≥ 2− 2v − 2β

(λd2)3 ≤ Θ(
nD̄d1
mR4 log3 n) d < 2− 2v − 2β

H. Overall Upper bound of delay-throughput tradeoff

Theorem 6.1 and 6.2 show us the tradeoff of Part I and Part
II. We assume D̄d

1 = D̄d
2 = D̄d. Then the overall upper bound

can be derived easily.
Theorem 6.3: Under cluster sparse regime, let D̄d denote

the mean delay averaged over all bits and let λd be the
throughput of each source-destination pair. Assume all the key
parameters are same for all bits. Assume D̄d

1 = D̄d
2 = D̄d. The

following upper bound holds,

λd = min{λd1, λd2}

We can see that if we choose the system parameter v and
β carefully, the correlated mobility can perform better than
the uniformly distributed one. Fig 3 show us an example of
cluster-dense regime where v = 4/9 and β = 1/3. The blue
line is λd2, red line is λd1, and green one is the tradeoff in [3].
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Fig. 3: Tradeoff of cluster dense communication when v = 4/9
β = 1/3

APPENDIX A
PROOF OF LEMMA 3.2

To simplify our proof process, some notation are needed.
Under the cluster sparse regime, let Xs

i (t) denote the position
of node i at time slot t. Let b denote a bit message in our
network. Let t0sb denote time when bit b is generated. Let ˆlsb(t)
denote the minimum distance form the edge of cluster con-
taining duplication nodes (inter cluster duplication) to the edge
of Cd at time slot t, and ˆlsb(t) can be negative if inter cluster
duplication and Cd overlap. Let ˆLsb(t) = max{0, ˆlsb(t)}. Let
Rc

s
b(t) denote the number of inter cluster duplications at slot

t. Let tssb denote the time when bit b is captured by Cd.
We focus on the transmission of sending bit b from source

to its Cd and IA be the indicator function on set A

E

[
n

(R+ ˆLsb(t))
2

]
= E

[
n

R2
ILsb(t)≤0

]

+E

[
n

(R+ ˆlsb(t))
2
ILsb(t)>0

]
Since the definition of expectation,

E

[
n

(R+ ˆlsb(t))
2
ILsb(t)>0

]

=

∫ √n
0

n

(R+ u)2
dP[ ˆlsb(t)) ≤ u]

= 1− n

R2
P[ ˆlsb(t) ≤ 0] +

∫ √n
0

2n

(R+ u)3
P[ ˆlsb(t) ≤ u]du

Therefore,

E

[
n

(R+ ˆLsb(t))
2

]
= 1 +

∫ √n
0

2n

u′3
P[R+ ˆlsb(t) ≤ u]du′

= 1 +

∫ √n
R

2πRc
s
b(t)

(R+ u′)2

u′3
du′

≤ 1 + 6πRc
s
b(t)

∫ √n
R

1

u′
du′

= 1 + 6πRc
s
b(t) log

√
n

R
≤ 6πRc

s
b(t) log n



We let

W (t) = 6π log n[t−t0sb]−
t∑

t0sb+1

E

[
n

(R+ ˆlsb(t))
2Rc

s
b(t)

It=tssb

]
Then

E[W (t)−W (t− 1)]

= 6π log n− E

[
n

(R+ ˆlsb(t))
2Rc

s
b(t)

It=tssb

]

≤ 6π log n− E

[
n

(R+ ˆlsb(t))
2Rc

s
b(t)

]
≤ 0

which means that W (t) is a sub-martingale. By the Optional
Stopping Theorem [5]. We get

6π log nE[DII
s
b] ≥ E

[
n

(R+ ˆlsb(t))
2Rc

s
b

]
By Hölder’s Inequality [5]

6π log nE[DII
s
b] ≥

n

E2[R+ ˆlsb(t)]E[Rc
s
b]

≥ n

(2R+ rsb)
2E[Rc

s
b]

Therefore,
54π log nE[DII

s
b] ≥

n

R2E[Rc
s
b]

(33)

The part for DIII
s
b is similar as [3], so we directly give the

result:

8π log nE[DIII
s
b] ≥

R2

E[Rd
s
b]E[lsb + mR2

n2 ]2
(34)

Inequality (33) and (34) lead to the Lemma 3.2 directly

REFERENCES

[1] P. Gupta, P. R. Kumar. “The capacity of wireless networks”, in IEEE
Trans. on Info. Theory, Vol. 46, No. 2, pp. 388-404.

[2] D. Ciullo, V. Martina, M. Garetto, E. Leonardi, “Impact of Correlated Mo-
bility on Delay-Throughput Performance in Mobile Ad-Hoc Networks”,
in Proc. IEEE INFOCOM, Mar. 2010.

[3] X.Lin, N.B.Shroff, “The Fundamental Capacity-Delay Tradeoff in Large
Mobile Ad Hoc Networks” in Proc. MedHoc’04.

[4] M.Penrose, “Random Geometric Graphs” Oxford University Press, 2003.
[5] R.Durrett, “Theory and Examples, 2nd ed.” Belmont, CA: Duxbury Press,

1996.


