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Abstract—Since it was found that real mobility processes
exhibit significant degree of correlation (correlated mobility)
and nodes are often heterogeneously distributed in clus-
tered networks (cluster scalability), there has been a great
interest in studying their impact on network performance.
However, works investigating their impact on the asymptot-
ic connectivity are limited and the reason is threefold: (1)
there is no available model to characterize the networks
with correlated mobility and cluster scalability; (2) the
ubiquity of correlated mobility and cluster scalability in
reality makes the analysis hard to be tracked; and (3) the
potential applications of correlated mobility and cluster
scalability are not understood.

In this paper, we study the effect of correlated mobility
and cluster scalability on network connectivity and
propose the correlated mobile k-hop clustered networks
model. We mainly analyze the dynamics of cluster scales
and observe that the impact of correlated mobility and
cluster scalability on connectivity is primarily imposed
through influencing the network state transition. So in our
model, we divide the network state into three categories:
(1)cluster- sparse state (α + 2β < 0) (2) cluster-dense state
(α + 2β > 0) and (3) cluster-critical state (α + 2β = 0). We
prove that the critical transmission range for cluster-sparse
state is

√
γlogn
kπnα

when α + 2β < 0 and for cluster-dense

state is
√

logn
kπnα

when α + 2β > 1
k

. Our research can help
to understand the nature of correlated node movements,
cluster scalability (spatial heterogeneity) and network state
transition, and provide insights on building and managing
large-scale wireless networks.

Keywords: Connectivity, Correlated Mobility, Cluster
Scalability

I. INTRODUCTION

Connectivity performance is a fundamental concern
when designing and implementing wireless networks,
and hence is of paramount significance. To achieve
the connectivity, nodes in the networks need to reach
others by adjusting their transmission power. There are
numerous works exploring the asymptotic connectivity of
wireless networks. In [1], Gupta and Kumar prove that

with range r(n) =
√

logn+c(n)
πn , overall connectivity can

be established with probability one as n → ∞, if and
only if c(n)→∞. In [2], Wan et al. obtained the critical
transmission radius for k-connectivity in an ad hoc
network whose nodes are uniformly and independently

placed. In [3], Xue et al. prove that Θ(log n) 1 nearest
neighbors are needed to achieve full connectivity in a
multi-hop fashion in the networks with n randomly
and independently distributed nodes.

However, these works are concentrated on stationary
non-clustered (flat) networks where nodes are independent-
ly distributed and keep stationary and works exploring
the impact of correlated mobility and cluster scalability
on asymptotic connectivity are limited and their impact
is not clear so far. This is partially because (1) there is
no available model to characterize the networks with
correlated mobility and cluster scalability; (2) correlated
mobility and cluster scalability is ubiquitous in reality
which makes analyzing their impact on connectivity
hard to be tracked; and (3) the potential applications
of correlated mobility and cluster scalability are not
recognized.

Therefore, to understand the nature of correlated
mobility and cluster scalability, and explore their in-
teractions, implications and impact on asymptotic con-
nectivity, we propose the correlated mobile k-hop clustered
networks model in this paper to take into consideration
both the correlated mobility and cluster scalability. We
adopt the correlated mobility model to implement the
group mobility, and suppose that there are nα(0 < α ≤
1) cluster heads and nγ(0 < γ ≤ 1) clusters each of
which is with the radius R = Θ(nβ)(β ≤ 0) in the
whole network O which is assumed to be a unit torus.
The cluster radius can scale with n, and with different
values of β we can implement cluster scalability. In our
analysis, we divide we divide the network state into
three categories: (1)cluster- sparse state (α+ 2β < 0) (2)
cluster-dense state (α + 2β > 0) and (3) cluster-critical
state (α + 2β = 0) and derive the critical transmission
range for each state.

1 The following asymptotic notations are used in this paper. Given
non-negative functions f(n) > 0 and g(n) > 0:

(1) f(n) = o(g(n)) means limn→∞
f(n)
g(n)

= 0.
(2) f(n) = ω(g(n)) is equivalent to g(n) = o(f(n)).
(3) f(n) = O

(
g(n)

)
means limn→∞ sup

f(n)
g(n)

<∞.
(4) f(n) = Θ

(
g(n)

)
means f(n) = O(g(n)), g(n) = O(f(n)).

(5) f(n) = Ω
(
g(n)

)
is equivalent to g(n) = O(f(n)).



II. RELATED WORKS

Previous works mostly put strength on studying
the delay and throughput with correlated mobility or
cluster scalability. Garetto et al. [4] implemented clus-
ter scalability (inhomogeneity) and determined under
which condition the node mobility can be exploited
to increase the per-node throughput. Ciullo et al. [5]
proposed a correlated mobility model, studied its im-
pact on throughput-delay performance in the cluster-
sparse and cluster-dense regime, and discovered that
this correlation can sometimes lead to better perfor-
mance than the one achievable under independent
node movements.

However, works investigating the impact of correlat-
ed mobility and cluster scalability on asymptotic con-
nectivity are extremely limited. The classical literature
[1] [2] [3] [6] [7] assume nodes to be independently
distributed in the network. Wang et al. [8] proposed
the mobile k-hop clustered networks model, but the
node movements are not correlated and there is no
cluster scalability. La et al. [9] studied the impact of
one-dimensional group mobility on the bidirectional
connectivity in vehicular ad hoc networks. Unfortu-
nately, there is no work investigating the impact of two-
dimensional correlated mobility and cluster scalability
on the connectivity.

III. PRELIMINARIES

A. Mobile K-hop Clustered Networks

In this paper, we consider infrastructure-supported
networks. Nodes in a clustered network are classified
in two classes: cluster-head nodes and cluster-member
nodes. Cluster-head nodes are selected to serve cluster-
member nodes (clients) and their function is similar to
an access point in s real network. A cluster member
is connected when reaching one of the cluster heads.
In our model, it is assumed that a clustered network
consists of n cluster-member nodes and nα cluster-
head nodes, where α is the cluster head exponent and
0 < α ≤ 1. For simplicity, nα is treated as an integer.

In the mobile k-hop clustered networks model, all
nodes are placed in a unit square O and O is supposed
to be a unit torus to avoid boundary effects. G(n, α) is
the initial graph in which a path connects all the nα

cluster heads and time is slotted into k time slots. Cul-
ster heads are randomly and independently distributed
in O and always remain stationary. Cluster members
are initially set in the same way but can move in the
whole network O in the following slots according to
some certain mobility pattern. During each time slot
λ(λ = 1, 2, . . . , k), an edge eij would be added between
a cluster-member node i and a cluster-head node j, if
the Euclidean distance between them is less then r(n, α)
in the distance-based connecting strategy. r(n, α) is the
critical transmission range in mobile k-hop clustered
networks.

For mobile k-hop clustered networks, a cluster mem-
ber is connected if it can reach a cluster head within k
time slots during its movement. If all cluster-member
nodes are connected, we define that the whole clustered
network O has full connectivity.

B. Network Deployment
In this part, we illustrate the initial network archi-

tecture deployment before cluster members begin to
move. Like the mobile k-hop clustered networks model,
we suppose there are n cluster-member nodes and nα

cluster-head nodes in a unit square O, where the cluster
head exponent 0 < α ≤ 1. The cluster heads are uniformly
and independently distributed in O. Differently, cluster-
member nodes are clustered into m clusters where
m = nγ and the cluster exponent 0 < γ ≤ 1. Each cluster
region is centered around a logical center (home point)
and has a circular shape with radius R as R = Θ(nβ)
and the cluster radius exponent β ≤ 0. The home points
are uniformly and independently distributed in O and the
cluster-member nodes are uniformly and independently
distributed in their belonging cluster regions. For sim-
plicity, we assume that each cluster compromises an
integer number $ = n

m = n1−γ of cluster members and
we also assume nα and nγ to be integers.

C. Correlated Mobility
After deploying the initial network architecture, the

cluster heads will remain stationary while the clus-
ter members will move. The movement of a cluster-
member node consists of two steps: (1) the movement
of its home point; and (2) the relative movement of the
cluster member in the cluster. We assume the Mobile
Clusters with Relatively Mobile Cluster Members Mobility
Model which is illustrated as follows:

Mobile Clusters with Relatively Mobile Cluster
Members Mobility Model: After the network deploy-
ment, home points and cluster members will move.
Time is slotted into k time slots and at the beginning
of each time slot, each home point will uniformly and
independently choose a position within the unit torus
O and then each cluster member will uniformly and
independently choose its location in its corresponding
cluster region. In the rest of each time slot, the home
points and cluster members would remain stationary.
We illustrate this mobility model in Figure 1.

D. Cluster Scalability
After introducing the system model, we will present

the unique characteristic of our model, cluster scala-
bility. As we can see, the cluster radius scales with n
by assuming R = Θ(nβ) where β ≤ 0. Hence, when
β is small (with large absolute value) the cluster size
will be small and clusters are sparsely distributed in O.
While the cluster region will become relatively large
as β is large (with small absolute value) which leads
to the densely distributed clusters. We should note
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Fig. 1. Correlated Mobility Model.

that this cluster scalability also leads to node spatial
heterogeneity because the node density is not the same
in the whole network area.

This is the qualitative illustration of cluster scalability
and we should also provide a quantitative definition.
We compare the average coverage 1

nα of cluster heads
with the cluster region πR2 = Θ(n2β) and give the
following three cases:
(C1). Cluster-sparse state (member-dense state).

When πR2 = o( 1
nα ), we have α+ 2β < 0. The cluster

size is sufficiently small compared with the average
coverage of each cluster head and clusters are sparsely
distributed in the whole network O. Besides, the mem-
ber density of each cluster d = $

πR2 = Θ(n1−2β−γ) is
large. Thus, this is also the member-dense state and
the clustering property is fairly dominant. Each cluster
can be regarded as an entirety because cluster members
stay so close and move so consistently.
(C2). Cluster-dense state (member-sparse state).

In contrast to the previous case, we have πR2 =
ω( 1

nα ) in this case and α + 2β > 0. The cluster size
is relatively large, clusters are densely distributed and
they might intersect with each other. The member
density d is relatively small, and hence this is the
member-sparse state and there is almost no substantial
clustering. Every cluster-member node performs more
like an independent node.
(C3). Cluster-critical state (member-critical state).

In this case, πR2 = Θ( 1
nα ), and we have α+ 2β = 0.

It is the critical state between the cluster-sparse and
cluster-dense state and also a transition phase. The
cluster distribution is not so dense or so sparse, and
d is medium.

The cluster scalability is shown in Figure 2. We will

study its impact on the critical transmission range in
the rest of this paper.
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Fig. 2. Cluster Scalability.

E. Redefining Connectivity

Due to the initial network deployment and correlated
mobility, the definition of connectivity in correlated
mobile k-hop clustered networks is different from that
in flat networks. It is similar to the that in mobile k-
hop clustered networks, but still with some differences
because of clustering.

We first define the cluster-member connectivity. A clus-
ter member is connected if it can reach a cluster head
within k slots and disconnected if it cannot reach any
cluster head in k time slots, which is exactly the same
to that in the mobile k-hop clustered networks. If
all cluster members can be connected within k time
slots, the clustered network has full connectivity. If
we let G(n, α, β, γ) denote the initial graph (clustered
network) where a path connects all the nα cluster
heads. During each time slot λ(λ = 1, 2, . . . , k), an
edge eij will be added between a cluster member i
and a cluster head j into G(n, α, β, γ) if the Euclidean
distance between node i and j is less than r(n, α, β, γ)
in the distance-based strategy where r(n, α, β, γ) is the
critical transmission range in correlated mobile k-hop
clustered networks from the cluster-member connectivity
prospective. Then, G(n, α, β, γ) has full connectivity if
and only if any two cluster-member nodes can be
connected by a path after k time slots.

Besides, we need to define cluster connectivity due to
the existence of clusters. A cluster is connected if all
the cluster-member nodes within it are connected (they
may connect to different cluster heads), while a cluster
is disconnected if at least one cluster member is dis-
connected. If all clusters are connected in k time slots,
the network has full connectivity. In this definition,
G(n, α, β, γ) can be reduced to G(n, α, γ) because we
regard each cluster as a whole. However, it is impos-
sible to rewrite r(n, α, β, γ) and give an exact trans-
mission range to a cluster because cluster members
are randomly distributed in the cluster. Therefore, we
denote rc(n, α, β, γ) to be the critical transmission range
for each cluster member because we cannot omit β in
this definition.



With the definition of cluster-member connectivity and
cluster connectivity, we define the critical transmission
range r(n, α, β, γ) and rc(n, α, β, γ) formally.2

During any time slot λ, each cluster-member node
would attempt to connect to the cluster-head nodes
located in the circular area centered around the cluster
member with the radius r which is the transmission
range of each cluster member. Let M denote the event
that all cluster-member nodes are connected in a given
period Λ(Λ ⊆ {1, 2, . . . , k}) and let PΛ(M) be the cor-
responding probability. Then, the critical transmission
range r(n, α, β, γ) is defined from the perspective of
cluster-member connectivity as follows.

DEFINITION 1. For a correlated mobile k-hop clustered
network G(n, α, β, γ) and from the perspective of cluster-
member connectivity, r(n, α, β, γ) is the critical transmis-
sion range if

lim
n→∞

PΛ(M) = 1, if r ≥ cr(n, α, β, γ), c > 1;

lim
n→∞

PΛ(M) < 1, if r ≤ c′r(n, α, β, γ), c′ < 1.
If we consider the cluster connectivity and let C

denote the event that all the m clusters are connected
in period Λ and let PΛ(C) denote the corresponding
probability. The critical transmission range rc(n, α, β, γ)
is defined as follows.

DEFINITION 2. For a correlated mobile k-hop clustered
network G(n, α, β, γ) and from the cluster connectivity
perspective, rc(n, α, β, γ) is the critical transmission range
if

lim
m→∞

PΛ(C) = 1, if r ≥ crc(n, α, β, γ), c > 1;

lim
m→∞

PΛ(C) < 1, if r ≤ c′rc(n, α, β, γ), c′ < 1.
Actually, we find that the cluster-member connectivi-

ty is equivalent to the cluster connectivity and we state
this equivalence through the following theorem.

THEOREM 1 (CONNECTIVITY EQUIVALENCE). Clus-
ter connectivity and cluster-member connectivity are equiv-
alent.

Proof. We prove this by demonstrating: (1) if a cor-
related mobile k-hop clustered network G(n, α, β, γ)
has cluster-member connectivity, the corresponding
G(n, α, γ) must have cluster connectivity. This can be
proved by the fact that during k time slots all the
cluster members and clusters are connected at the same
time; and (2) if G(n, α, β, γ) is not connected from the
perspective of cluster-member connectivity, the corre-
sponding G(n, α, γ) cannot have cluster connectivity.
This is because there must exist at least one cluster
member disconnected during k time slots, which re-
sults in some cluster disconnected. Thus, this theorem
holds.

Based on THEOREM 1, we could further find that
for the same original correlated mobile k-hop clustered

2Note that r(n, α, β, γ) and rc(n, α, β, γ) are proposed from dif-
ferent prospectives and may not be equal. But in the following, we
will prove that they are substantially equivalent.

network, we have r(n, α, β, γ) = rc(n, α, β, γ) and state
it as follows.

THEOREM 2 (CRITICAL TRANSMISSION RANGE
EQUIVALENCE). For an original correlated mobile k-
hop clustered network G(n, α, β, γ) and the corresponding
G(n, α, γ), we have r(n, α, β, γ) = rc(n, α, β, γ).

Proof. We prove this theorem as follows:
(1) if G(n, α, β, γ) is fully connected, due to DEFINI-

TION 1, we have
lim
n→∞

PΛ(M) = 1, if r ≥ cr(n, α, β, γ), c > 1;

lim
n→∞

PΛ(M) < 1, if r ≤ c′r(n, α, β, γ), c′ < 1.

Because of the CONNECTIVITY EQUIVALENCE proved
in THEOREM 1 and the fact that m→∞ as n→∞, we
obtain

lim
m→∞

PΛ(C) = 1, if r ≥ crc(n, α, β, γ), c > 1;

lim
m→∞

PΛ(C) < 1, if r ≤ c′rc(n, α, β, γ), c′ < 1.

Therefore, we have rc(n, α, β, γ) = r(n, α, β, γ) for
G(n, α, γ).

(2) if G(n, α, γ) is fully connected, due to DEFINITION
1, we obtain

lim
m→∞

PΛ(C) = 1, if r ≥ crc(n, α, β, γ), c > 1;

lim
m→∞

PΛ(C) < 1, if r ≤ c′rc(n, α, β, γ), c′ < 1.

Because of THEOREM 1 and the observation that n→
∞ as m→∞, we get

lim
n→∞

PΛ(M) = 1, if r ≥ cr(n, α, β, γ), c > 1;

lim
n→∞

PΛ(M) < 1, if r ≤ c′r(n, α, β, γ), c′ < 1.

Thus, we r(n, α, β, γ) = rc(n, α, β, γ) for G(n, α, β, γ).
Now, we finish the proof. This theorem lays the

foundation of later analysis.

Considering THEOREM 1 and 2, we will use rc to
denote the critical transmission range uniformly without
leading to ambiguity. Besides, we use G(n, α, β, γ, rc)
consistently to denote the correlated mobile k-hop clus-
tered network with n cluster-member nodes, nα cluster-
head nodes and nγ clusters each of which is with radius
R = Θ(nβ) where a cluster member can connect to
a cluster-head node if the Euclidean distance between
them is at most rc.

IV. MAIN RESULTS

We summarize our main results in this thesis as
follows:
(1). Cluster-sparse state (α+2β < 0): rc =

√
γ logn
kπnα , where

γ
k < α ≤ 1, 0 < γ ≤ 1.

(2). Cluster-dense state (α+ 2β > 0): rc =
√

logn
kπnα , where

1
k < α ≤ 1, 0 < γ ≤ 1.



V. THE CRITICAL TRANSMISSION RANGE rc OF THE
CORRELATED MOBILE K-HOP CLUSTERED NETWORKS

FOR THE CLUSTER-SPARSE STATE

In this case, we use Pf css(n, α, β, γ, rc) to denote
the probability that G(n, α, β, γ, rc) has some cluster3

disconnected for the cluster-sparse state and our main
result of this case is as follows.

THEOREM 3. In a correlated mobile k-hop clustered
network G(n, α, β, γ, rc) for the cluster-sparse state, the
critical transmission range is rc =

√
γ logn
kπnα , where γ

k <

α ≤ 1, α+ 2β < 0 and 0 < γ ≤ 1.

A. Necessary Condition for Theorem 3
On account of α+2β < 0 and the given rc in this case,

we have πR2 = o( 1
nα ) and rc = ω(R). This condition is

the theoretical expression of the prominent clustering
property and is of great importance which serves as the
basis for our analysis in this case.

We prove the necessary condition of rc of THEOREM
3 by the classical methodology introduced in [7] i.e.,
to demonstrate that Pf css(n, α, β, γ, rc) is strictly larger
than zero.

We first give the following technical lemma which
will be referred in the proof of the necessity of THEO-
REM 3.

LEMMA 1. If r =
√

γ logn+ξ
kπnα , α + 2β < 0, γk < α ≤ 1,

for any fixed 0 < θ < 1 and sufficiently large n, we have

m
(

1− π(r +R)2
)knα

≥ θe−ξ (1)

where r is the transmission range and R = Θ(nβ).

Proof. Because r =
√

γ logn+ξ
kπnα = Θ(rc), we still have

r = ω(R). We take the logarithm of the left hand side,
use the power series expansion for log(1− x), and get

log
(
L.H.S. of (1)

)
= logm+ knα log

(
1− π(r +R)2

)
= logm− knα

∞∑
i=1

(
π(r +R)2

)i
i

= logm− knα
( 2∑
i=1

(
π(r +R)2

)i
i

+ δ(n)
)

(2)

Here, for all sufficiently large n:

δ(n) =

∞∑
i=3

(
π(r +R)2

)i
i

≤1

3

∞∑
i=3

(
π(r +R)2

)i
=

(
π(r +R)2

)3
3
(
1− π(r +R)2

) ≤ (π(r +R)2
)2

3

(3)

3Note that we study the probability of cluster disconnection in this
case because we derive rc from the cluster connectivity perspective.
Therefore, we mainly investigate the situation where some cluster is
disconnected in G(n, α, β, γ, rc).

Substituting δ(n) and r =
√

γ logn+ω
kπnα in (2), and for

all sufficient large n we get

log
(
L.H.S of (1)

)
≥ logm− knα

( 2∑
i=1

(
π(r +R)2

)i
i

+

(
π(r +R)2

)2
3

)
(since r = ω(R), i.e. , r > R)

≥ logm− knα
(
π(r +R)2 +

5

6

(
π(2r)2

)2)
≥− ξ − kπΘ(nα+2β)− 2

√
kπΘ(n

α+2β
2

√
γ log n+ ξ)

− 40(γ log n+ ξ)2

3knα

(since α+ 2β < 0, α > 0)

≥− ξ − ε
(4)

Take the exponent of both sides and let θ = e−ε < 1,
and the result follows. Therefore, we finished the proof.
We should note that θ can be sufficiently near to 1.

This technical lemma will be used in the proof of
THEOREM 4 which is presented as follows to bound
some important terms.

THEOREM 4. If r =
√

γ logn+ξ(n)
kπnα , α+2β < 0, γk < α ≤

1, 0 < γ ≤ 1, and limn→∞ ξ(n) = ξ < +∞, we have

lim inf
n→∞

Pf css(n, α, β, γ, rc) ≥ e−ξ(1− e−ξ)

Proof. We first study the case where r =
√

γ logn+ξ
kπnα with

a fixed ξ. Let Fj denote the the event that the jth cluster
Cj is disconnected in k time slots. Then we have

Pf css(n, α, β, γ, rc)

≥
m∑
i=1

(
P(Fi)−

∑
j 6=i

P(Fi ∩ Fj)
)

=

m∑
i=1

P(Fi)−
m∑
i=1

∑
j 6=i

(
P(Fi ∩ Fj)

) (5)

Then we evaluate the two terms on the right side of
(5), respectively. For the first term, we have

P(Fj) ≥
(

1− π(r +R)2
)knα

(6)

and for the second term, we have

P(Fλi ∩ Fλj )

≤4π(r +R)2
(
1− π(r −R)2

)nα
+
(
1− 2π(r −R)2

)nα
≤4π(r +R)2e−πn

α(r−R)2 + e−2πnα(r−R)2

(7)
Here we use the inequality:

1− x ≤ e−x for x ∈ [0, 1] (8)



Using (6) and (7) in (5), we obtain

Pf css(n, α, β, γ, rc)

≥m
(
1− π(r +R)2

)knα −m(m− 1)
(

4π(r +R)2e−πn
α(r−R)2

+ e−2πnα(r−R)2
)k

≥θe−ξ −m2e−2πknα(r−R)2
(

4π(r +R)2eπn
α(r−R)2 + 1

)k
=θe−ξ − e−2ξe−2kπΘ(nα+2β)+4

√
kπΘ
(
n
α+2β

2
√
γ logn+ξ

)
(

4πe
ξ
k+πΘ(nα+2β)+2

√
π
kΘ
(
n
α+2β

2
√
γ logn+ξ

)
(γ log n+ ξ

kπnα−
γ
k

+ Θ(n2β+ γ
k ) + 2Θ

(√ γ log n+ ξ

kπnα−2β− 2γ
k

))
+ 1

)k
(since α+ 2β < 0, α >

γ

k
, 2β +

γ

k
< 0, α− 2β − 2γ

k
> 0)

≥θe−ξ − (1 + ε)e−2ξ

for any ε > 0 and for all n > N(ε, θ, ξ).
(9)

Let ξ be a function ξ(n) with limn→∞ ξ(n) = ξ < +∞.
Then for all n ≥ N ′(ε) and any ε > 0, ξ(n) ≤ ξ + ε. Be-
cause the disconnection probability Pf css(n, α, β, γ, rc)
is monotonically decreasing in ξ, then we have

Pf ccs(n, α, β, γ, rc) ≥ θe−(ξ+ε) − (1 + ε)e−2(ξ+ε) (10)

for all n ≥ max{N(ε, θ, ξ + ε), N ′(ε)}. Taking limits and
we have

lim inf
n→∞

Pf ccs(n, α, β, γ, rc) ≥ θe−(ξ+ε) − (1 + ε)e−2(ξ+ε)

(11)
Since this holds for all ε > 0 and θ < 1, we can the

result and this theorem holds.

Consequently, considering the connectivity equiva-
lence, we have the following corollaries to prove the
necessity part of THEOREM 3 both from the cluster-
member and cluster connectivity perspective.

COROLLARY 3.1. In the cluster-sparse state of correlated
mobile k-hop clustered networks, the network is to have
disconnected clusters with positive probability bound away

from zero if r =
√

γ logn+ξ(n)
kπnα (limn→∞ ξ(n) < +∞).

COROLLARY 3.2. In the cluster-sparse state of correlated
mobile k-hop clustered networks, the network is to have dis-
connected cluster members with positive probability bound

away from zero if r =
√

γ logn+ξ(n)
kπnα (limn→∞ ξ(n) < +∞).

B. Sufficient Condition of rc of Theorem 3

We still base our analysis on the cluster connectivity
and prove the sufficiency of THEOREM 3. Assume there
are at most n sessions during k time slots and let r =
crc(c > 1). Therefore, due to THEOREM 1, it suffices to
show that

lim
n→∞

P(

m⋃
j=1

Fj) = 0

Then we use union bound to bound P(
⋃m
j=1 Fj):

P(

m⋃
j=1

Fj) ≤
m∑
j=1

P(Fj)

≤
m∑
j=1

(
1− π(r −R)2

)knα
(due to (8)) ≤me−π(r−R)2knα

(12)

Substituting r = crc into (12), we obtain

me−π(r−R)2knα = me−kπn
α
(
c
√

γ logn
kπnα −R

)2
=

m

ec2γ logn
· e

2ckπnα
√

γ logn
kπnα R

ekπnαR2

(13)

Since c > 1, γ > 0 and α + 2β < 0, we take limits of
two factors on the right hand side of Eq.(40) and get
the following results.

lim
n→∞

m

ec2γ logn
= lim
n→∞

1

n(c2−1)γ
= 0

lim
n→∞

e2ckπnα
√

γ logn
kπnα R

ekπnαR2 = lim
n→∞

e2c
√
kπγΘ(n

α+2β
2 logn)

ekπΘ(nα+2β)
= 1

Then, we take limits of both sides in (13) and the
result follows. Thus, we finish the proof of the sufficient
condition of rc of THEOREM 3.

VI. THE CRITICAL TRANSMISSION RANGE rc OF THE
CORRELATED MOBILE K-HOP CLUSTERED NETWORKS

FOR THE CLUSTER-DENSE STATE

In this case, we consider the scenario where πR2 =
ω( 1

nα ), i.e., α + 2β > 0. Here we assume α +
2β > 1

k because this condition is needed in Theorem
5. Let Pf cds(n, α, β, γ, rc) denote the probability that
G(n, α, β, γ, rc) has some cluster member4 disconnected
for the cluster-dense state. Our main result is given as
follows.

THEOREM 5. In a correlated mobile k-hop clustered net-
work G(n, α, β, γ, rc) for the cluster-dense state, the critical
transmission range is rc =

√
logn
kπnα , where 1

k < α ≤
1, α+ 2β > 1

k , and 0 < γ ≤ 1.
Combining α + 2β > 0 with the given rc, we can

further get rc = o(R) which is the foundation of later
analysis.

A. Necessary Condition of rc of Theorem 5
The methodology in this case is different from

that in the cluster-sparse case. Instead of bounding
Pf cds(n, α, β, γ, rc) from the cluster connectivity per-
spective, we investigate this case mainly from the
perspective of cluster-member connectivity because the
cluster members behave more like independent nodes
now. But, we cannot simply use the solutions in pre-
vious works because the network deployment enforces

4Here, we consider the disconnected cluster members because we
provide our analysis from cluster-member connectivity perspective.



clustering. Therefore, we propose a new solution which
considers both the clustering and independence char-
acteristic.

First, we give a technical lemma as follows.

LEMMA 2. If r =
√

logn+ξ
kπnα , α + β > 1

k ,
1
k < α ≤ 1, for

any fixed θ < 1 and sufficiently large n, we have

n
(
1− πr2

)knα ≥ θe−ξ (14)

Proof. Employing the similar technique in the proof of
LEMMA 1, for all sufficient large n, we can obtain the
following results.

log
(
L.H.S. of (14)

)
≥

log n− knα
(
πr2 +

5

6
(πr2)2

)
(since πr2 <

1

2
for all sufficient large n)

=− ξ − 5(log n+ ξ)2

6knα

≥− ξ − ε

(15)

Take the exponent of both sides in (15), let θ = e−ε <
1 and the result follows. Therefore, we finished the
proof. Note that θ can be sufficiently near to 1.

Then, we have the following theorem.

THEOREM 6. If r =
√

logn+ξ(n)
kπnα , α+ 2β > 0, 1

k < α ≤
1, 0 < γ ≤ 1 and limn→∞ ξ(n) = ξ < +∞, we have

lim inf
n→∞

Pf cds(n, α, β, γ, rc) ≥ e−ξ(1− e−ξ)

Proof. Different from the proof of THEOREM 3, we
regard the problem from the respect of cluster-member
connectivity. Let fλjκ denote the event that the session
initiated by the κth node in Cj at time slot λ is failed
and fjκ denote that sessions initiated by the κth node
in Cj during k time slots are all failed. We can get

Pf cds(n, α, β, γ, rc)

≥
m∑
j=1

$∑
κ=1

(
P(fjκ)−

∑
κ′ 6=κ

P(fjκ ∩ fjκ′)−
∑
i6=j

P(fjκ ∩ Fi)
)

=

m∑
j=1

$∑
κ=1

P(fjκ)−
m∑
j=1

$∑
κ=1

∑
κ′ 6=κ

P(fjκ ∩ fjκ′)

−
m∑
j=1

$∑
κ=1

∑
i 6=j

P(fjκ ∩ Fi)

(16)
Then we evaluate the three terms on the right hand

side of (16), respectively.
For the first term, we have

P(fjκ) ≥ (1− πr2)kn
α

(17)

The second term is to estimate the probability that
two sessions in the same cluster are failed. By consid-
ering the possible positions of two cluster members and

employing the conditional probability we have

P(fjκ ∩ fjκ′)

≤
(

1 · (1− 2πr2)n
α

+
4r2

R2
(1− πr2)n

α
)k

(
due to (8)

)
≤
(
e−2πnαr2 +

4r2

R2
e−πn

αr2
)k

(18)

For the third term, we need to compute the prob-
ability that one is a failed session in cluster Cj and
the other one is a disconnected cluster Ci(i 6= j).
In this situation, we should consider both the cluster
connectivity and cluster-member connectivity, because:
(1) from the perspective of the network deployment, the
positions of cluster-member nodes in Ci are interrelated,
so we cannot consider these nodes separately; and (2)
viewing the probability that Ci is disconnected is a
more accurate estimation than considering the cluster
members. This is the main difference from the previous
literature and the solution in the cluster-sparse state.
Based on these intuitions, we bound the third term as
follows.

P(fjκ ∩ Fi)

≤
(

1 · (1− 2πr2)n
α

+ π(2r +R)2(1− πr2)n
α

)k
(
due to (8)

)
≤
(
e−2πnαr2 + π(2r +R)2e−πn

αr2
)k

(19)

First, we study the case where r =
√

logn+ξ
kπnα with a

fixed ξ. By substituting (17)-(19) and r into (16) we can
bound Pf cds(n, α, β, γ, rc) as follows.

Pf cds(n, α, β, γ, rc)

≥
m∑
j=1

$∑
κ=1

P(fjκ)−
m∑
j=1

$∑
κ=1

∑
κ′ 6=κ

P(fjκ ∩ fjκ′)

−
m∑
j=1

$∑
κ=1

∑
i 6=j

P(fjκ ∩ Fi)(
due to (17)-(19)

)
≥n(1− πr2)kn

α

− n$
(
e−2πnαr2 +

4r2

R2
e−πn

αr2
)k

− nm
(
e−2πnαr2 + π(2r +R)2e−πn

αr2
)k

(due to LEMMA 2)

≥θe−ξ − n2−γe−2kπnαr2
(

1 +
4r2

R2
eπn

αr2
)k

− n1+γe−2kπnαr2
(

1 + π(2r +R)2eπn
αr2
)k

=θe−ξ − n−γe−2ξ
(

1 +
4(log n+ ξ)

kπΘ(nα+2β− 1
k )
e
ξ
k

)k
− nγ−1e−2ξ

(
1+

(4(log n+ ξ)

knα−
1
k

+ πΘ(n2β+ 1
k ) + Θ

(√ 4π log n

knα−2β− 2
k

))
e
ξ
k

)k



Then, we consider two cases in terms of different
γ and bound Pf cds(n, α, β, γ, rc), respectively. Because
we have α+ 2β > 1

k , α >
1
k , 2β + 1

k < 0, α− 2β − 2
k > 0,

it is easy to get the following results.
Case 1: When γ = 1, we can further bound

Pf cds(n, α, β, γ, rc) as follows.

Pf cds(n, α, β, γ, rc) ≥ θe−ξ − ε− e−2ξ(1 + ε) (20)

Case 2: When 0 < γ < 1, we can further bound
Pf cds(n, α, β, γ, rc) as follows.

Pf cds(n, α, β, γ, rc) ≥ θe−ξ − ε (21)

In all, no matter what γ is, we have (21) for any ε > 0
and for all n > N(ε, θ, ξ).

Then, we let ξ be a function ξ(n) with limn→∞ ξ(n) =
ξ < +∞. Then for all n ≥ N ′(ε), any ε > 0 and any
ξ(n) ≤ ξ + ε. Considering that Pf cds(n, α, β, γ, rc) is
monotonically decreasing in ξ, we have

Pf cds(n, α, β, γ, rc) ≥ θe−(ξ+ε) − ε− (1 + ε)e−2(ξ+ε)

for all n ≥ max{N(ε, θ, ξ + ε), N ′(ε)}. Taking limits and
we have

lim inf
n→∞

Pf cds(n, α, β, γ, rc) ≥ θe−(ξ+ε)−ε−(1+ε)e−2(ξ+ε)

Since this holds for all ε > 0 and θ < 1, we can finish
the proof.

We can derive the following corollary to prove the
necessity part of THEOREM 5.

COROLLARY 5.1. In the cluster-dense state of correlated
mobile k-hop clustered networks, the network is to have dis-
connected cluster members with positive probability bound

away from zero if r =
√

logn+ξ(n)
kπnα (limn→∞ ξ(n) < +∞).

By employing THEOREM 1, we can illustrate this
from the cluster connectivity perspective and obtain the
following corollary.

COROLLARY 5.2. In the cluster-dense state of correlated
mobile k-hop clustered networks, the network is to have
disconnected clusters with positive probability bound away

from zero if r =
√

logn+ξ(n)
kπnα (limn→∞ ξ(n) < +∞).

B. Sufficient Condition of rc of Theorem 5
The idea of this proof is to treat cluster members as

non-clustered nodes because the clustering characteris-
tic is not obvious in this case. We suppose there are at
most n sessions during k time slots. Let each node have
the transmission range r = crc, where c > 1. Then, we
use the union bound and obtain the proof as follows.

P
( m⋃
j=1

( $⋃
κ=1

(

k⋂
λ=1

fλjκ)
))
≤

m∑
j=1

$∑
κ=1

P(

k⋂
λ=1

fλjκ)

≤
m∑
j=1

$∑
κ=1

(
(1− πr2)n

α
)k

(due to (8)) ≤ne−kπn
αr2

=
1

nc2−1

Due to c > 1, taking limits of both sides, we can
easily get the following result.

lim
n→∞

P
( m⋃
j=1

( $⋃
κ=1

(

k⋂
λ=1

fλjκ)
))

= 0

Here, we finish the proof of the sufficient condition
of rc of THEOREM 5.

VII. CONCLUSIONS

In this paper, we have proposed the correlated mobile
k-hop clustered networks model to explore the impact
of correlated mobility and cluster scalability on the con-
nectivity performance in large-scale wireless networks
while bounding the transmission delay as Θ(1) for
any finite k. The critical transmission range rc have
been investigated. We show that there are three states
for the correlated mobile k-hop clustered networks,
cluster-sparse, cluster-dense and cluster-critical state, and
we prove the exact value of rc for the first two states
under certain conditions. Based on these results, we
discover that cluster scalability can on some level con-
trol the degree of correlated mobility and their impact
on connectivity is largely induced by the dynamics of
cluster scales.
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