
1

GreenDrive: A Comprehensive System to Optimize
Driving speed

Yiran Zhao1, Tianyuan Liu2, Yang Zhang2

1. Department of Electronic Engineering, Shanghai Jiao Tong University, China
2. Department of Computer Science, Shanghai Jiao Tong University, China

Email: {zhaoyiran0522, liutianyuan, zhangyang93}@sjtu.edu.cn

Abstract—In many countries, traffic signal information is
unavailable to most drivers far away from the intersection. Thus,
drivers might employ a relatively fast speed when they depart
from the past intersection, while decelerate or undergo a com-
plete halt at the intersection ahead. The often acceleration and
deceleration driving pattern causes increased fuel consumption,
air pollution, and even road accidents.

In this paper we devised and implemented a comprehensive
speed-advisory driving system in which the central server utilizes
the traffic signal information gained from random participation
of smartphones to dynamically infer and calibrate the traffic
signal schedule. As two basic functions, our system is able to
determine best travel routes and advise optimal vehicle speed.
Our system is also map-independent and infrastructure-less,
meaning that it does not need any existing map database, nor
does it depend on expensive devices or governmental assists. Our
system does not eliminate breaks or stops at the intersection,
but it will maximize the probability that drivers do not have to
undergo a complete halt at intersections.

Results from campus road construction show that the construc-
tion of road-intersection topology is accurate; the timing schedule
of individual intersection is inferred and calibrated fairly well.
The average error of calculated road length is small, and the
worst-case average timing error is about 2.4 seconds, meaning
that the server can predict traffic signal schedule relatively well
even if there is absent of acceleration signal at an intersection
for a relatively long time. This is conducive to an accurate
speed advisory system, which yields promising energy conserving
results.

Index Terms—Adaptive speed, Traffic signal schedule, Map con-
struction, Smartphone sensor.

I. INTRODUCTION

Nowadays the traffic lights dominate city traffic, coordi-
nating vehicles from different roads to safely transfer to other
roads. But absent of traffic light information, drivers are hardly
able to adopt appropriate speed and thus they often encounter
total halt reaching the intersection. The complete stop means
a complete loss of kinetic energy and the acceleration when
the traffic light turns green would inevitably result in more
fuel burn and air pollution.

Therefore, it is desired either to dynamically modify traffic
signal phase timing to adapt to different traffic situations, or to
inform drivers to adapt a proper speed, i.e., to deploy a Green
Light Optimal Speed Advisory (GLOSA) system [1]. In the
first case, great efforts have been made around the globe to
establish Intelligent Transportation Systems (ITS). Typically,
the SCATS system now is smoothing traffic flows in 154 cities

in countries such as Australia, Singapore, China, New Zealand,
etc., [1]. In particular, Singapore now possesses a state-of-
the-art GLIDE system to gain information of traffic flow and
calculate best traffic signal schedule. TrafficScan system in
Singapore also helps to gather taxi speed information. But
overall, most cities around the world still find this adaptive
traffic signal system difficult to implement due to the require-
ment of large-scale infrastructure modification and complex
specialized devices. In the second case, current approaches of
GLOSA system have so far been based on roadside message
signs that display the optimal speed drivers should maintain,
or on the countdown timers at vehicular traffic signals that
allow drivers to assume a proper speed [3]. Unfortunately,
most of these systems are costly and impractical to deploy
and maintain.

In this paper, we devise and implement a comprehensive
infrastructure-less system to dynamically construct traffic sig-
nal information in a more realistic sense. As is shown in
Figure 1, our proposed GreenDrive system only runs on smart-
phones and an Internet server, while depending on individual
smartphones GPS and sensor data. The server of GreenDrive
first mines GPS and smartphone sensor data to establish a
road-intersection topological graph, and then gathers vehicle
acceleration time and location to infer and formulate all
traffic light phases at each intersection. When the server is
ready to deduce future traffic signal schedule, it responds to
individual drivers request and provides information about the
intersection traffic state ahead. This process is based on the
prior knowledge of travel routes, meaning that first the driver
has to send a routing request to the server to calculate the
best route. Then the server sends necessary road-intersection
topology data and near-ahead intersections traffic light state
information to the drivers smartphones, which then calculate
the best speed and provide reasonable driving advice. Since
our system does not eliminate complete stop at intersections,
some vehicles would stop and wait at an intersection. But
on detection of acceleration, the smartphone sends red-to-
green transition signal to the server and the server thus could
calibrate the timing of each phase and make future predictions
more accurate. By real tests and careful modification of our
system, we can achieve about a reduction of 90 percent of red
light instances, saving about 20 percent of fuel on average.

Our GreenDrive system can provide the foundation of many
other applications:

• Commercial map revision and refinement. Since our sys-



2

Fig. 1: GreenDrive System.

tem collects GPS information to infer road-intersection
information, we can provide a considerable amount of
trace data with fair accuracy. These data can be used to
extract lane information and improve the accuracy of road
geometry and intersection structure in commercial maps
[4].

• Traffic signal planning advisory service. Currently, infor-
mation about road congestion is gained from road cam-
eras mounted on the traffic signal light, or from vehicle
sensors in road pavement. However, not all intersections
have such monitor devices due to their expensiveness.
But our system central server does collect and provide
average vehicle speed of a particular road. If the average
speed is much lower than the system suggested speed,
the system can infer road congestions and provide traffic
signal adjusting suggestion to government agencies.

• Driving behavior and road condition estimation. Our sys-
tem calculates and records vehicle acceleration in Earths
coordinate system. And with combined information about
vehicle travel direction, we can infer drivers behavior and
suggests better commuting safety. In addition, the bumps
and potholes can be detected by the smartphone sensors
and thus proper road maintenance advice can be obtained.
This functionality however, requires that the smartphone
is mounted on a relatively fixed position with arbitrary
angle to reduce false positives produced by user fiddling .
But in our system, we do not implement this function and
we simply shut down smartphone sensors to save battery
power while in high speed, and activate them when the
vehicle stops.

• Red Light Violation Advisory (RLVA). RLVA service
warns the drivers when they try to speed up and squeeze

through the intersection when the green light is about
to turn. This is particularly dangerous when vehicles
from perpendicular direction happens to encounter
the transition to green light and maintains a relatively
fast speed to sail across the intersection. When the
smartphone detects acceleration while suggesting the
driver to slow down because the time left is too short for
the vehicle to pass through unless it exceeds the speed
limit, warning will be given and driving safety record
will be discredited.

The rest of this paper is organized as follows: In section 2
we give a brief analysis of related work. Then in section 3
we outline the system architecture. In section 4, we detail the
methodologies and algorithms in the order of system phases,
and give experimental results. In section 5 we evaluate the
performance of our system and discuss other applications of
our system as well as future improvements. Finally section 6
offers the conclusion.

II. RELATED WORK

There has been some infrastructure-less GLOSA systems
that uses various sensors such as accelerometer and camera,
together with advanced wireless communication technologies
(ad-hoc, 3G, WIMAX, etc.), to infer traffic signal schedule.

Among such systems, SignalGuru [3] utilizes cell phone
camera and adhoc network to collaboratively predict traffic
light status ahead and advise drivers to maintain a reasonable
speed. However, this system is hard to implement in a real
sense because it may fail to gather traffic light information
when there are not enough vehicles on road since it uses
opportunistic ad-hoc communications to collaboratively learn
the timing patterns. Also, traffic signal information gathered
by smartphone cameras mounted on windshield may also be
problematic when the traffic light is deformed or occluded, or
when it is raining and camera view is obstructed. Furthermore,
SignalGuru requires carefully positioned camera angle to pick
the correct traffic light when facing a complex intersection.

In view of a more reliable means of communication and
a more robust system, some other methods are proposed.
Guobao Ning et al. [5] designed an Adaptive Driving Speed
Guiding system (ADSG) that uses Internet server to gather
location information from cell phones and calculate optimal
speed from traffic light timing downloaded beforehand. How-
ever, this ADSG system is not experimented or implemented as
it depends on pre-downloaded traffic signal information from
the database owned by the ministry of transportation, which
may be inaccurate.

To make the system more applicable, our proposed system
automatically extracts road-intersection topological informa-
tion and traffic signal timing, while effectively maximizes
the probability that individual vehicle does not encounter a
red traffic light. Our GreenDrive system differs from other
smartphone-based systems in that our system is independent of
additional information from either third-party map database or
from governmental agencies, and is able to deal with relatively
complex intersections with multiple sets of traffic lights and



3

Fig. 2: GreenDrive System Modules.

various phase sequence patterns. Our system also requires that
drivers input destination so that travel routes can be determined
by the server and that the targeted traffic signal information
is specified. In addition, the proposed system does not require
careful position of smartphones, and every passenger could
use their own smartphone as the driving guider and hold it in
hands since our system does tolerate normal user fiddling. In a
word, this proposed system is more likely to be implemented
in real world.

III. SYSTEM ARCHITECTURE AND PROCEDURE
DESCRIPTION

The general system modules are illustrated in Figure 2. We
exploit smartphone capabilities and set up a computer as the
server to implement the whole system.

A. Android smartphone capabilities exploited in our system:

1) 3-axis Accelerometer.
The on-device accelerometer measures the acceleration
applied to the device in its own coordinate system,
including the force of gravity. Apart from acceleration
sensor in android phones, the android OS 2.4 and later
also provide gravity sensor interface which estimates the
direction of gravity using the same accelerometer in its
own coordinate system. The gravity information helps
us to calculate the acceleration direction and magnitude
in real earths coordinate system. Although the gravity
measured is not strictly the real gravity (instead it is
aligned with acceleration direction but has a magnitude
of earths gravity), it does not significantly affect the
transformation from phones coordinate system to earths
coordinate system.

2) 3-axis Magnetometer.
Smartphones also integrates magnetometer on device to
measure the geomagnetic field in its own coordinate
system. The reason of using the magnetometer is that we
have to utilize the measurements of geomagnetic field as
a reference to transform the acceleration vector from the
devices coordinate system to earths coordinate system.
Although the readings of magnetometer contains a lot of
noise and is sensitive to indoor man-made magnetic field,
it is generally assumed that there is no strong magnetic
field in vehicular environment, and the noise is going to
be reduced to an acceptable level by simple filtering.

3) Global Positioning System (GPS).
GPS accuracy is greatly improved following the advent
of DGPS system. Smartphones used in our test show
that the average accuracy of position is about 4-6 meters,
with a minimum of 3 meters when the conditions fit. The
GPS system provides smartphones with information about
devices position (longitude and latitude), speed (in meters
per second), bearing (heading direction, in degrees), UTC
time (in milliseconds since January 1, 1970), accuracy
(in meters), etc. Given the sufficient accuracy of GPS
information, we depend to a large degree, on smartphones
GPS data.

B. Road-intersection topology construction

The initialization of the system is to construct road-
intersection topology. Volunteers using this application in
vehicles are needed to record information gathered by on-
device sensors and GPS, and then transmit acceleration data
and GPS traces to the central server when wifi is available. To
locate intersections, we group into clusters the acceleration
(from a halt that lasts at least 20 seconds) vectors that are
often the densest at intersections with traffic lights. The reason
to use this method is that two crossing GPS traces do not
necessarily indicate the existence of intersections with traffic
lights. To improve the robustness of intersection identification,
the pattern of acceleration vectors within a cluster is analyzed
so that accelerating on road segments upon emergency or con-
gestion can be recognized and filtered away. The identification
of intersections will be done only once unless there is need
for update. Volunteers at this initialization phase should try to
avoid using this application in parking lots or residential areas
so as not to incur false positives. And even if false intersection
is produced, it does not affect the systems future functioning.
The resulting intersection should contain the direction and
number of each branch.

After sufficient number of intersections is identified (this
number should be in accordance with estimated intersection
density and the area of the region), the server now uses
recorded GPS traces from smartphones to link the intersections
and establish a topological graph with minimum database
size. The identification of intersections and the generation
of road segments can be concurrent in later stages as new
information is gathered from future participants. Now drivers
could download the map data of the vehicles neighboring
region and store it in local database.



4

C. Traffic signal schedule inference and update

Based on the existing road-intersection topology, future
stop and acceleration information will be associated with a
corresponding intersection that has a unique ID. In this stage,
the traffic signal schedule should be re-established in the early
morning following the interval of night time. And some drivers
will be contributors since they transmit intersection phase
transition information to help server establish timing schedule
while no immediate benefit is returned. The central server first
receives information from accelerated vehicles that contain
the intersection ID, the branch on which it has waited, the
branch on which it departs from the intersection, and the time
interval from acceleration to transmission. Given the shape
and pattern of individual intersection, the traffic signal cycle
length is obtained, and the sequence and flow pattern of each
phase is inferred. Later on, the cumulative prediction error
would cause some vehicles to stop and accelerate again. But
such acceleration information is used by the server to calibrate
its prediction. The calibration process minimizes the mean
square error between servers prediction and real event time.
Each calibration would yield the length of each phase and a
reference starting time. We assume that the cycle length and
phase length remain relatively stable, but adjustment of traffic
signal schedule is acceptable.

D. Routing service and speed advising

To suggest proper speed to the next intersection, the smart-
phone has to gain prior knowledge of travel route. When the
drivers launch this system, a destination has to be specified.
Then the drivers start location and destination location is sent
to the server to calculate the best route. The server chooses the
route with least travel time by dividing the length of each road
segment by the average speed recorded. If the current average
speed on a certain road is not available, the server assumes
that all drivers travel on that road with speed up to the legal
limitation. In other words, the server chooses a route that is
least in distance when information about road traffic condition
is absent. And once the route is determined and downloaded to
the smartphone, the smartphone requests traffic signal schedule
information of the next two intersections. And then with help
of local database and the vehicles current location and heading
direction, the distance to the next intersection is calculated and
the optimal speed is advised. Together with future requests
for traffic signal information, the smartphone also sends the
average speed of the last road segment so that the server can
provide other vehicles with better real-time routing.

IV. SYSTEM IMPLEMENTATION AND ALGORITHM

A. Acceleration module

This module is important in that the system depends heavily
on acceleration data in various stages. Since the measurements
from smartphone 3-axis accelerometer contain a lot of noise,
the acceleration data is first filtered with a cut off frequency
of 2Hz. To further increase detection accuracy, we project the
acceleration vector onto the direction which the vehicle heads
just before a complete stop. The vehicles direction is gained

from GPS information and is maintained by the system once
the vehicles speed is lower than 1 meter per second.

1) Definition of the Body Coordinate System and the Local
North-East-Down(NED) Coordinate System:

The smartphones body coordinate system is illustrated in
Figure 3(a). The X axis is horizontal and points to the right, the
Y axis is vertical and points up and the Z axis points towards
the outside of the front face of the screen. The acceleration
measured by smartphones is given in this body coordinate
system.

As is shown in Figure 3(b), in Local NED coordinate
system, the X axis is pointing to the North Pole, and is
tangential to earths surface. The Y axis is tangential to the
ground at the device’s current location and points towards the
east. And the Z axis is pointing to the sky, which is vertical to
both X and Y axes. The GPS bearing information is provided
as the angle between heading direction and the X-axis in the
Local NED coordinate system.

(a) Body Coordinate System (b) Local NED Coordinate System

Fig. 3: Two coordinate systems used in our system.

2) Coordinate system transformation:
To detect acceleration along the vehicles travelling direc-

tion, the acceleration vector gained from smartphones body
coordinate system has to be transformed into the Local NED
coordinate system. The transformation follows Z-Y-X rotation
sequence. Denote θz, θy, θx as the angle of rotation about
intermediate Z, Y, X-axis in sequence. Thus the rotation matrix
Rnv|b from the body frame to the Local NED frame and is
given by [6]:

Rnv|b =


C(θy)C(θz) C(θy)S(θz) −S(θy)

S(θx)S(θy)C(θz)
−C(θx)S(θz)

S(θx)S(θy)S(θz)
+C(θx)C(θz)

S(θx)C(θy)

C(θx)S(θy)C(θz)
+S(θx)S(θz)

C(θx)S(θy)S(θz)
−S(θx)C(θz)

C(θx)C(θy)


Where C(θ), S(θ) denote cos(θ), sin(θ), respectively.
To calculate the rotation matrix, we have to use the two

reference vectors, i.e. the gravity and the geomagnetic field.
Strictly speaking, using the direction of geomagnetic field as
the X-axis in Local NED frame is not accurate. Since the
magnetic north is different from geodetic north. But in our
system, that difference can be ignored. Thus, the acceleration
vector ~anv in Local NED coordinate system can be expressed



5

by:

~anv =

 axnv

aynv

aznv

 = Rnv|b

 axb

ayb

azb

 = Rnv|b · ~ab

Where ~ab is the acceleration vector in body coordinate system.
3) Vehicle acceleration detection:
The calculated acceleration vector in the Local NED co-

ordinate system is then projected onto the vehicles heading
direction just before its halt. This is based on the assumption
that usually a vehicle that decelerates and stops at an inter-
section remains a relatively stable direction. This direction
is fairly accurate from GPS information, and the low speed
threshold to hold and record the last heading direction is
empirically set to 1 meter per second. The projection naturally
filters away noise or user fiddling acceleration perpendicular
to the vehicles heading direction. And to further reduce false
positive produced by user fiddling, we set up a time window to
calculate the aggregated acceleration in duration of about one
second. In the case of user fiddling, such as screen touching,
moving or even shaking, the movement is usually less than
one second so that the aggregated acceleration is neutralized
by deceleration of approximately the same magnitude.

The filtering, transformation of coordinate system and tak-
ing aggregated acceleration allow for arbitrary positioning of
the smartphone and user fiddling. Real testing reveals that this
method is robust and is able to detect 99 percent of vehicle
acceleration from zero speed.

B. Construction of road-intersection topology

Since our application requires little volunteer efforts, we can
have a large number of participants in a variety of city regions.
Once wifi is available, they will send recorded acceleration and
GPS data to the central server.

1) Identifying intersections:
The server collects all acceleration location and direction

information to find out the position of intersections. We
assume that most volunteers use this system only when in real
road environment instead of in parking lots or residential areas.
Thus a cluster of acceleration location vectors within a circle
of approximately the size of an intersection resembles a real
intersection in high probability. So we use a method similar
to mean shift to locate dense acceleration points. Through
successive computations of the mean shift, the center of the
circle moves along a path leading to a local vector density
maximum. Such process is illustrated in Figure 4.

Then the vectors in the final cluster circles should be further
analyzed to rule out noise occurred on the road segments or
in parking lots. Within those final circles, we extract direction
data and use k-means algorithm to group points by their
heading direction. If the number of groups is less than three,
we discard this circle because it might be on a straight road
segment. If the number of direction groups is larger than five,
we also dont believe that it is a real intersection. Then we find
the center of each group that and check if the average direction
vectors in each group are pointing into the polygon formed by
those group centers. This process is shown in Figure 5. Only

Fig. 4: Mean Shift to locate intersection position.

valid group pattern form a candidate intersection. Then we
give each intersection a unique ID and number each branch to
establish an embryonic database.

(a) Bad Clusters

(b) Good Clusters

Fig. 5: Filter out bad cluster circles.

2) Linking road intersections with GPS traces:
Based on the embryonic intersection database, we give each

GPS trace an opportunity to form a road segment starting from
one intersection to another. From a valid group of acceleration
points that share approximately the same direction, we select
each at a time one vehicle ID and backtrack to the previous
intersection along its trace. To fight against GPS data inac-
curacy, we deploy an algorithm proceeds in a fashion similar
to weighted mean shift algorithm that finds the centroid and
mean direction of a cluster of GPS points on the same side



6

of the road for every 10 meters. The weight of each GPS
point is corresponding to the accuracy of its position, and
the resulted circle is about the size of a typical road width.
We name the center of the final circles anchor point (with
direction). Although we deploy mean shift every 10 meters,
only a change of mean direction that is larger than 20 degrees
or when the distance to the last anchor point is larger than
100 meters will resolve to a valid new anchor point (Figure
6). After each vehicles trace is processed (if another vehicles
trace lies in the processed segment, it will jump to where the
trace departs into a different branch), all roads linking to the
source intersections branch is recorded as groups of anchor
points with direction.

Fig. 6: Generation of anchor points of a road segment.

Then we use modified second order B-splines to represent
road lines as piecewise defined polynomials with first order
continuity at the anchor points. Note that the B-spline control
points are not anchor points. Instead, each time three control
points are calculated given two anchor points to formulate
the second order polynomial that passes through the two
anchor points. The result if shown in Figure 7. After all
roads between any pair of intersections are represented as
piecewise polynomials, the distance of each road segment is
calculated; hence the complete topological graph of a region
is established.

3) Constructed central database:

The intersection ID, its position, the numbered branches in
this intersection, the distance and each anchor points informa-
tion is stored in the servers central database, as is illustrated
in Table I.

Upon each request from smartphones for map data down-
load, the server collects the necessary road-intersection in-
formation along the vehicles route and sends the package to
individual smartphones. When speed information is available,
it will be added to the corresponding road segment so that
server could provide better routing service.

(a) Result from B-spline representation

(b) Compare to real road in Google Map

Fig. 7: Results from construction of road segment.

C. Traffic signal schedule inference and update

Since each intersections shape and linking topology are
stored in the central database, the server is able to dynamically
infer and calibrate traffic signal phases and timing schedule.
In the following statements, we take into consideration the
fact that there might be a long queue of vehicles waiting at
an intersection. So as the traffic light turns green, the first
vehicle’s acceleration time is significantly earlier than the last
one. To deal with this situation, the server only takes into
account the first transition signal of each phase, subsequent
accelerating vehicles’ messages will be discarded if their event
time is following closely to the first event time of the same
phase.

1) Traffic signal phases and phase sequence inference.:
This is the initial phase of establishing traffic signal sched-

ule. It takes far less time to complete than the construction
of the road-intersection topology. The traffic signal schedule
is probably inaccurate or even erroneous without calibration
from enough traffic flow during night time. As the number
of vehicles increases in early morning, our system is able to



7

TABLE I: Constructed database.
Intersection

ID longitude latitude Rn

direction
Rn connected

intersection
length of

Rn

A.P.
number

A.P.
longitude

A.P.
latitude

A.P.
direction

001 116.3463 29.1354 15 00n 210 10 121.453 30.323 353

re-establish and keep track of the traffic signal schedule. To
discard erroneous timing data, every time the system predicted
traffic phase timing disagrees with phase transition signal
sent by smartphones to a certain level, the system will wipe
out history traffic signal schedule and restart. Whatever the
shape and pattern of an intersection is, we assume that the
traffic signal cycle length, the length of each phase, and the
sequence of the phases are the same within a relatively long
period. If scheduling is changed and the predicted timing
shows significant error, our system will restart this stage.

Fig. 8: A typical road intersection with n = 4.

To clarify branch names for later use, here the in-coming
branches of an intersection are denoted by {ai, i = 1, 2...n}
(n is the number of branches), and the out-going branches are
labeled {bi, i = 1, 2...n}. Typically, n equals to 3 or 4. Taking
n = 4 as an example in Figure 8. Here we denote (ai, bj) as
the traffic flow from ai to bj . Right turns and turn back such as
(ai, bi), i = 1, 2, 3, 4, and (a2, b1), (a3, b2), (a4, b3), (a1, b4)
are not taken into account in our system. If any two types of
traffic flow happens at the same time, say, (a1, b2), (a3, b4),
then they form a phase.

To infer the number of phases and their sequence, it is
required that each smartphone transmit its in-coming branch
ID, its out-coming branch ID and the interval of time between
acceleration occurs and transmission occurs to the central
server. This is possible since each smartphone has the topology
map of its visiting region. It is further assumed that in each
traffic signal cycle, every phase of traffic flow (ai, bj) only
happens once, and that drivers obey traffic rules so as not to
run the red light. Based on such assumptions, it is reasonable
that acceleration at intersections from a halt which lasts at
least 20 seconds is the signal of a transition from red to green
of the corresponding phase. So during this initialization, the

server should have collected sufficient amount of data of each
intersection so that many pairs of flow (ai, bj) are grouped
into phases. If the phase number is reduced to a reasonable
one, say, four phases for a n = 4 intersection (typically like
Figure 9), then the server goes into finding the length of traffic
signal cycle T .

(a) Phase 0 (b) Phase 1

(c) Phase 2 (d) Phase 3

Fig. 9: Caption. Typical phases in an intersection with n = 4.

Using the same collected data, the server finds the minimum
time interval of any repeating phase Si, i = 0, 1, 2, 3.
With high probability, that minimum time interval (it also
should be reasonably large) is approximately the length of
the traffic signal cycle T (although it may be smaller due to
deviation). Given the rough cycle length T , the server then
tries to figure out the sequence of the phases. Again, using
the same data (perhaps more are collected), the server finds
the closest next phase, say S1, S2, S3, S0, following each
phase S0, S1, S2, S3, respectively. Denote the time interval
dtsi = t(Snext)− t(Si) as the time from the start of phase Si

to the start of its closest next phase. If
∑n

i=1 dtsi, (n = 4)
approximately equals to T (with difference sufficiently smaller
than T itself), then the server deems the initialization process
successful.

2) Traffic signal timing calibration and update.:
Once the number of phases, the sequence of the phases,

and the approximated length of phases are determined, the
server takes one phases starting time as the servers prediction
begin time. Denote ts as the prediction starting time, and tsk
as the server-received start time of phase Sk. Upon receiving



8

ts

tsk ns0 ns1 ns2 ns3

tsl ns′0 ns′1 ns′2 ns′3

tsp ns′′0 ns′′1 ns′′2 ns′′3

... ... ... ... ...

TABLE II: Set of data for calibration.

tsk from smartphones, the server judges the number of times
each phase has happened. To be more specific, using ts, tsk,
T and dtsk, the server will infer whether the prediction is
ahead of real timing or is lagging behind. Denote nsi as the
number of times phase Si (i = 0, 1, 2, 3) has happened from
ts to tsk. The server calculates nsi and records the set of data
tsk, nsi (i = 0, 1, 2, 3) into an array (illustrated in Table II)
for calibration.

As the received signal continues to add new rows in the
Table II, we dynamically make a calibration when the size
of rows reaches a threshold (i.e. N , this value also changes
according to the level of prediction error). Resolve the Table II
into five columns (without the first row), each forming a vector,
namely, ts, ns0, ns1, ns2, ns3. With the five vectors, we are
going to find the calibrated starting time (t0) and calibrated
phase length (dtsi, i= 0, 1, 2, 3).

The goal is to find a best estimation of t0, dtsi, (i=0, 1, 2, 3)
that have the minimum mean square error (MSE) with the real
event time. So we formulate a target function that represents
the MSE:

F (t0, dts0, dts1, dts2, dts3) = (t0 − ts)2

+
∑N

i=1(t0 + ns0(i) · dts0 + ns1(i) · dts1
+ns2(i) · dts2 + ns3(i) · dts3 − ts(i))2

(1)

Where N is the size of the vectors nsi, ts. Minimize this
target function by taking partial derivative of each variable in
Equ.(1):

∂F

∂t0
= 0,

∂F

∂dtsi
= 0, i= 0, 1, 2, 3

Solving the resulting equations yields calibrated t0, dtsi, i=
0, 1, 2, 3. Note that if in rare cases the function cannot be
solved, or that the matrix is singular, we cannot get the
individual value of every dtsi, but the sum of some of them,
and then allocate value based on their history ratio. In most of
our tests, the MSE algorithm utilizes a fair amount of history
data to provide sound calibration to future predictions.

D. Server and smartphone communication

There are various messages sent between the smartphones
and the server. As is mentioned, the smartphone should trans-
mit its acceleration and GPS data to the server. In addition,
the smartphone sends requests for routing and traffic schedule
information. It also uploads the average speed information
and possibly, road condition information to the server. Apart
from doing calculations, the server has to deliver the best
travel route to smartphones, and sends traffic signal schedule
information for individual smartphone.

1) Routing:
When a driver launches our application, the destination is

specified and sent to the server for request of routing. The
server extracts information of map topology and average speed
within the circle region (a circle that centers at the middle of
start point and the destination point, with diameter slightly
larger than the distance between the two points), and employs
Dijkstra algorithm to calculate the route with the least travel
time.

2) Best speed calculation:
As the vehicle advances, it will request for traffic signal

schedule of the two intersections ahead on its route. And the
distance from the vehicles current position to the intersection is
calculated in a similar way as 4.2.2. The length of the B-spline
between anchor points to the intersection is calculated and the
distance of the vehicles position to the nearest anchor point is
also obtained through calculation every 10 seconds. Combined
with the distance and the traffic signal schedule, the optimal
speed should be such that (in Figure 10) the speed line should
remain as straight as possible on the two road segments.

Fig. 10: Obtaining optimal speed.

3) Traffic and road condition upload:
The server uses average speed of road segment to calculate

the best route, to infer road congestion, and to provide sugges-
tion for traffic signal planning. If the actual speed of vehicles
is significantly below the advised speed, the smartphone will
send a signal of congestion along with the average speed. And
if the number of congestion signal is too large in ratio with
the roads capacity, the server will propose a traffic signal re-
planning. In addition, if the accelerometer also detects large
measurements along the Z-axis of the coordinate system, it
will send a signal of bad road condition.

4) Special cases:
It is often the case where the driver wants to go on his or

her frequent-traveled route instead of that suggested by the
server. Our system does allow deviation from preset route.
Upon detection of turning into another branch, the smartphone
will send a message for re-routing. And procedure of finding



9

a route is operated again, and new intersection traffic signal
schedule is sent to the smartphone.

In some cases, the driver just does not want to drive as fast
as the system suggests. This is acceptable because besides the
optimal speed (the fastest one within legal limit), a lower speed
that allows the driver to sail across the intersection in the next
cycle is also proposed on the interface.

V. PERFORMANCE EVALUATION

Real tests are yet to be carried out. Those tests include:
1) Acceleration detection test. We should get in a real

vehicle and test the acceleration module, to gain the
statistic result of the detection rate.

2) Campus road-intersection topology construction. We need
to collect acceleration and GPS data using real vehicles
and take normal trips in SJTU. Or we can find some real
intersection-dense areas to see if the topology graph can
be established.

3) Real intersection signal schedule prediction. We need to
set up the server and call on several volunteers to simulate
acceleration in each branch of a targeted intersection.
To test the overall performance of traffic signal schedule
prediction would be unrealistic and may be replaced by
complex simulation.

VI. CONCLUSION

We believe that when the tests are carried out, the energy
consumption shall be reduced, and information about road
condition and traffic signal re-planning should be available.

ACKNOWLEDGMENT

The author would like to thank Prof. Xinbing Wang, Xiao-
hua Tian, Tuo Yu, etc. who offer us great help.

REFERENCES

[1] J. van Leersum, “Implementation of an advisory speed algorithm in
transyt,” Transportation Research Part A: General, 1985.

[2] Wikipedia: Sydney Coordinated Adaptive Traffic System,
http://en.wikipedia.org/wiki/
Sydney_Coordinated_Adaptive_Traffic_System

[3] Emmanouil Koukoumidis, Li-Shiuan Peh and Margaret Mar tonosi,
”SignalGuru: Leveraging Mobile Phones for Collaborative Traffic Signal
Schedule Advisory,” in Mobisys, 2011.

[4] Stephan Schroedl, Kiri Wagstaff, Seth Rogers, Pat Langley, and Christo-
pher Wilson, “Mining GPS Traces for Map Refinement,” Data Mining
and Knowledge Discovery, 9, 59C87, 2004.

[5] Guobao Ning, and Lushen Cai, “Adaptive Driving Speed Guiding to
Avoid Red Traffic Lights,” in Proceedings of the 2nd International
Conference on Computer Science and Electronics Engineering, 2013.

[6] G.Cai, “Unmanned Rotorcraft Systems, Advances in Industrial Control”
Springer-Verlag London Limited, DOI 10.1007/978 − 0 − 85729 −
635− 1− 2, 2011.

Yiran Zhao is currently pursuing his B.E. degree in
electronic engineering in Shanghai Jiao Tong Uni-
versity, China. His research interests are in electronic
systems.

Tianyuan Liu is currently pursuing his B.E. degree
in electronic engineering in Shanghai Jiao Tong Uni-
versity, China. His research interests are in computer
science.

Yang Zhang is currently pursuing his B.E. degree
in electronic engineering in Shanghai Jiao Tong Uni-
versity, China. His research interests are in computer
science.


