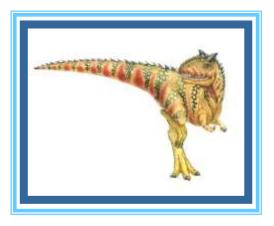


El 338: Computer Systems Engineering (Operating Systems & Computer Architecture)

Dept. of Computer Science & Engineering Chentao Wu wuct@cs.sjtu.edu.cn_

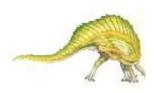


Download lectures

- <u>ftp://public.sjtu.edu.cn</u>
- User: wuct
- Password: wuct123456

• http://www.cs.sjtu.edu.cn/~wuct/cse/


Summary


Face to face Q & A

- Time: 10am to 5pm on Dec. 27th (Friday)
- Place: Room 513, SEIEE-3 Building

- East Lower Building (东下院) 312&313
- On Dec. 30th (Monday)
- Time: 13:10-15:10
- Close Book
 - Computer Architecture ~20%
 - Operating System ~80%


Question Types Blank Filling (20%) Definitions Pseudo Codes in Projects Questions (~30%) Calculations (~50%) Total Number of Questions: 15-18

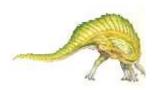
OS-Chapter 1: Introduction

- Operating Systems Definitions
- Operating-System Structure
- Operating-System Operations
- Computer-System Architecture
- Computer-System Organization
- Interrupt, DMA, Cache
- Storage Hierarchy
- Process Management
- Memory Management
- Storage Management
- Multiprocessor Systems/Multi-core Systems
- Distributed Systems

OS-Chapter 2: Operating-System Structures

- Operating System Services
- User Operating System Interface (CLI, GUI)
- System Calls
- Types of System Calls
- System Programs
- Operating System Design and Implementation
- Operating System Structure
 - Microkernel system structure
- System Boot

OS-Chapter 3: Processes


- Process Concept
- Process State
- Process Control Block (PCB)
- Process Scheduling
 - Context switch
- Operations on Processes (Creation and Termination)
- Interprocess Communication
 - Communication Models
 - Communication in Client-Server Systems

OS-Chapter 4: Threads

- Multithreading Concepts
- Multithreading Models
 - Many-to-One
 - One-to-One
 - Many-to-Many
- Thread Libraries
 - Pthread
- Threading Issues

OS-Chapter 5: CPU Scheduling

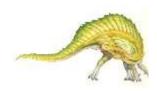
- Scheduling Concepts
- Scheduling Criteria
- Scheduling Algorithms
 - FCFS
 - SJF
 - Priority Scheduling
 - Round-Robin (RR)
 - Multi-core Scheduling

OS-Chapter 6&7: Process Synchronization

- Background
- The Critical-Section Problem
- Peterson's Solution
- Synchronization Hardware
- Locks, Semaphores
- Classic Problems of Synchronization
 - Bounded Buffer
 - Readers-Writers
 - Dining Philosophers
- Monitors
- Atomic Transactions

- The Deadlock Problem
- Deadlock Characterization
- Methods for Handling Deadlocks
 - Resource-Allocation Graph
 - Banker's Algorithm
- Deadlock Prevention
- Deadlock Avoidance
- Deadlock Detection
- Recovery from Deadlock

OS-Chapter 9: Main Memory


- Background
- Swapping
- Contiguous Memory Allocation
- Paging
- Structure of the Page Table
- Segmentation
- Example: The Intel Pentium

OS-Chapter 10: Virtual Memory

- Background
- Demand Paging
- Copy-on-Write
- Page Replacement Algorithm
 - FIFO
 - Optimal
 - LRU
- Allocation of Frames
- Thrashing
- Memory-Mapped Files
- Allocating Kernel Memory
- Other Considerations

OS-Chapter 11: Mass-Storage Systems

- Overview of Mass Storage Structure
- Disk Structure
- Disk Attachment
- Disk Scheduling
- Disk Management
- Swap-Space Management
- RAID Structure

OS-Chapter 12: I/O Systems

- Typical I/O devices
- I/O bus architecture
- Interrupt-Driven I/O Cycle
- DMA

OS-Chapter 13: File-System Interface

- File Concept
- Access Methods
- Directory Structure
- File-System Mounting
- File Sharing

OS-Chapter 14&15: File System Implementation

- File-System Structure
- File-System Implementation
- Directory Implementation
- Allocation Methods
- Free-Space Management

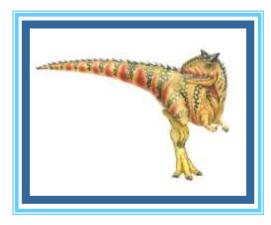
- Benefits and Features
- Types of Virtual Machines and Their Implementations
- Virtualization and Operating-System Components

CA-Chapter 1: Fundamentals of Quantitative Design and Analysis

- Introduction
- Quantitative Principles of Computer Design
- Classes of Computers
- Computer Architecture
- Trends in Technology
- Trends in Cost
- Dependability
 - MTTF, MTTR
- Performance
 - Amdhal's law

CA-Chapter 2 & Appendix B: Memory Hierarchy Design

- Memory Hierarchies
- Six Basic Cache Optimizations
- Ten Advanced Cache Optimizations
- Calculate Memory Access Time based on Miss Rate.


CA-Appendix A Instruction Set Principles

- Instruction Set Architecture
- Classifying ISAs
- Encoding the Instruction Set

Merry Christmas! Happy Chinese New Year! Wish all students have good grades!

End of Summary

