
COMP 110-001 
Classes

Yi Hong
May 22, 2015

Announcement
§  Lab 2 & 3 due today

Review
§  Q1: What are the three types of loops? What

are their differences?
§  Q2: Write a program that maintains the

balance of an account
•  Ask for a balance-update from user in each

iteration
•  Positive value: deposit
•  Negative value: withdraw

•  If the balance-update is 0 or the balance goes
below 0, exit from loop and print out the
remaining balance

Sample Code for Q2

num++ v.s. ++num
§  num++ does num = num + 1;
§  So does ++num. But, there is a difference
•  int num1 = 5;
•  System.out.println(num1++);

•  Outputs num1 (5), then +1
•  int num2 = 5;
•  System.out.println(++num2);

•  +1, then outputs num2 (6)

Today
§  Classes

Classes and Objects
§  Java programs (and programs in other

object-oriented programming languages)
consist of objects of various class types

§  Objects can represent objects in the real
world
•  Automobiles, houses, employee records

§  Or abstract concepts
•  Colors, shapes, words

Object Oriented Programming (OOP)

§  Object: Attributes + Methods
§  Class: the blueprint of objects of the same

type
Person	

name,	 contact	

Student	
student	 ID,	

program,	 year	

Teacher	
employee	 ID,	

department,	 rank	

S1	
name=“Alan”,	

contact=“919-‐…..”,	
program	 =	 biostat,	

year	 =	 1st	

S2	
name=“Anna”,	

contact=“919-‐…..”,	
program	 =	 CS,	
year	 =	 1st	

T1	
name=“Yi”,	

contact=“919-‐…..”,	
dept	 =	 CS,	

rank	 =	 no	 rank	

T2	
name=“Marc”,	

contact=“919-‐…..”,	
program	 =	 biostat,	
rank	 =	 assoc	 prof	

Class	

Objects	

Superclass	

Subclass	

OOP in Practice
§  Import class if necessary
•  E.g.: import java.util.*;

§  Create object
•  Class_Type variable_name = new ClassType(…);
•  E.g.: Scanner keyboard = new Scanner(System.in);
 Polygon treeTop = new Polygon();

§  Access object members (attribute or method)
•  int inputNumber = keyboard.nextInt();
•  treeTop.setColor(Color.green);

§  A class is the definition of a kind of object
•  A blueprint for constructing specific objects
•  Specifies an object’s attributes and defines its

behaviors as methods

Class

§  Today, we will
talk about how
to create our
own classes

 5.1 Class and Method Definitions 263

5.1 CLASS AND METHOD DEFINITIONS

The greatest invention of the nineteenth century was the invention of the
method of invention.

ALFRED NORTH WHITEHEAD, SCIENCE AND THE MODERN WORLD

A Java program consists of objects of various class types, interacting with one
another. Before we go into the details of how you define your own classes
and objects in Java, let’s review and elaborate on what we already know about
classes and objects.

Objects in a program can represent either objects in the real word—
like automobiles, houses, and employee records—or abstractions like colors,
shapes, and words. A class is the definition of a kind of object. It is like a
plan or a blueprint for constructing specific objects. For example, Figure 5.1
describes a class called Automobile. The class is a general description of what
an automobile is and what it can do.

Objects in a
program can
represent real-
world things or
abstractions

FIGURE 5.1 A Class as a Blueprint

Class description

Second Instantiation:

Object name: suesCar

First Instantiation:

Object name: patsCar

Third Instantiation:
Object name: ronsCar

amount of fuel: 14 gallons
speed: 0 miles per hour
license plate: "SUES CAR"

amount of fuel: 10 gallons
speed: 55 miles per hour
license plate: "135 XJK"

amount of fuel: 2 gallons
speed: 75 miles per hour
license plate: "351 WLF"

Class Name: Automobile

Data:
 amount of fuel__________
 speed __________
 license plate __________

Methods (actions):
 accelerate:

 How: Press on gas pedal.
 decelerate:

 How: Press on brake pedal.

Objects that are instantiations
of the class Automobile

UML (Unified Modeling Language)

Automobile	

-‐ 	 fuel:	 double	
-‐ 	 speed:	 double	
-‐ 	 license:	 String	

+	 accelerate(double	 pedalPressure):	 void	
+	 decelerate(double	 pedalPressure):	 void	

Class name

Data

Methods
(actions)

§  Use a UML class diagram to help design a
class

Objects, Instantiation
Object	 Name:	 patsCar	
	
amount	 of	 fuel:	 10	 gallons	
speed:	 55	 miles	 per	 hour	
license	 plate:	 “135	 XJK”	

Object	 Name:	 suesCar	
	
amount	 of	 fuel:	 14	 gallons	
speed:	 0	 miles	 per	 hour	
license	 plate:	 “SUES	 CAR”	

Object	 Name:	 ronsCar	
	
amount	 of	 fuel:	 2	 gallons	
speed:	 75	 miles	 per	 hour	
license	 plate:	 “351	 WLF”	

Instantiations, or instances, of the class Automobile

§  Classes specify the data type, what kind of
data the objects have

§  Important: classes usually do not have
data; individual objects have data.

§  But, a class can have variables that are
static as well as methods that are static.

§  Static variables and static methods belong
to a class as a whole and not to an
individual object (more discussion later)

Objects

§  Each Java class definition goes in its own, it
is in a separate file

§  ClassName à save the file as
ClassName.java

§  E.g.: Student.java includes the class Student

Class Files and Separate Compilation

§  What happens when you compile a .java
file?
•  .java file gets compiled into a .class file
•  Contains Java bytecode
•  The same filename except for .class instead of .java

§  You can compile a Java class before you
have a program that uses it

§  Don’t worry about the compilation in this
course as Eclipse does it automatically

Class Files and Separate Compilation

Example: Class Student
Class Name: Student

-  Name
-  Year
-  GPA
-  Major
-  Credits
-  GPA sum
+ getName
+ getMajor
+ printData
+ increaseYear
 How: increase year by 1
+ calcGpa
 How: average grades

-‐	 	 :	 private	
+	 :	 public	

In this lecture, we focus
on public first, we will
discuss about private

members later

Example: Class Student
Class Name: Student

-  name: String
-  year: int
-  gpa: double
-  major: String
-  credits: int
-  gpaSum: double
+ getName(): String
+ getMajor(): String
+ printData(): void
+ increaseYear(): void
+ calcGpa(double grade): void

public	 class	 Student	
{	
	 	 	 	 public	 String	 name;	
	 	 	 	 public	 int	 classYear;	
	 	 	 	 public	 double	 gpa;	 	
	 	 	 	 public	 String	 major;	
	 	 	 	 //	 ...	
	
	 	 	 	 public	 String	 getMajor()	
	 	 	 	 {	
	 	 	 	 	 	 	 	 return	 major;	
	 	 	 	 }	
	
	 	 	 	 public	 void	 increaseYear()	
	 	 	 	 {	
	 	 	 	 	 	 	 	 classYear++;	
	 	 	 	 }	
}	

Defining a Class
Class	 name	

Data	
(instance	 variables)	

Methods	

Instance variables and
methods are members

of a class

§  Data defined in the class are called
instance variables

 public String name;
 public int classYear;

 public double gpa;
 public String major;

Instance Variables

public: no restrictions on how
these instance variables are used
(more details later – public is
actually a bad idea here)

Data type: int, double,
String…

variables

public class Student
{
 public String name;
 public int classYear;
 public double gpa;
 public String major;
 // …
 public String getMajor()
 {
 return major;
 }
 public void increaseYear()
 {
 classYear++;
 }
}

Using Instance Variables Inside the
Class Definition

§  Create an object jack of class Student
Student jack = new Student();

Scanner keyboard = new Scanner(System.in);

§  Create an object keyboard of class Scanner

Creating an Object

Create an object Return memory
address of object

Assign memory address
of object to variable

public static void main(String[] args)
{
 Student jack = new Student();
 jack.name = “Jack Smith”;
 jack.major = “Computer Science”;

 System.out.println(jack.name + “ is majoring in ” + jack.major);

 Student lily = new Student();
 lily.name = “Lily Chase”;
 lily.major = “Biology”;

 System.out.println(lily.name + “ is majoring in ” + lily.major);
}

Using public Instance Variables
Outside a Class

jack.name and lily.name
are two different instance
variables because they
belong to different objects

§  Instance variables
•  Declared in a class
•  Confined to the class
•  Can be used in any

method in this class

§  Local variables
•  Declared in a method
•  Confined to the method
•  Can only be used inside

the method

23!

Local / Instance Variables
public	 class	 Student	
{	
	 	 	 	 public	 String	 name;	
	 	 	 	 public	 int	 classYear;	
	 	 	 	 public	 String	 major;	
	
	 	 	 	 public	 void	 printInfo(){	
	 	 	 	 String	 info	 =	 name	 +	 “:”	 	
	 	 	 +	 major	 +	 “:”	 +	 classYear;	

	 	 	 	 	 	 	 	 	
	 	 	 	 System.out.println(info);	

	 	 	 	 }	
	
	 	 	 	 public	 void	 increaseYear(int	 inc)	
	 	 	 	 {	
	 	 	 	 	 	 	 	 classYear	 +=	 inc;	
	 	 	 	 }	
}	

public class Student
{
 public String name;
 public int classYear;
 public String major;

 public void printInfo()
 {
 String info = name + “: ” + major + “: ” + classYear ;
 System.out.println(info);
 }

 public void increaseYear(int inc)
 {

 classYear += inc;
 info = “info changed a bit”; }

}
24!

An Example

•  Java will not
recognize info ✗	

public class Student
{
 public String name;
 public int classYear;
 public String major;

 public void printInfo()
 {
 String info = name + “: ” + major + “: ” + classYear ;
 System.out.println(info);
 }

 public void increaseYear(int inc)
 {

 classYear += inc;
 String info = “classYear updated”;
 System.out.println(info);

 }
}

25!

An Example

•  The two variables, info,
will not affect each other

This will become more
clear after we discuss
code block later

§  Methods
§  Code block

Next Class

