COMP 110-001
Mid-Term Review

Yi Hong
May 27, 2015

Announcement

= Midterm on Friday, May 29
* Closed books, no notes, no computer

Today

= A whirlwind tour of almost everything we
have covered so far

* You should start preparing for mid-term if you
naven't

* Finish the mid-term practice before Thursday
* Review slides and textbook
= Review your lab / assignment code

Hardware vs. Software

» Hardware - physical machine
« CPU, Memory

» Software - programs that give instructions
to the computer
* Windows XP, Games, Eclipse

¥t e e Mcroson

Hardware

= CPU - the “brain” of your computer

= Memory — stores data for the computer
* How much the “brain” can remember
* Main memory: RAM

* Auxiliary memory: Hard Drive

Memory

* Measured in bytes

= 1 byte = 8 bits

= Bitis either O or 1

» | anguage of the computer is in bits

Programming Languages

High-level language
(human readable)

Low-level language
Machine Language (Bits) | | (computer readable

Algorithms and Pseudocode

= Algorithm — a set of instructions for solving
a problem

» Pseudocode — combination of code and
English used to express an algorithm
before writing algorithm into code

 \We can also use flow-chat to write
pseudocode

Variables

= Used to store data in a program
= The data currently in a variable is its value

= Name of variable is an identifier
* Letters, digits, underscore

» Cannot start with digits

= Can change value throughout program

= Choose variable names that are
meaningful!

How to Use Variables

= Declare a variable
 int number;

= Assign a value to the variable
* number = 37;

= Change the value of the variable
* number = 513;

10

Keywords

» Reserved words with predefined meanings
= You cannotf name your variables keywords
= |f, else, return, new

11

Data Type

= \What kind of value the variable can hold

= Two kinds of types.
* Primitive type - indecomposable values

 Names begin with lowercase letters
* int, double, char, float, byte, boolean, and others

» Class type - objects with both data and
methods

 Names by convention begin with uppercase letter
« Scanner, String, Student

12

Assignment Statements

= Change a variable’s value

= Syntax
* variable = expression;

= Example
* sleepNeeded = 8;

* sleepDesired = sleepNeeded * 2;

13

Assignment Compatibilities

intx =5; byte 2 short > int
‘Q" —> Long - float = double
double y = 12.7; @p
‘
Y,
y=Xx;, 2 \‘5 = E;‘ -

14

Type Casting

/—\
K S,
X =(int)y; =2 i = (int) @)?
oK

Arithmetic Operators

= Unary operators
° +1 T ++1 T '

» Binary arithmetic operators
° *! /! %7 +7 B
 rate*rate + delta

« 1/(time + 3*mass)
e (@a-7)/(t+9%)

16

Modular Arithmetic: %

= Remainder

7% 3=1 (7/3 =2, remainder 1)
" 8% 3=2 (8/3 =2, remainder 2)
" 9% 3=0 (9/3 =3, remainder 0)

17

Parentheses and Precedence

» Expressions inside parentheses evaluated first
» (cost + tax) * discount

« cost + (tax * discount)

* Precedence rules
Highest Precedence

* First: the unary operators +, -, !, ++, and --

« Second: the binary arithmetic operators *, /, %

» Third: the binary arithmetic operators + and —
Lowest Precedence

18

Errors

» Syntax error — grammatical mistake in your
program

 Java will not compile programs with syntax
error

*» Run-time error— an error that is detected
during program execution

* E.g., exceptions during execution

» Logic error— a mistake in a program
caused by the underlying algorithm

19

Strings

= A string (lowercase) is a sequence of
characters

* "Hello world!”

 “Enter a whole number from 1 to 99.”

= String (capital S) is a class in Java, not a
primitive type

20

String

String animal = “aardvark?”,
System.out.printin(animal);

aardvark

21

String Concatenation

String animal = "aardvark’;
String sentence;
sentence = "My favorite animal is the ” + animal,

My favorite animal is the aardvark

22

String’s Methods

= myString.length();

» myString.equals(“a string”);
» myString.toLowerCase();

= MyString.indexOf(* °);

= myString.trim();

» For other methods, check Java API

23

String Indices

U

N

C

0

1

2

11

String output = myString.substring(1, 8);

24

String Indices

o
—
N
V)
AN
)
(@)
~
(00)
©
—
o

11

String output = myString.substring(1, 8);

25

Escape Characters

\" |Double quote
\" | Single quote
\ |Backslash

\n | New line

\r

Carriage return

\t

Tab

26

Keyboard Input

Scanner keyboard = new Scanner(System.in);
iInt num = keyboard.nextlnt();

27

Comments

// this 1s a comment

/* This 1s also
a comment.
it ends

here --->*/

28

Boolean Expressions

= An expression that is either true or false
= Examples:

* It is sunny today (true)

* 10 is larger than 5 (true)

« Today is Saturday (false)

29

If/else Statements

import java.util.*;

Prompt public class FlowChart

user for

integer {
public static void main(String[] args)
{

System.out.println("Give me an integer:");
Scanner keyboard = new Scanner(System.in);
int inputInt = keyboard.nextInt();

Is input
greater
than 107

Yes No

if (inputInt > 10)

{
System.out.println("big number");
Print: Print: }
“bi “ else
big small
number” number” { .
System.out.println("small number™);
}

30

If-else-if for Multi-Branch Selections

if (casel) { if (year==1) {

// branch 1 System.out.printIn(“Freshman”);

} else if (case2) { }else if (yea ==2) {
// branch 2 System.out.printin(“Sophomore”);
} else if (case3d) { }else |f (year==3) {

System.out.printIn(“Junior”);

) else | } else {
System.out.printIn(“Senior”);

Java Comparison Operators for

Primitive Values

== | Equal to

= |Not equa

to

> Greatert

Ndn

>= | QGreatert

nan or equal to

< Less than

<= |Less than or equal to

The result is a boolean value (true/false)

Example expressions:
variable <= 6
myInt > 5
5 ==

32

Boolean Type

= Can be either true or false

boolean sunny = true;

boolean cloudy = false;

if (sunny || cloudy)

{
// walk to school

33

&&, || operators

= AND
if ((temperature > 50) && (temperature < 75))

{
// walk to school

¥

= OR
if (sunny || cloudy)

{
// walk to school

¥

34

The ! (NOT) operator

= ltrue iIs false
= lfalse is true

= Example: walk to school if it is NOT cloudy

if (!cloudy)
{

35

Loops

Loop: part of a program that
repeats

Body: statements being

Start

repeated
lteration: each repetition of ake
body sandwich

1

Enough
sandwiches?

Stopping condition

Yes

A 4

’ Distribute

sandwiches

36

Types of Loops

= while
o Safest choice

* Not always the best

= do-while
* Loop iterates AT LEAST once

= for
« Similar to while, but often more convenient syntax

* Most useful when you have a known number of
iterations you need to do

37

Using a while Loop

int n = 1;
while (n <= 10)
{

n=1

Yes

i

System.out.println(n);

Output n

n=n+1,;

A

n=n+1

A

No

|

End

38

Using a for Loop

int n;

for (n = 1; n <= 10; n++)

{
System.out.println(n);

39

Infinite Loop Example

int n;

for (n = 1; n <= 10; n = Q)

{
System.out.println(n);

40

The break statement

for (int item = 1; item <= 5; item++)

{
System.out.print(“Enter cost of item #” + item + “: $7);
amount = keyboard.nextDouble();
total = total + amount;
if (total >= 100)
{
System.out.println(“You spent all your money.”);
break;
}
System.out.println(“Your total so far is $” + total);
}

System.out.println(“You spent $” + total);

41

Ending a Loop

= Count-controlled loops
* If you know the number of loop iterations

» for (count = 0; count < iterations; count++)

= User-controlled loops
« Change the value of control variable

* E.9., Ask-before-iterating, or sentinel value (if user
input is smaller than 0)

« E.g., booleans, matching is found

42

Nested Loops Example

—for (inti=1;1<10; i++) {
- for (intj = 1; j<=i; j++) {

System.out.print(i + "7 +]+ ="+ (i * j) + “\t');
.
System.out.printin();

43

Classes, Objects, and Methods

= Class: a definition of a kind of object

»= Object: an instance of a class

» Contains instance variables (data) and
methods

= Methods
 Methods that return a value

* Methods that return nothing

44

Class

= A class is the definition of a kind of object
* A blueprint for constructing specific objects

Class Name: Automobile

Data:
amount of fuel
speed
Ticense plate

Methods (actions):
accelerate:

How: Press on gas pedal.
decelerate:

How: Press on brake pedal.

45

Objects, Instantiation

Object Name: patsCar

amount of fuel: 10 gallons
speed: 55 miles per hour
license plate: “135 XJK”

A

Object Name: ronsCar Object Name: suesCar
amount of fuel: 2 gallons amount of fuel: 14 gallons
speed: 75 miles per hour speed: © miles per hour
license plate: “351 WLF” license plate: “SUES CAR”

Instantiations, or instances, of the class Automobile

Creating an Object

= Create an object jack of class Student
Student jack = new Student();

:

Assign memory address Return memory
of object to variable address of object

|

Scanner keyboard = new Scanner(System.in);

= Create an object keyboard of class Scanner

Create an object

Instance Variables

= Data defined in the class are called

Instance variables

‘public| (String |(hame;
public| | int classYear; — variables
public| |double ||gpa;
publlc Strlngjkmajor)

public: no restrictions om Data type: int, double,

these instance variables are used String...
(more details later — public is
actually a bad idea here)

Methods

= Two kinds of methods
 Methods that return a value

« Examples: String’s substring() method,
String’s indexOf() method, etc.
* Methods that return nothing

« Perform some action other than returning an item
« Example: System.out.printin()

49

Methods

classYear++;

returns a String

return type

returns nothing

50

Calling Methods That Return Nothing

* Object, followed by dot, then method name,
then ()

* Order, type, and number of arguments must
match parameters specified in method heading

= Use them as Java statements

Student jack = new Student();
jack.classYear = 1,

jack.increaseYear();

System.out.printin("Jack’s class year is " + jack.classYear);

51

Calling Methods That Return a Value

» Object, followed by dot, then method name,
then () (the same as before)

» Use them as a value of the type specified by
the method’s return type

Student jack = new Student();
jack.major = "Computer Science’;

String major = jack.getMajor();

System.out.printin(“Jack’s full name is ” + jack.getName());

System.out.printin("Jack’s major is ” + major);
52

Local / Instance Variables

= |nstance variables
 Declared in a class

 Confined to the class

« Can be used in any
method in this class

= |Local variables

public class Student
{

public String name;
<EEE§ public int classYear;
public String major;

public void printInfo(){
String info = name + “:”

+ major + “:” + claésYear;
System.out.println(info);

 Declared in a method }
* Confined to the method public void increaseYear(int inc)
. {
 Can only be used inside classyear += inc:
the method }

53

An Example

public class Student
{

public String name;
public int classYear;

public String major;

public void printInfo()

{

* info is a local variable declared
inside method printinfo()

« can only be used inside method
printinfo()

String info = name + “: ” + major + “: ” + classYear ;

System.out.println(info);

}

public void increaseYear(int inc)

{

classYear += inc;

}

e classYear and name are
instance variables
 can be used in any method

in this class
54

An Example

public class Student

{
public String name;
public int classYear,;
public String major;

public void printinfo()
{

String info = name + “: ” + major +
System.out.printin(info);

}

public void increaseYear(int inc)

{

classYear += inc;
info = “info changed a bit"; } x

“ "+ classYear ;

 Java will not
~— recognize info

55

Methods with Parameters

= Parameters are used to hold the value that
you pass to the method

= Parameters can be used as (local)
variables inside the method

public int square Parameters go

{ inside parentheses

N _ of method header
return number * number;

}

Methods with Multiple Parameters

= Multiple parameters separated by commas

public double getTotal(double pric@ouble tax)
{

return price + price * tax;

Method Parameters and Arguments

public class SalesComputer

{
public double getTotal(double price, double tax)

{

return price + price * tax;

}
}

SalesComputer sc = new SalesComputer();

double total = sc.getTotal(“19.99" , Color.RED); X
double total = sc.getTotal(19.99); x

double total = sc.getTotal(19.99, 0.065);

int price = 50;

total = sc.getTotal(price, 0.065); v Automatic typecasting

Calling Methods from Methods

* |n a method’s body, we can call another
method

* receiving_object.method();

= |f calling a method in the same class, we
do not need receiving_object:

* method();

= Alternatively, use the this keyword
* this.method();

Several Common Mistakes

= Unwanted semicolon after if / for statements

if (a>b); // this semicolon causes an empty if-branch

c++; // this line is always executed

for(inti = 0; i<10; i++); // this semicolon indicates an empty loop body

c++; // this is executed only once

= Unpaired brackets
» Use indentation to help checking

» Use Eclipse’s auto format function

Indentation

= |ndentation
 Makes code easier to read

* Helps with finding syntax and logic errors

 Indent code that goes between { and }

= Be consistent!

61

Next Class

» Go through questions from mid-term
practice worksheet

= Q&A

