COMP 110-001
Objects and References

Yi Hong
June 01, 2015

Today

» Objects and references
» More on classes

Review

= Classes
= Objects
= |nstance variables

= Methods
* Return types

 Parameters and arguments

Variables of a Class Type

= Behave differently from variables of a
primitive type
» Class types are reference types, a variable of
a class type contains the memory address

A variable of a primitive type contains the data
value

Variables of a Primitive Type

= When declaring a variable, a certain amount
of memory is assigned based on the declared

primitive type

o C=

S

| — int age;

EEEEEEEE < double length;

N <

"]

| — char letter,

memory

* What is in this memory?

Variables of a Primitive Type

= A data value is stored in the location
assigned to a variable of a primitive type

wa) Int sum;

sum = 4;

sum =sum + 1;
Memory

Variables of a Primitive Type

= A data value is stored in the location
assigned to a variable of a primitive type

Int sum;

00000000 jre
00000000 |

) sum = 4; 00000000
00000100

sum =sum + 1;
Memory

Variables of a Primitive Type

= A data value is stored in the location
assigned to a variable of a primitive type

00000000

- . 00000000
Int sum;
00000000 | L

00000100
sum = 4: l 7/

7

W) sum =sum + 1; 00000000 /

00000000
00000000
00000101

Memory

Variables of a Class Type

= \What about these variables?

D >tudent Jack
< String inputString;

memory

Variables of a Class Type

Contain the memory address of the object named
by the variable

 NOT the object itself

What is an address?
* The object’s location in the computer's memory

Object is stored in some other location in memory

The address to this other location is called a
reference to the object

Class types are also called reference types

Example: Books

Assume we have a class named Book

Book jacksBook = new Book();

Book apusBook = new Book(); public class Book

{
private name;
VS, private page;

public void setName();

| public void setPage();
Book jacksBook = new Book(); !

Book apusBook = jacksBook;

Objects in Memory

Memory Book jacksBook;
Book apusBook;

jacksBook | 2078
jacksBook = new Book();

2078 apusBook = new Book();

apusBook

‘\ jacksBook.setName(“Java™);
apusBook.setName(“Java”);

jacksBook.setPage(137);

2056 |Java z/
253 Z/ apusBook.setPage(253);
apusBook = jacksBook;
2078 ggg’ apusBook.setPage(509);

jacksBook is now on p. 509!

Remember

= Variables of a class type contain memory
addresses

 NOT objects themselves

== vs. equals() for Strings

= String is a class type
= \What happens if you have

String s1 = new String(“Hello™);
String s2 = new String(“Hello™);
boolean strEqual = (s1 == s2);

» strEqual is false! Why?
= 51 and s2 store different addresses!

== vs. equals() for Strings

» What happens if you have

String s1 = new String(“Hello™);
String s2 = new String(“Hello”);

boolean strEqual = (s1.equals(s2));

= strEqual is true! Why?

» String’s .equals() method checks if all the
characters in the two Strings are the same

Writing the .equals() method

public class Book

{

private String name;
private int page;

public boolean equals(Book book)

{

return (this.name.equals(book.name) &&
this.page == book.page);

.equals()

» Every class has a default .equals() method if it is
not explicitly written

* Does not necessarily do what you want

* You decide what it means for two objects of a
specific class type to be considered equal

« Perhaps books are equal if the names and page
numbers are equal

* Perhaps only if the names are equal
 Put this logic inside .equals() method

Call-by-value

» Java passes arguments to a method

= For primitive type, the parameter contains
the value of its corresponding argument

» For class type, the reference (address) to
the class object is passed to the
parameters

« Call-by-reference

* |t is possible to change the data in an object

18

Parameters of a Primitive Type

public void increaseNum(int num)

{

num++; Parameters are local
\ to the method

public void doStuff()
{

Int x = 9;
increaseNum(x);
System.out.printin(x);

}

* Prints 5. Why?
= num is local to increaseNum method; does not change x

Parameters of a Class Type

public void changeBook(Book book)

{
book = new Book(“Biology”);

}

public void doStuff()
{

Book jacksBook = new Book(“Java”);
changeBook(jacksBook);
System.out.printin(jacksBook.getName());

}

* Prints Java. Why?
= book is local to changeBook, does not change jacksBook

Parameters are local
to the method

Parameters of a Class Type

public void changeBook(Book book)

{

book.setName(“Biology’): Parameters are local

variables, but the reference
) Is passed into the method

public void doStuff()
{

Book jacksBook = new Book(“Java”);
changeBook(jacksBook);
System.out.printin(jacksBook.getName());

}

* Prints Biology. Why?
* book contains the same address as jacksBook!

Next Class

= | ab 6

