
COMP 110-001 
Objects and References

Yi Hong
June 01, 2015

Today
§  Objects and references
§  More on classes

Review
§  Classes
§  Objects
§  Instance variables
§  Methods
•  Return types
•  Parameters and arguments

Variables of a Class Type
§  Behave differently from variables of a

primitive type
•  Class types are reference types, a variable of

a class type contains the memory address
•  A variable of a primitive type contains the data

value

Variables of a Primitive Type
§  When declaring a variable, a certain amount

of memory is assigned based on the declared
primitive type

§  What is in this memory?

int	 age;  
 
double	 length;  
 
char	 letter;

memory	

Variables of a Primitive Type
§  A data value is stored in the location

assigned to a variable of a primitive type

int sum;

sum = 4;

 sum = sum + 1;

Memory"

Variables of a Primitive Type
§  A data value is stored in the location

assigned to a variable of a primitive type

int sum;

sum = 4;

 sum = sum + 1;

Memory"

00000000	
00000000	
00000000	
00000100	

Variables of a Primitive Type
§  A data value is stored in the location

assigned to a variable of a primitive type

int sum;

sum = 4;

 sum = sum + 1;

Memory"

00000000	
00000000	
00000000	
00000100	

00000000	
00000000	
00000000	
00000101	

Variables of a Class Type
§  What about these variables?

Student	 jack;  
 
String	 inputString;

memory	

Variables of a Class Type
§  Contain the memory address of the object named

by the variable
•  NOT the object itself

§  What is an address?
•  The object’s location in the computer’s memory

§  Object is stored in some other location in memory
§  The address to this other location is called a

reference to the object
§  Class types are also called reference types

Example: Books
Assume we have a class named Book

Book jacksBook = new Book();
Book apusBook = new Book();

vs.

Book jacksBook = new Book();
Book apusBook = jacksBook;

public class Book"
{"
 private name;"
 private page;"
 "
 public void setName();"
 public void setPage();"
}"

Objects in Memory

jacksBook	
	
apusBook	

?	
	
?	

Memory	 Book	 jacksBook;	
Book	 apusBook;	
	
jacksBook	 =	 new	 Book();	
apusBook	 =	 new	 Book();	
	
jacksBook.setName(“Java”);	
apusBook.setName(“Java”);	
	
jacksBook.setPage(137);	
apusBook.setPage(253);	
	
apusBook	 =	 jacksBook;	
apusBook.setPage(509);	
	
	
jacksBook	 is	 now	 on	 p.	 509!	

?	
?	
	
?	
?	

?	
?	
	
Java	
?	

Java	
?	
	
Java	
?	

Java	
?	
	
Java	
137	

Java	
253	
	
Java	
137	

Java	
253	
	
Java	
509	

2078	
	
?	

2078	
	
1056	

?	
	
	
?	

?	
	
	
2078	

1056	
	
	
2078	

2078	
	
2078	

Remember
§  Variables of a class type contain memory

addresses
•  NOT objects themselves

== vs. equals() for Strings
§  String is a class type
§  What happens if you have

String s1 = new String(“Hello”);
String s2 = new String(“Hello”);
boolean strEqual = (s1 == s2);

§  strEqual is false! Why?
§  s1 and s2 store different addresses!

== vs. equals() for Strings
§  What happens if you have

String s1 = new String(“Hello”);
String s2 = new String(“Hello”);
boolean strEqual = (s1.equals(s2));

§  strEqual is true! Why?
§  String’s .equals() method checks if all the

characters in the two Strings are the same

Writing the .equals() method
public class Book
{
 private String name;
 private int page;

 public boolean equals(Book book)
 {
 return (this.name.equals(book.name) &&
 this.page == book.page);
 }
}

.equals()
§  Every class has a default .equals() method if it is

not explicitly written
•  Does not necessarily do what you want

§  You decide what it means for two objects of a
specific class type to be considered equal
•  Perhaps books are equal if the names and page

numbers are equal
•  Perhaps only if the names are equal
•  Put this logic inside .equals() method

Call-by-value
§  Java passes arguments to a method
§  For primitive type, the parameter contains

the value of its corresponding argument
§  For class type, the reference (address) to

the class object is passed to the
parameters
•  Call-by-reference
•  It is possible to change the data in an object

18"

Parameters of a Primitive Type
public void increaseNum(int num)
{
 num++;
}

public void doStuff()
{
 int x = 5;
 increaseNum(x);
 System.out.println(x);
}

§  Prints 5. Why?
§  num is local to increaseNum method; does not change x

Parameters are local
to the method"

Parameters of a Class Type
public void changeBook(Book book)
{
 book = new Book(“Biology”);
}

public void doStuff()
{
 Book jacksBook = new Book(“Java”);
 changeBook(jacksBook);
 System.out.println(jacksBook.getName());
}

§  Prints Java. Why?
§  book is local to changeBook, does not change jacksBook

20"

Parameters are local
to the method"

Parameters of a Class Type
public void changeBook(Book book)
{
 book.setName(“Biology”);
}

public void doStuff()
{
 Book jacksBook = new Book(“Java”);
 changeBook(jacksBook);
 System.out.println(jacksBook.getName());
}

§  Prints Biology. Why?
§  book contains the same address as jacksBook!

21"

Parameters are local
variables, but the reference
is passed into the method"

Next Class
§  Lab 6

