
COMP 110-001 
Information Hiding and Encapsulation

Yi Hong
June 03, 2015

Review of Pass-By-Value
§  What is the output?

public void swap(Student s1, Student s2) {
 Student s3 = s1;
 s1 = s2;
 s2 = s3;

}

Student berkeley = new Student(); berkeley.setYear(2);
Student brett = new Student(); brett.setYear(3);

swap(berkeley, brett);
System.out.println(berkeley.year);

Review of Pass-By-Value
§  What is the output?

public void swapYear(Student s1, Student s2) {
 int year = s1.year;
 s1.year = s2.year;
 s2.year = year;

}

Student berkeley = new Student(); berkeley.setYear(2);
Student brett = new Student(); brett.setYear(3);

swapYear(berkeley, brett);
System.out.println(berkeley.year);

Today
§  Public / private
§  Information hiding and encapsulation

§  public void setMajor()
§  public int classYear;

§  public: there is no restriction on how you
can use the method or instance variable

§  Any class can use a public class, method,
or instance variable

public/private Modifier

§  private void setMajor()
§  private int classYear;

§  private: can not directly use the method or
instance variable’s name outside the class

public/private Modifier

public class Student
{
 public int classYear;
 private String major;
}

Student jack = new Student();

jack.classYear = 1;

jack.major = “Computer Science”;

Example

OK,
classYear is public

Error!!!
major is private

§  Hides instance variables and methods
inside the class/object.

§  The private variables and methods are still
there, holding data for the object.

§  Invisible to external users of the class
•  Users cannot access private class members

directly

§  Information hiding

More About private

§  Private instance variables are accessible
by name only within their own class

§  Force users of the class to access
instance variables only through methods
•  Gives you control of how programmers use

your class

§  Why is this important?

Instance Variables Should Be private

public class Rectangle
{
 public int width;
 public int height;
 public int area;

 public void setDimensions(
 int newWidth, int newHeight)
 {
 width = newWidth;
 height = newHeight;
 area = width * height;
 }

 public int getArea()
 {
 return area;
 }
}

Example: Rectangle
Rectangle box = new Rectangle();
box.setDimensions(10, 5);
System.out.println(box.getArea());

// Output: 50

box.width = 6;
System.out.println(box.getArea());

// Output: 50, but wrong answer!

Instance Variables Should Be Private

§  Public instance variables can lead to the
corruption of an object’s data, inconsistent
data within an object

§  Private instance variables enable the class
to restrict how they are accessed or
changed

§  Always make instance variables private

§  How do you access private instance
variables?

§  Accessor methods (a.k.a. get methods,
getters)
•  A public method that allows you to look at data in

an instance variable
•  Typically begin with get

§  Mutator methods (a.k.a. set methods, setters)
•  A public method that allows you to change data in

an instance variable
•  Typically begin with set

Accessors and Mutators

public class Student
{
 private String name;
 private int age;

 public void setName(String studentName)
 {
 name = studentName;
 }

 public void setAge(int studentAge)
 {
 age = studentAge;
 }

 public String getName()
 {
 return name;
 }

 public int getAge()
 {
 return age;
 }
}

Example: Student

Accessors	

Mutators	

§  Helping methods that will only be used
from inside a class should be private
•  External users have no need to call these

methods

§  Encapsulation
•  Groups instance variables and methods into a

class
•  Hides implementation details, and separates

the what from the how

Okay, But Why Making Methods private?

§  Accelerate with the accelerator pedal
§  Decelerate with the brake pedal
§  Steer with the steering wheel
§  Does not matter if:
•  You are driving a gasoline engine car or a hybrid

engine car
•  You have a 4-cylinder engine or a 6-cylinder

engine

§  You still drive the same way

Example: Driving a Car

§  The interface is the same
§  The underlying implementation may be

different
§  A programmer who uses a method

(interface) should need only know what
the method does, not how it does it

Encapsulation

§  A class interface tells programmers all they
need to know to use the class in a program
•  A class interface describes the class’s public view

§  The implementation of a class consists of the
private elements of the class definition,
hidden from public view
•  private instance variables and constants
•  private methods
•  bodies of public methods

Encapsulation in Classes

public class Rectangle
{
 private int width;
 private int height;
 private int area;

 public void setDimensions(
 int newWidth,
 int newHeight)
 {
 width = newWidth;
 height = newHeight;
 area = width * height;
 }

 public int getArea()
 {
 return area;
 }
}

Example: Two Implementations of Rectangle
public class Rectangle
{
 private int width;
 private int height;

 public void setDimensions(
 int newWidth,
 int newHeight)
 {
 width = newWidth;
 height = newHeight;
 }

 public int getArea()
 {
 return width * height;
 }
}

§  Implementation should not affect behavior
described by interface
•  Two classes can have the same behavior but

different implementations

Encapsulation

A Well-Encapsulated Class Definition
§  Imagine a wall between interface and

implementation
318 CHAPTER 5 / Defining Classes and Methods

provide public methods for any other basic needs that a programmer will

public mutator methods.

how to use the method.

details.

The comments in a class definition that describe how to use both the class
and each public method are part of the class interface. As we indicated, these
comments are usually placed before the class definition and before each
method definition. Other comments clarify the implementation. A good rule
to follow is to use the /** */ style for class-interface comments and the // style
for implementation comments.

go back and change the implementation details of the class definition without
requiring changes in any program that uses the class. This is a good way to
test whether you have written a well-encapsulated class definition. Often,
you will have very good reasons for changing the implementation details of
a class definition. For example, you may come up with a more efficient way
to implement a method so that the method invocations run faster. You might

FIGURE 5.3 A Well-Encapsulated Class Definition

Implementation:

Private instance variables
Private constants
Private methods
Bodies of public methods

Programmer who
uses the class

 Class De!nition

Interface:

Comments
Headings of public methods
Public named constants

Encapsulation
guidelines

Comments Before Method’s Definition

§  Precondition: states a method’s requirements
•  Everything that needs to be true before the method

is invoked

§  Postcondition: states a method’s effect
•  Tells what will be true after the method is executed

in a situation in which the precondition holds
•  For a method that returns a value, the

postcondition will include a description of the value
returned by the method

Encapsulation Guidelines
§  Comments before class definition that describes

how the programmer should think about the class
data and methods

§  Instance variables are private
§  Provide public accessor and mutator methods
§  Pre and post comments before methods
§  Make any helping methods private
§  Write comments within the class definition to

describe implementation details
•  A good rule: /* * */ style for class interface comments, and

the // style for implementation comments

Summary of Encapsulation
§  The process of hiding all the details of how

a piece of software works and describing
only enough about the software to enable
a programmer to use it

§  Data and actions are combined into a
single item, a class object that hides the
details of the implementation

Next Class
§  Constructors and static methods

