COMP 110-001
Information Hiding and Encapsulation

Yi Hong
June 03, 2015

Review of Pass-By-Value

= What is the output?
public void swap(Student s1, Student s2) {

Student s3 = s1;
s1 =s2;
s2 = s3;

}

Student berkeley = new Student(); berkeley.setYear(2);
Student brett = new Student(); brett.setYear(3);

swap(berkeley, brett);

System.out.printin(berkeley.year);

Review of Pass-By-Value

= What is the output?

public void swapYear(Student s1, Student s2) {
int year = s1.year;
s1.year = s2.year,
s2.year = year,;

}

Student berkeley = new Student(); berkeley.setYear(2);
Student brett = new Student(); brett.setYear(3);

swapYear(berkeley, brett);

System.out.printin(berkeley.year);

Today

= Public / private

» |nformation hiding and encapsulation

public/private Modifier

= public void setMajor()

= public int classYear;

= public: there is no restriction on how you
can use the method or instance variable

= Any class can use a public class, method,
or instance variable

public/private Modifier

= private void setMajor()
= private int classYear;

= private: can not directly use the method or
Instance variable’s name outside the class

Example

public class Student

{

public int classYear;
private String major;

}
OK,

Student jack = new Study classYearis public

jack.classYear = 1;
Error!!!
jack.major = “Computer Science”; <« majoris private

More About private

= Hides instance variables and methods
iInside the class/object.

= The private variables and methods are still
there, holding data for the object.

= |nvisible to external users of the class

« Users cannot access private class members
directly

* Information hiding

Instance Variables Should Be private

» Private instance variables are accessible
by name only within their own class

= Force users of the class to access
iInstance variables only through methods

« Gives you control of how programmers use
your class

= Why is this important?

Example: Rectangle

public class Rectangle Rectangle box = new Rectangle();
{ box.setDimensions(10, 5);
public int width; System.out.printin(box.getArea());

public int height;
public int area;

. . . . // Output: 50
public void setDimensions(

int newWidth, int newHeight)

{ box.width = 6:

width = newWidth; . _
height = newHeight: System.out.printin(box.getArea());

area = width * height;
} // Output: 50, but wrong answer!

public int getArea()
{

return area;

}
}

Instance Variables Should Be Private

» Public instance variables can lead to the
corruption of an object’s data, inconsistent
data within an object

= Private instance variables enable the class
to restrict how they are accessed or

changed
= Always make instance variables private

Accessors and Mutators

= How do you access private instance
variables?

» Accessor methods (a.k.a. get methods,
getters)

* A public method that allows you to look at data in
an instance variable

* Typically begin with get

= Mutator methods (a.k.a. set methods, setters)

* A public method that allows you to change data in
an instance variable

« Typically begin with set

Example: Student

public class Student

{

private String name;
private int age;

public void setName(String studentName) —

{

name = studentName;

}

Mutators

public void setAge(int studentAge)

{
age = studentAge;

} —_—
public String getName()
{

return name;

}

public int getAge() Accessors
{

return age;

} _

}

Okay, But Why Making Methods private?

» Helping methods that will only be used
from inside a class should be private

 External users have no need to call these
methods

= Encapsulation

» Groups instance variables and methods into a
class

* Hides implementation details, and separates
the what from the how

Example: Driving a Car

= Accelerate with the accelerator pedal
» Decelerate with the brake pedal
= Steer with the steering wheel

= Does not matter if:

* You are driving a gasoline engine car or a hybrid
engine car

* You have a 4-cylinder engine or a 6-cylinder
engine

* You still drive the same way

Encapsulation

» The /nterface is the same

* The underlying implementation may be
different

= A programmer who uses a method
(interface) should need only know what
the method does, not how it does it

Encapsulation in Classes

» A class interface tells programmers all they
need to know to use the class in a program

A class interface describes the class’s public view

= The implementation of a class consists of the
private elements of the class definition,
hidden from public view

* private instance variables and constants
* private methods
* bodies of public methods

Example: Two Implementations of Rectangle

public class Rectangle public class Rectangle
{ {
private int width; private int width;
private int height; private int height;

private int area;

_ _ _ _ public void setDimensions(
public void setDimensions(int newWidth

int newWidth,

int newHeight) { int newHeight)

{ width = newWidth;

width = newWidth; . :
height = newHeight;

height = newHeight;

area = width * height; }
} public int getArea()
public int getArea() {
{ return width * height;
return area; }
} }

}

Encapsulation

* |[mplementation should not affect behavior
described by interface

e Two classes can have the same behavior but
different implementations

A Well-Encapsulated Class Definition

* Imagine a wall between interface and
Implementation

Class Definition
Implementation:
Private instance variables Interface:
Private constants Comments Programmer who
Private methods Headings of public methods uses the class

Bodies of public methods Public named constants

Comments Before Method’s Definition

= Precondition: states a method’s requirements

» Everything that needs to be true before the method
IS invoked

= Postcondition: states a method’s effect

 Tells what will be true after the method is executed
In a situation in which the precondition holds

 For a method that returns a value, the
postcondition will include a description of the value
returned by the method

Encapsulation Guidelines

= Comments before class definition that describes
how the programmer should think about the class
data and methods

* |nstance variables are private
* Provide public accessor and mutator methods

* Pre and post comments before methods

= Make any helping methods private

= Write comments within the class definition to
describe implementation details

« A good rule: /* * */ style for class interface comments, and
the // style for implementation comments

Summary of Encapsulation

= The process of hiding all the details of how
a piece of software works and describing
only enough about the software to enable
a programmer to use it

» Data and actions are combined into a
single item, a class object that hides the
details of the implementation

Next Class

= Constructors and static methods

