COMP 110-001
Inheritance Basics

Yi Hong
June 09, 2015

Today

= |nheritance

Inheritance

* We have discussed before how classes of
objects can have relationships

Person Transportation
Student Employee Car Airplane Animal
Undergrad Grad Faculty Staff Horse Elephant Camel

N

Masters Doctoral Nondegree

Inheritance

» Define a general class Person
= |ater, define specialized - dt/\
uden mployee
classes based on the /\ /\

g ene ral CI assS Undergrad Grad Faculty Staff

» These specialized
classes /inherit properties

from the general CIaSS Masters Doctoral Nondegree

Inheritance

= WWhat are some properties of a Person?
 Name, height, weight, age

= How about a Student?
 |D, major

» Does a Student have a name, height, weight,
and age?
« Student inherits these properties from Person

The /s-a Relationship

= This inheritance relationship is known as an
Is-a relationship

= A Doctoral student /s a Grad student

= A Grad student js a Student Person

= A Student is @ Person S d/\l
tudent Employee

= |s a Person a Student? /\ /\

Undergrad Grad Faculty Staff

* Not necessarily! /\

Masters Doctoral Nondegree

Base Class

= Our general class is called a base class
 Also called a parent class or a superclass

= Examples:
* Person, Transportation

Derived Class

= A specialized class that inherits properties from
a base class is called a derived class

* Also called a child class or a subclass

u Examp|eS: Person
- Student is-a Person /\
° Employee is-a Person Student Employee

 Car js-aform
of Transportation
Transportation

* Animal is-a form
of Transportation ﬂ\

Car Airplane Animal

Child (Derived) Classes Can Be Parent
(Base) Classes

. StUdent iS a Ch||d Person

class of Person /\

Student Employee

A NN

u StUdent iS aISO the Undergrad Grad Faculty Staff

parent class of
Undergrad and

Grad Masters Doctoral Nondegree

Why Is Inheritance Useful?

= Enables you to define shared properties
and actions once

» Derived classes can perform the same
actions as base classes without having to
redefine the actions

 |f desired, the actions can be redefined —
more on this later

How Does This Work in Java®?
. pesn

public class Person

{

private String name;
public Person()

- name

+ setName(String newName): void
+ getName(): String

{
name = “No name yet”;
}
public void setName(String newName)
{
name = newName;
}

public String getName()
{

¥

return name;

How Does This Work in Java?
?ublic class Student

private int id;
public Student()

{
id = J

}
public Student(String stdName, int idNumber)

{

setName(stdName)
setID(zdNumber);
}
public void setID(int idNumber)
{
id = idNumber;
}
public int getID()
{
return id;
}

- hame

+ setName(String newName): void
+ getName(): String
A

- 1id

+ setID(int idNumber): void
+ getID(): int

The extends keyword

public class Derived Class Name extends Base Class_Name

{

Declaration of Added Instance Variables
Definitions_of Added And Overridden Methods

public class Student extends Person

{
// stuff goes here

= A derived (child) class inherits the public instance
variables and public methods of its base (parent) class

private vs. public

= private instance variables and private
methods in the base class are NOT
iInherited by derived classes

= This would not work:

public Student(String stdName, int idNumber)
{

nhame = stdName;
setID(idNumber);

private vs. public

= private instance variables of the base
class CAN be accessed by derived
classes using the base class’ public
methods

= This works:

public Student(String stdName, int idNumber)
{

setName(stdName); // OK! setName is a public method in Person
setID(idNumber);

The super keyword

= A derived class does not inherit constructors from
Its base class

= Constructors in a derived class invoke
constructors from the base class

= Use super within a derived class as the name of a
constructor in the base class (superclass)

» E.g.: super(); or super(intialName);
« Person(); or Person(intialName) // ILLEGAL

 First action taken by the constructor, without super, a
constructor invokes the default constructor in the base
class

this v.s. super

public Person()

{
this("No name yet”);
}
public Person(String initialName)
{
name = initialIName;
}

= \When used in a constructor, this calls a constructor of

the same class, but super invokes a constructor of the
base class

Overriding Methods

= \What if the class Person had a method
called printinfo?

public class Person

{

public void printInfo()
{

System.out.println(name);

}

Overriding Methods

= \What if the class Student a/so had a method
called printInfo”?

public class Student extends Person

{

public void printInfo()

{
System.out.println("Name: " + getName());

System.out.println("ID: " + getID());

Overriding Methods

= |[f Student inherits the printinfo() method
and defines its own printinfo() method, it
would seem that Student has two methods
with the same signature

* We saw before that this is illegal, so what’s
the deal?

Overriding Methods

= Java handles this situation as follows:

 If a derived class defines a method with the
same name, number and types of parameters,
and return type as a method in the base class,
the derived class’ method overrides the base
class’ method

* The method definition in the derived class is
the one that is used for objects of the derived
class

Overriding Methods: Example

= Both Person and Student have a
printinfo() method

Student std = new Student("John Smith", 37183);
std.printInfo();

= Output would be:

Name: John Smith
ID: 37183

Overriding vs. Overloading

» |f a derived class defines a method of the
same name, same number and types of
parameters, and same return type as a
base class method, this is overriding

* You can still have another method of the
same name in the same class, as long as
its number or types of parameters are
different: overloading

The Modifier

= A final method cannot be overridden
* E.g.: public final void specialMethod()

= A final class cannot be a base class
* E.g.: public final class myFinalClass { ... }

* public class ThislsWrong extends
MyFinalClass { ...} // forbidden

Type Compatibilities

= Given this inheritance hierarchy...

Person

|

Athlete

T

HighJumper ExtremeAthlete

N

Skydiver XGamesSkater

25

Is This Code Legal?

= Person per = new Person();
* Yes!

Person

|

Athlete

T

HighJumper ExtremeAthlete

N

Skydiver XGamesSkater

26

Is This Code Legal?

= HighJumper hJumper = new HighJumper();

 Yes!

Person

|

Athlete

T

HighJumper ExtremeAthlete

N

Skydiver XGamesSkater

27

Is This Code Legal?

= Person per = new Athlete();

* Yes! An Athlete js a Person, so this is
okay

Person

|

Athlete

T

HighJumper ExtremeAthlete

N

Skydiver XGamesSkater

28

Is This Code Legal?

= Skydiver sDiver = new Person();

 No! A Person is not necessarily a
Skydiver, so this is illegal

Person

|

Athlete

T

HighJumper ExtremeAthlete

N

Skydiver XGamesSkater

29

Is This Code Legal?

» Athlete ath = new Athlete();
XGamesSkater xgs = ath;

 No! An Athlete js not necessarily an
XGamesSkater, so this is illegal

Person

|

Athlete

T

HighJumper ExtremeAthlete

N

Skydiver XGamesSkater

30

Summary

= An object of a derived class can serve as
an object of the base class

= An object can have several types because
of inheritance

« E.g: every object of the class Undergraduate
is also an object of type Student, as well as an
object of type person

Person

T

Student Employee

A NN

Undergrad Grad Faculty Staff

Next Class

* [nheritance and Polymorphism

