
COMP 110-001 
Inheritance Basics

Yi Hong
June 09, 2015

Today
§  Inheritance

Inheritance
§  We have discussed before how classes of

objects can have relationships

Person	

Student	 Employee	

Undergrad	 Grad	

Masters	 Doctoral	 Nondegree	

Faculty	 Staff	

Transporta<on	

Car	 Airplane	 Animal	

Elephant	 Horse	 Camel	

Inheritance
§  Define a general class
§  Later, define specialized

classes based on the
general class

§  These specialized
classes inherit properties
from the general class

Person	

Student	 Employee	

Undergrad	 Grad	

Masters	 Doctoral	 Nondegree	

Faculty	 Staff	

Inheritance
§  What are some properties of a Person?
•  Name, height, weight, age

§  How about a Student?
•  ID, major

§  Does a Student have a name, height, weight,
and age?
•  Student inherits these properties from Person

The is-a Relationship
§  This inheritance relationship is known as an

is-a relationship

§  A Doctoral student is a Grad student
§  A Grad student is a Student
§  A Student is a Person

§  Is a Person a Student?
•  Not necessarily!

Person	

Student	 Employee	

Undergrad	 Grad	

Masters	 Doctoral	 Nondegree	

Faculty	 Staff	

Base Class
§  Our general class is called a base class
•  Also called a parent class or a superclass

§  Examples:
•  Person, Transportation

Derived Class
§  A specialized class that inherits properties from

a base class is called a derived class
•  Also called a child class or a subclass

§  Examples:
•  Student is-a Person
•  Employee is-a Person
•  Car is-a form 

of Transportation
•  Animal is-a form 

of Transportation

Person	

Student	 Employee	

Transporta<on	

Car	 Airplane	 Animal	

Child (Derived) Classes Can Be Parent
(Base) Classes

§  Student is a child
class of Person

§  Student is also the
parent class of
Undergrad and
Grad

Person	

Student	 Employee	

Undergrad	 Grad	

Masters	 Doctoral	 Nondegree	

Faculty	 Staff	

Why Is Inheritance Useful?
§  Enables you to define shared properties

and actions once
§  Derived classes can perform the same

actions as base classes without having to
redefine the actions
•  If desired, the actions can be redefined –

more on this later

How Does This Work in Java?
public	 class	 Person	
{	
	 	 	 	 private	 String	 name;	
	 	 	 	 public	 Person()	
	 	 	 	 {	
	 	 	 	 	 	 	 	 name	 =	 “No	 name	 yet”;	
	 	 	 	 }	
	 	 	 	 public	 void	 setName(String	 newName)	
	 	 	 	 {	
	 	 	 	 	 	 	 	 name	 =	 newName;	
	 	 	 	 }	
	 	 	 	 public	 String	 getName()	
	 	 	 	 {	
	 	 	 	 	 	 	 	 return	 name;	
	 	 	 	 }	
}	

Person	

-‐	 name	

+	 setName(String	 newName):	 void	
+	 getName():	 String	

How Does This Work in Java?
public	 class	 Student	 extends	 Person	
{	
	 	 	 	 private	 int	 id;	
	 	 	 	 public	 Student()	
	 	 	 	 {	
	 	 	 	 	 	 	 	 super();	
	 	 	 	 	 	 	 	 id	 =	 0;	
	 	 	 	 }	
	 	 	 	 public	 Student(String	 stdName,	 int	 idNumber)	
	 	 	 	 {	
	 	 	 	 	 	 	 	 setName(stdName);	
	 	 	 	 	 	 	 	 setID(idNumber);	
	 	 	 	 }	
	 	 	 	 public	 void	 setID(int	 idNumber)	
	 	 	 	 {	
	 	 	 	 	 	 	 	 id	 =	 idNumber;	
	 	 	 	 }	
	 	 	 	 public	 int	 getID()	
	 	 	 	 {	
	 	 	 	 	 	 	 	 return	 id;	
	 	 	 	 }	
}	

Student	

-‐	 id	

+	 setID(int	 idNumber):	 void	
+	 getID():	 int	

Person	

-‐	 name	

+	 setName(String	 newName):	 void	
+	 getName():	 String	

The extends keyword
public	 class	 Derived_Class_Name	 extends	 Base_Class_Name	
{	
	 	 	 	 Declaration_of_Added_Instance_Variables	
	 	 	 	 Definitions_of_Added_And_Overridden_Methods	
}	
	
public	 class	 Student	 extends	 Person	
{	
	 	 	 	 //	 stuff	 goes	 here	
}	
	

§  A derived (child) class inherits the public instance
variables and public methods of its base (parent) class

	

private vs. public
§  private instance variables and private

methods in the base class are NOT
inherited by derived classes

§  This would not work:
public	 Student(String	 stdName,	 int	 idNumber)	
{	
	 	 	 	 name	 =	 stdName;	 //	 ERROR!	 name	 is	 private	 to	 Person	
	 	 	 	 setID(idNumber);	

}

private vs. public
§  private instance variables of the base

class CAN be accessed by derived
classes using the base class’ public
methods

§  This works:

public	 Student(String	 stdName,	 int	 idNumber)	
{	
	 	 	 	 setName(stdName);	 //	 OK!	 setName	 is	 a	 public	 method	 in	 Person	
	 	 	 	 setID(idNumber);	
}

The super keyword
§  A derived class does not inherit constructors from

its base class
§  Constructors in a derived class invoke

constructors from the base class
§  Use super within a derived class as the name of a

constructor in the base class (superclass)
•  E.g.: super(); or super(intialName);
•  Person(); or Person(intialName) // ILLEGAL
•  First action taken by the constructor, without super, a

constructor invokes the default constructor in the base
class

this v.s. super
 public Person()
 {

 this(“No name yet”);
 }

 public Person(String initialName)
 {

 name = initialName;
 }

§  When used in a constructor, this calls a constructor of

the same class, but super invokes a constructor of the
base class

Overriding Methods

§ What if the class Person had a method
called printInfo?
public	 class	 Person	

{	

	 	 	 	 //	 a	 bunch	 of	 other	 stuff	

	 	 	 	 //	 ...	

	 	 	 	 public	 void	 printInfo()	

	 	 	 	 {	

	 	 	 	 	 	 	 	 System.out.println(name);	

	 	 	 	 }	

}	

Overriding Methods
§  What if the class Student also had a method

called printInfo?

public	 class	 Student	 extends	 Person	

{	

	 	 	 	 //	 a	 bunch	 of	 other	 stuff	

	 	 	 	 //	 ...	

	 	 	 	 public	 void	 printInfo()	

	 	 	 	 {	

	 	 	 	 	 	 	 	 System.out.println("Name:	 "	 +	 getName());	

	 	 	 	 	 	 	 	 System.out.println("ID:	 "	 +	 getID());	

	 	 	 	 }	

}	

Overriding Methods
§  If Student inherits the printInfo() method

and defines its own printInfo() method, it
would seem that Student has two methods
with the same signature
•  We saw before that this is illegal, so what’s

the deal?

Overriding Methods
§  Java handles this situation as follows:
•  If a derived class defines a method with the

same name, number and types of parameters,
and return type as a method in the base class,
the derived class’ method overrides the base
class’ method

•  The method definition in the derived class is
the one that is used for objects of the derived
class

Overriding Methods: Example
§  Both Person and Student have a

printInfo() method
Student	 std	 =	 new	 Student("John	 Smith",	 37183);	

std.printInfo();	 //	 calls	 Student’s	 printInfo	 method,	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 not	 Person’s	

	

§  Output would be:
Name:	 John	 Smith	

ID:	 37183	

Overriding vs. Overloading
§  If a derived class defines a method of the

same name, same number and types of
parameters, and same return type as a
base class method, this is overriding

§  You can still have another method of the
same name in the same class, as long as
its number or types of parameters are
different: overloading

The final Modifier
§  A final method cannot be overridden
•  E.g.: public final void specialMethod()

§  A final class cannot be a base class
•  E.g.: public final class myFinalClass { … }
•  public class ThisIsWrong extends

MyFinalClass { …} // forbidden

§  Given this inheritance hierarchy…

25!

Type Compatibilities

Person	

Athlete	

HighJumper	

Skydiver	

ExtremeAthlete	

XGamesSkater	

§  Person	 per	 =	 new	 Person();	
•  Yes!

26!

Is This Code Legal?

Person	

Athlete	

HighJumper	

Skydiver	

ExtremeAthlete	

XGamesSkater	

§  HighJumper	 hJumper	 =	 new	 HighJumper();	
•  Yes!

27!

Is This Code Legal?

Person	

Athlete	

HighJumper	

Skydiver	

ExtremeAthlete	

XGamesSkater	

§  Person	 per	 =	 new	 Athlete();	
•  Yes! An Athlete is a Person, so this is

okay

28!

Is This Code Legal?

Person	

Athlete	

HighJumper	

Skydiver	

ExtremeAthlete	

XGamesSkater	

§  Skydiver	 sDiver	 =	 new	 Person();	
•  No! A Person is not necessarily a

Skydiver, so this is illegal

29!

Is This Code Legal?

Person	

Athlete	

HighJumper	

Skydiver	

ExtremeAthlete	

XGamesSkater	

§  Athlete	 ath	 =	 new	 Athlete();	
XGamesSkater	 xgs	 =	 ath;	
•  No! An Athlete is not necessarily an

XGamesSkater, so this is illegal

30!

Is This Code Legal?

Person	

Athlete	

HighJumper	

Skydiver	

ExtremeAthlete	

XGamesSkater	

Summary
§  An object of a derived class can serve as

an object of the base class
§  An object can have several types because

of inheritance
•  E.g: every object of the class Undergraduate

is also an object of type Student, as well as an
object of type person

Person	

Student	 Employee	

Undergrad	 Grad	 Faculty	 Staff	

Next Class
§  Inheritance and Polymorphism

