
COMP 110-001 
Streams and File I/O

Yi Hong
June 10, 2015

Today
§  Files, Directories, Path

§  Streams

§  Reading from a file

§  Writing to a file

Why Use Files for I/O?
§  RAM is not persistent
§  Data in a file remains after program

execution, stored permanently

Working With Files
§  The data stored in these persistent storage

are normally in the form of files

§  Have you tried to open a movie DVD in your
computer using file explorer?

§  You will probably see 
some folders and 
files like this:

Working With Files
§  In short:
•  We often need to write the data to files to

store it
•  We often need to read the data from files

§  We will cover some basics about files and
directories in Windows / Linux & Mac OS
first

Files and Directories
§  Files are stored in directories or

folders in a tree structure

§  A directory can contain one 
or more files and/or directories

§  The root directory in Windows
is the drive name (C: or D: ,
don’t miss the :)

§  The root directory in Unix/
Linux/MacOS is /

Files and Directories: Path to File
§  A file is identified by its path through the file

system, beginning from the root node
•  Linux/Unix: e.g., /home/yihong/Music
•  MacOS: e.g., /Users/yihong/Music
•  Windows: e.g., C:\Users\yihong\Music

§  The character used to separate the directory
names (also called the delimiter) is  
forward slash (/) in Linux/Unix/MacOS, and
backslash slash (\) in Windows.

Relative and Absolute Path
§  A path is either relative or absolute

•  An absolute path always contains the root element and the
complete directory list required to locate the file

•  e.g.: /Users/yihong/Music

§  A relative path needs to be combined with
another path in order to access a file
•  e.g. yihong/Music is a relative path
•  Without more information, a program cannot reliably locate

the yihong/Music directory in the file system

§  In java, when you write a relative path, it’s
relative to the working directory

Java’s Input/Output Mechanism
§  A stream is a flow of data into or out of a program

§  Very complicated design based on “streams”
§  Here, we focus on how to use input and out streams

 10.1 An Overview of Streams and File I/O 727

10.5 Binary-File I/O with
 Objects and Arrays

Section 10.4 and Chapters 7 and 8.
You do not need Section 10.3.

10.6 Graphics Supplement Sections 9.4 and 10.3.

10.1 AN OVERVIEW OF STREAMS AND FILE I/O

Fish say, they have their stream and pond,

But is there anything beyond?

—RUPERT BROOKE, HEAVEN

The Concept of a Stream

simple keyboard and screen I/O, is handled by streams. A stream is a flow
of data. The data might be characters, numbers, or bytes consisting of binary
digits. If the data flows into your program, the stream is called an input stream.
If the data flows out of your program, the stream is called an output stream.
For example, if an input stream is connected to the keyboard, the data flows
from the keyboard into your program. If an input stream is connected to a file,
the data flows from the file into your program. Figure 10.1 illustrates some of
these streams.

Objects of the class Scanner
are input streams. The object System.out is an example of an output stream

Files can store
programs, music,
pictures, video,
and so on

A stream is a flow
of data into or
out of a program

FIGURE 10.1 Input and Output Streams

Input stream
Output stream

Input stream

Keyboard

Compact disc

Output stream

Monitor

Hard diskProgram

Text Files v.s. Binary Files
§  Text file: a sequence of characters
§  Binary file: pack values into binary representation

§  We only cover text file I/O in this course

 10.1 An Overview of Streams and File I/O 729

done by a special program. Some binary files must be read by the same type
of computer and with the same programming language that originally created

a text file, the number of characters written is the same as if they were written
to a display using System.out.println. For example, writing the int

In general, writing an integer places between 1 and 11 characters in a text file.

int

interprets a data item, such as an integer, in the computer’s main memory.
That is why binary files can be handled so efficiently.

FIGURE 10.2A Text File and a Binary File Containing the
Same Values

1 2 3 - 04 25 74 8 . . .

12345 -4072 8 . . .

A text !le

A binary !le

REMEMBER Input and Output Terminology

input
output

out of the file.

FAQ Should I use a text file or a binary file?

program will read or read a file that a program created. In other cases,

Creating a Text File
§  Opening a file connects it to a stream
§  The class PrintWriter in the package

java.io is for writing to a text file

730 CHAPTER 10 / Streams and File I/O

SELF-TEST QUESTIONS

1. Why would anybody write a program that sends its output to a file instead
of to the screen?

to a file or from a file to the program?

3. What is the difference between a text file and a binary file?

10.2 TEXT-FILE I/O

Proper words in proper places,

make the true definition of a style.

—JONATHAN SWIFT, LETTER TO A YOUNG CLERGYMAN (JANUARY 9,1720)

Creating a Text File
The class PrintWriter
will need to create and write to a text file. This class is the preferred one for
writing to a text file. It is in the package java.io, so we will need to begin our
program with an import statement. Actually, we will be using other classes as
well, so we will import them also, as you will see soon.

Before we can write to a text file, we must connect it to an output stream.
That is, we open the file. To do this, we need the name of the file as a string.
The file has a name like out.txt that the operating system uses. We also must

stream variable. Its data type in this case
is PrintWriter PrintWriter’s
constructor and passing it the file name as its argument. Since this action can
throw an exception, we must place the call to the constructor within a try block.

The following statements will open the text file out.txt

String fileName = "out.txt";//Could read file name from user
PrintWriter outputStream = null;
try
{
 outputStream = new PrintWriter(fileName);
}
catch(FileNotFoundException e)
{
 System.out.println("Error opening the file " + fileName);
 System.exit(0);
}

Opening a file
connects it to a
stream

Creating a Text File
§  After we connect the file to the stream, we

can write data to it
•  outputStream.println(“This is line 1.”);
•  outputStream.println(“Here is line 2.”);

§  Closing a file disconnects it from a stream
•  outputStream.close();

Creating a Text File
§  Syntax

10.2 Text-File I/O 733

LISTING 10.1 Writing Output to a Text File (part 2 of 2)

 System.out.println("Enter three lines of text:");
 Scanner keyboard = new Scanner(System.in);

for (int count = 1; count <= 3; count++)
 {
 String line = keyboard.nextLine();

outputStream.println(count + " " + line);
 }

outputStream.close();
 System.out.println("Those lines were written to " +
 fileName);
 }
}

Sample Screen Output

Enter three lines of text:
A tall tree
in a short forest is like
a big fish in a small pond.
Those lines were written to out.txt

Resulting file

1 A tall tree
2 in a short forest is like
3 a big fish in a small pond.

You can use a text editor to
read this file.

RECAP Creating a Text File

SYNTAX

// Open the file PrintWriter
Output_Stream_Name = null;
try
{

Output_Stream_Name = new PrintWriter(File_Name);
}
catch(FileNotFoundException e)
{

Statements_Dealing_With_The_Exception
}

(continued)

734 CHAPTER 10 / Streams and File I/O

! PROGRAMMING TIP A Program Should Not Be Silent

A program that creates a file should inform the user when it has finished
silent program, and the

user will wonder whether the program has succeeded or has encountered a
!

// Write the file using statements of either or both of the
// following forms:
Output_Stream_Name.println(...);
Output_Stream_Name.print(...);
// Close the file
Output_Stream_Name.close();

EXAMPLE

See Listing 10.1.

REMEMBER A File Has Two Names in a Program

the program ends its execution, but the actual file name persists. Note

more than two names. However, distinguishing between a file name and
a stream name is what is important here.

FAQ What are the rules for naming files?

constructor a string corresponding to the file name. Most common operating

.txt in out.txt, has no special meaning to a Java program. We are using

Example 

Appending to a Text File
§  Adding data to the end of a file
§  Syntax

§  Example

10.2 Text-File I/O 737

When appending to a text file in this way, we would still use the same try and
catch
appends to the file out.txt is in the program AppendTextFile.java included Extra code on the

Web

RECAP Opening a Text File for Appending

PrintWriter that appends data to
the end of an existing text file.

SYNTAX

PrintWriter Output_Stream_Name = new PrintWriter(new
FileOutputStream(File_Name, true));

EXAMPLE

PrintWriter outputStream = new PrintWriter(new
FileOutputStream("out.txt", true));

println and print to
write to the file, and the new text will be written after the old text in

stream variable and the invocation of the constructor, as we did in Listing
FileNotFoundException that might be thrown

when opening the file.)

SELF-TEST QUESTIONS

outStream that is an
object of the class PrintWriter and that connects this stream to a text
file named sam.txt so that your program can send output to the file. If
the file sam.txt
named sam.txt already exists, erase its old contents so the program can
start with an empty file with that name.

sam.txt exists already, write the new
data after the old contents of the file.

7. What kind of exception might be thrown by the following statement, and
what would be indicated if this exception were thrown?

PrintWriter outputStream = new PrintWriter("out.txt");

10.2 Text-File I/O 737

When appending to a text file in this way, we would still use the same try and
catch
appends to the file out.txt is in the program AppendTextFile.java included Extra code on the

Web

RECAP Opening a Text File for Appending

PrintWriter that appends data to
the end of an existing text file.

SYNTAX

PrintWriter Output_Stream_Name = new PrintWriter(new
FileOutputStream(File_Name, true));

EXAMPLE

PrintWriter outputStream = new PrintWriter(new
FileOutputStream("out.txt", true));

println and print to
write to the file, and the new text will be written after the old text in

stream variable and the invocation of the constructor, as we did in Listing
FileNotFoundException that might be thrown

when opening the file.)

SELF-TEST QUESTIONS

outStream that is an
object of the class PrintWriter and that connects this stream to a text
file named sam.txt so that your program can send output to the file. If
the file sam.txt
named sam.txt already exists, erase its old contents so the program can
start with an empty file with that name.

sam.txt exists already, write the new
data after the old contents of the file.

7. What kind of exception might be thrown by the following statement, and
what would be indicated if this exception were thrown?

PrintWriter outputStream = new PrintWriter("out.txt");

Reading From a Text File
§  Use Scanner to open a text file for input

•  E.g.: Scanner inputStream = new Scanner(new File(“out.txt”));

§  Use the method hasNextLine to read

10.2 Text-File I/O 739

Scanner
System.in as an argument to Scanner's constructor.

Unfortunately, we cannot pass a file name to Scanner's constructor.
Although Scanner
string is interpreted as data, and not the name of a file. Scanner

standard class, File, and File has a constructor to which we can pass a file
name. (The next section will describe the class File in more detail.) So a

Scanner Stream_Name = new Scanner(new File(File_Name));

If your program attempts to open a file for reading, but there is no such
file, Scanner's constructor will throw a FileNotFoundException. As you saw
earlier in this chapter, a FileNotFoundException is also thrown in certain
other situations.

try-catch blocks, does something with the file, and then closes the file. Let’s

while (inputStream.hasNextLine())
{
 String line = inputStream.nextLine();
 System.out.println(line);
}

This loop reads and then displays each line in the file, one at a time, until the

that the file out.txt is the one we created in Listing 10.1.
All the methods of Scanner

us and work in the same way. Some of these methods, including nextLine, are

hasNextLine
input. Figure 10.3 summarizes this method and a few other analogous methods.

Using Scanner to
open a text file
for input

Reading and

entire text file

RECAP Reading a Text File

SYNTAX

// Open the file
Scanner Input_Stream_Name = null;
try
{

Input_Stream_Name = new Scanner(new File(File_Name));
}

(continued)

10.2 Text-File I/O 739

Scanner
System.in as an argument to Scanner's constructor.

Unfortunately, we cannot pass a file name to Scanner's constructor.
Although Scanner
string is interpreted as data, and not the name of a file. Scanner

standard class, File, and File has a constructor to which we can pass a file
name. (The next section will describe the class File in more detail.) So a

Scanner Stream_Name = new Scanner(new File(File_Name));

If your program attempts to open a file for reading, but there is no such
file, Scanner's constructor will throw a FileNotFoundException. As you saw
earlier in this chapter, a FileNotFoundException is also thrown in certain
other situations.

try-catch blocks, does something with the file, and then closes the file. Let’s

while (inputStream.hasNextLine())
{
 String line = inputStream.nextLine();
 System.out.println(line);
}

This loop reads and then displays each line in the file, one at a time, until the

that the file out.txt is the one we created in Listing 10.1.
All the methods of Scanner

us and work in the same way. Some of these methods, including nextLine, are

hasNextLine
input. Figure 10.3 summarizes this method and a few other analogous methods.

Using Scanner to
open a text file
for input

Reading and

entire text file

RECAP Reading a Text File

SYNTAX

// Open the file
Scanner Input_Stream_Name = null;
try
{

Input_Stream_Name = new Scanner(new File(File_Name));
}

(continued)

Reading From a Text File
§  Syntax

10.2 Text-File I/O 739

Scanner
System.in as an argument to Scanner's constructor.

Unfortunately, we cannot pass a file name to Scanner's constructor.
Although Scanner
string is interpreted as data, and not the name of a file. Scanner

standard class, File, and File has a constructor to which we can pass a file
name. (The next section will describe the class File in more detail.) So a

Scanner Stream_Name = new Scanner(new File(File_Name));

If your program attempts to open a file for reading, but there is no such
file, Scanner's constructor will throw a FileNotFoundException. As you saw
earlier in this chapter, a FileNotFoundException is also thrown in certain
other situations.

try-catch blocks, does something with the file, and then closes the file. Let’s

while (inputStream.hasNextLine())
{
 String line = inputStream.nextLine();
 System.out.println(line);
}

This loop reads and then displays each line in the file, one at a time, until the

that the file out.txt is the one we created in Listing 10.1.
All the methods of Scanner

us and work in the same way. Some of these methods, including nextLine, are

hasNextLine
input. Figure 10.3 summarizes this method and a few other analogous methods.

Using Scanner to
open a text file
for input

Reading and

entire text file

RECAP Reading a Text File

SYNTAX

// Open the file
Scanner Input_Stream_Name = null;
try
{

Input_Stream_Name = new Scanner(new File(File_Name));
}

(continued)

740 CHAPTER 10 / Streams and File I/O

FIGURE 10.3 Additional Methods in the Class Scanner
(See also Figure 2.7)

Scanner_Object_Name.hasNext()
 Returns true if more input data is available to be read by the
 method next.

Scanner_Object_Name.hasNextDouble()
 Returns true if more input data is available to be read by the
 method nextDouble.

Scanner_Object_Name.hasNextInt()
 Returns true if more input data is available to be read by the
 method nextInt.

Scanner_Object_Name.hasNextLine()
 Returns true if more input data is available to be read by the
 method nextLine.

catch(FileNotFoundException e)
{
 Statements_Dealing_With_The_Exception
}
// Read the file using statements of the form:
Input_Stream_Name.Scanner_Method();
// Close the file
Input_Stream_Name.close();

EXAMPLE

See Listing 10.2

SELF-TEST QUESTIONS

 8. Write some code that will create a stream named textStream that is an
object of the class PrintWriter and that connects the stream to a text file
named dobedo so that your program can send output to this file.

 9. Suppose you run a program that writes to the text file dobedo, using the

will create a stream named inputStream that can be used to read from
this text file in the ways we discussed in this section.

next in the class
Scanner nextLine in
the class Scanner?

VideoNote
Writing and reading a
text file

Example

Other Techniques
§  The class File provides a way to represent file

names in a general way
•  E.g.: new File(“out.txt”) – Create a File object

represents the name of a file

§  Let the user enter the file name at the keyboard
•  E.g.: String fileName = keyboard.next();

§  Use Path Names
•  A path name specifies the folder containing a file
•  E.g.: Scanner inputStream = new Scanner(new File(“/

User/yihong/out.txt”));

Help on Homework 4

Next Class
§  Lab 8

