COMP 110-001
Introduction to Sorting

Yi Hong
June 12, 2015

Today

* |Introduction to Sorting
* Bubble sort

* Selection sort
* Merge sort

 You should understand the idea behind bubble
sort & selection sort

* You should be able to understand the code given
in slides (and know how to use the code in similar
problems by making slight modifications).

Bubble Sort (or Sinking Sort)

» Basic idea (Wikipedia)
« Start from the beginning of the list

« Compare every adjacent pair, swap their
positions if they are not in the right order

 After each iteration, one less element (the last
one) is needed to be compared until there is
no more elements left to be compared

Animation from

Wikipedia: 6 53 187 2 4

Bubble Sort

Step-by-step example of "5 14 2 8"

First Pass:

(51428) (15428
(15428) (14528
(14528) (14258
(14258) (14258

, Compares the first two elements, and swaps because 5 > 1.
, Swaps because 5> 4

, Swaps because 5 > 2

, In order (8 > 5), no need to swap

N N N

Second Pass:

(14258) (14258)

(14258) (12458), Swap since 4 > 2

(12458) (12458)

(12458) (12458)

Now, the array is already sorted, but our algorithm does not know if it is completed. The
algorithm needs one whole pass without any swap to know it is sorted.

Third Pass:

(12458) (12458
(12458) (12458
(12458) (12458
(12458) (12458

No swap
No swap
No swap
No swap, done.

N S N

Bubble Sort (1)

public static void bubbleSort(int [] data)
{
for(int k = @; k < data.length-1; k++)
{
for(int 1 = @; 1 < data.length - 1 - k; 1i++)

{
if(data[i] > data[i+1])
{
// swap data[i] and data[i+1]
int temp = data[i];
data[i] = data[i+1];
data[i+1] = temp;
}
}

Bubble Sort (ll)

public static void bubbleSort(int [] data)

{
for(int k = @; k < data.length-1; k++)

{

boolean bSwap = false;
for(int 1 = @; 1 < data.length - 1 - k; i++)

{
if(data[i] > data[i+1])
{
// swap data[i] and data[i+1]
int temp = data[i];
data[i] = data[i+1];
data[i+l] = temp;
bSwap = true;
}
}

if(!bSwap) break;

Selection Sort

= Given an array of length n, each time

select the smallest one among the rest

elements:

Search elements 0 through n-1 and select the
smallest

« Swap it with the element at location 0
Search elements 1 through n-1 and select the
smallest

« Swap it with the element at location 1
Search elements 2 through n-1 and select the
smallest

« Swap it with the element at location 2
Search elements 3 through n-1 and select the
smallest

« Swap it with the element at location 3
Continue until there’s no element left

Animation from
Wikipedia:

NO L, aWLQWOWONO O

An Example of Selection Sort

_>m

(&)
AN

(&)

oo

N —(N

~
(@)

= Step by step example: 7285

= |teration 1: found 2, swap it with 7
» |teration 2: found 4, swap it with 7
= |teration 3: found 5, swap it with 8
= |teration 4: found 7, swap it with 7

* The selection sort might swap an
array element with itself--this is
harmless, and not worth checking

Selection Sort

public static void selectionSort(int[] anArray)

{
for(int 1 = @; 1 < anArray.length - 1; i++)
{
int iSmallest = getIndexOfSmallest(i, anArray);
swap(i, iSmallest, anArray);
}
}

public static int getIndexOfSmallest(int startIndex, int[] a)
{

int min = a[startIndex];

int index0fMin = startIndex;

for(int index = startIndex + 1; index < a.length; index++)

{

if(a[index] < min)

t min = a[index]; public static void swap(int i, int j, int[] a)
index0fMin = index; {
} int temp = a[i];
} a[i] = a[jl;
return indexOfMin; a[j] = temp;

Merge Sort

» Bubble Sort and Selection Sort:
* Intuitive and easy to implement

* Help build basic abstract sorting concepts

» Requires ~n2 * ¢ operations in worst case

 n : number of items to sort
* C : some constant factor

* Not commonly used in practice

= Two commonly used sorting algorithms in
practice:

* Quick Sort & Merge Sort

Merge Sort

= Strategy: Recursively split the list in half and
merge the two returned segments

= Java’s built-in sort function is a variant of
merge sort: Collections.sort(..);
* Quick sort: Arrays.sort(..);

* ~n*log(n) * ¢ operations in worst case
» Check the difference = =

000000

between n*log(n) -

and n*2 whennislarge =

OOOOOO

000000

000000

000000

30124

/112

14

4

2021

33

38

10

55

9

23

28

16

/

Split the array into
two or more parts

30

24| 7

12(14| 4

20(21

14(20

21

2430

Merge

AN
~N

12

14

16]20

\

33

38

10

55

9123

28|16

\l Sort each part individually L

9

10

16

23

28

33

38|55

21

23

24

28

30

33

38

55

Merge Sort

= Animation from Wikipedia:

6 5 3 1 8 7 2 4

Merge Sort

* Not easy to implement Merge sort
correctly

= No Java code here (beyond the level of
COMP110)

» Just understand the high-level idea

Next Class

= Review of final exam

