
COMP 110-001 
Programming Basics

Yi Hong
May 14, 2015

Announcements
§  The slides of the previous two lectures

have been updated on the course website
§  There are seven custom textbooks

available in the university book store, we
can order more if needed

2	

Review
§  Binary to decimal conversion
•  10110

§  Is Java a high-level language or a low-
level language?

§  How is “Write once, run everywhere”
achieved in Java?

§  What’s output of the following Java
statement?
•  System.out.println(“Java is great!”);

3	

Today
§  Object-Oriented Programming (OOP)

§  Intro to encapsulation, polymorphism, and
inheritance

§  Writing algorithms in pseudocode

§  Variables, arguments, statements, and
syntax

4	

Object-Oriented Programming
§  Our world is made up of objects, e.g.,

people, buildings, trees, cars, cabbages

§  Objects can perform actions, which affect
themselves and other objects in the world

§  Object-oriented programming (OOP) treats
a program as a collection of objects that
interact by means of actions

5	

OOP Terminology
§  Objects: have attributes and behaviors
§  Methods: each behavior is called a method
§  Class: Objects of the same kind have the same

type and belong to the same class
•  Objects within a class have a common set of methods

and the same kinds of data
•  But each object can have its own data values

§  An example: students in this class
•  Attributes: name, age, major, hobbies …
•  Actions: talk, submit assignment, play games …

6	

Why OOP?
§  When we build a large system, we usually

divide the whole system into small pieces
§  Uses objects as building blocks and “object

interaction” in programming
§  Each object only cares about the interactions

with them
§  An example: this lecture
•  Objects: instructor, students …
•  Object interaction: discuss, submit assignments

…
7	

OOP Design Principles
§  Three primary design principles
•  Encapsulation
•  Polymorphism
•  Inheritance

8	

Encapsulation
§  Packages things up and hides details
§  Provides how to use a class, but omits all

the details of how it works
§  Encapsulation is often called information

hiding

9	

An Example
§  An automobile consists of several parts

and is capable of doing many useful things
•  Awareness of the accelerator pedal, the brake

pedal, and the steering wheel is important to
the driver

•  Hiding information: awareness of the fuel
injectors, the automatic braking control
system, the power steering pump is NOT
important to the driver.

10	

Polymorphism
§  “many forms”
§  Allows the same program instruction to mean

different things in different contexts
•  Example: “Go play your favorite sport”

•  To one person, it means to play baseball
•  To another person, it means to play soccer

§  In programming, polymorphism means that
one method name, used as an instruction,
can cause different actions

§  More details in Chapter 8
11	

Inheritance
§  A way of organizing related classes
§  At each level, the classifications become

more specialized

12	

More About Inheritance
§  A class at higher level is more general
§  A class at lower level is more specific, and it

inherits all the characteristics of classes
above it in the hierarchy

13	

Algorithm
§  A set of instructions for solving a problem
•  The directions must be expressed completely

and precisely

§  By designing methods, programmers
provide actions for objects to perform

§  In this course, we mainly consider a
sequence of instructions in a method
(one action)

14	

Pseudocode
§  Before translating algorithm into code
§  A mixture of English and Java
§  Write each part of an algorithm in

whatever language is easiest for you
§  An example:

For each student A in the class:
 If A’s score > 60 Print A + “has passed”
 Else Print A + “has Failed”

15	

Vocabulary
§  Variables: store a piece of data. Think a

variable as a container
§  Statements: instructions, the smallest

standalone element of a programming
languages

§  Syntax: grammar rules for a language
§  Arguments: information that methods need

to carry out its action

16	

Variables
§  A variable is a program component used

to store or represent data
§  The data currently in a variable is its value
§  Name of variable is an identifier
§  Can change value throughout program
§  Choose meaningful variable names!!!

int age;
age = 16;

17	

Variables and Memory
§  A variable corresponds to a

location in memory
•  Variable: int age
•  Use this cell to store the value

of the variable “age”
•  Prevent this cell from being

used by other variables later

main memory

11110000	

11101001	

00101010	

10110101	

01000101	

Bytes

18	

Variable Declarations
§  Syntax
•  Type variable_1, variable_2, … ;

§  Examples
•  int count, score, myInt;
•  double totalCost, ratio;
•  char letter, answer;

We will discuss the data types in Java in the
next lecture

19	

How to Use Variables
§  Declare a variable
•  int age;

§  Assign a value to the variable
•  age = 16;

§  Change the value of the variable
•  age = age + 1;

20	

How to Name an Identifier
§  Letters, digits (0-9), the underscore character (_)
§  The symbol $ is also allowed, but it is reserved

for special purposes, so you should not use $ in
a Java name

§  First character cannot be a digit
§  No spaces
§  Java is case sensitive

Legal identifiers: pinkFloyd, b3Atlas, eyeColor
Illegal identifiers: michael.bolton, kenny-G, 1CP

21	

Keywords
§  Reserved words with predefined meanings
§  You cannot name your variables using

keywords
§  All Java keywords are entirely in

lowercase
§  We will learn them as we go along
•  E.g.: if, else, return, new, public, class, static,

void …

22	

Next class
§  Primitive type
§  Class type

23	

