
COMP 110-001 
Loop Statements

Yi Hong
May 21, 2015

Announcements
§  Grades of Lab 0 were posted

Review
§  Q1: What’s the outputs

of following statements?

§  Q2: Write a program
that assigns grade
based on an input score
•  A: 90 ~ 100
•  B: 80 ~ 89
•  C: 70 ~ 79
•  D: 60 ~ 69
•  F: 0 ~ 59

If-Else or Switch Statement
§  Use a switch statement when you have more than

2 conditions on a single variable
•  Example: Weekdays – if you have a different action to

perform for each day of the week, use a switch
statement

§  Use an if-else for all other scenarios:
•  More than one variable you’re testing (multiple

conditions)
•  Testing for a range of values
•  Variable is not an int, char, or enum
•  Example: Grades – each grade (A, B, C, D, E) has a

range of values that reflect each grade letter

Today
§  Loop statements

Warm-up so far in this course
Loop is where it starts to get harder
I suggest you to spend more time on examples
given in this and future lectures

Flow of Control
§  Alter the order in which a program’s

statements are executed
§  Typically, two kinds
•  Conditionals (if-else and switch)

•  Execute a set of statements by choosing among
two or more paths

•  Loops
•  Repeat a group of instructions numerous times

Types of Loops
§  while loop
•  Repeats its body while a boolean expression

is true

§  do while loop
•  Loop iterates at least ONCE

§  for loop
•  Numeric computation changes by equal

amount

The While Loop
§  Syntax

while (Boolean_Expression)
 Body

•  The Body may be either a
simple statement or, a list of
statements enclosed in braces {}

§  A while statement repeats while a controlling
boolean expression remains true

§  The loop body typically contains an action
that ultimately causes the controlling boolean
expression to become false

 4.1 Java Loop Statements 201

When a do-while loop is executed, the loop body executes first. After
that, a do-while loop behaves in exactly the same way as a while loop. The

body executes one more time. This is done again and again as long as the

The syntax for a do-while statement is as follows:

do
 Body
while (Boolean_Expression); Note the semicolon!

The Body can be a simple statement, but it is more likely to be a compound
do-while loop is

do
{
 First_Statement
 Second_Statement
 . . .
 Last_Statement
} while (Boolean_Expression);

Boolean_
Expression. Also note that although we place the ending brace } and the while
on the same line, some programmers prefer to place them on different lines.
Either form is fine, but be consistent.

FIGURE 4.2 The Semantics of the while Statement

End loop
Execute Body

True

Start

False

Evaluate
Boolean_Expression

while (Boolean_Expression)
 Body

A do-while
loop also repeats
its body while
a boolean
expression is true

The body of
a do-while
loop often is
a compound
statement

An Example of a While Loop

RECAP The while Statement

SYNTAX

while (Boolean_Expression)
 Body

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}.

EXAMPLE

//Get next positive integer entered as input data
int next = 0;
while (next <= 0)
 next = keyboard.nextInt(); //keyboard is a Scanner object

(continued)

 4.1 Java Loop Statements 199

FIGURE 4.1 The Action of the while Loop in Listing 4.1

while (count <= number)
{
 System.out.print(count + ", ");
 count++;
}

{
 System.out.print(count + ", ");
 count++;
}

Execute End loop

True

Start

False

Evaluate
count<=number

RECAP The while Statement

SYNTAX

while (Boolean_Expression)
 Body

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}.

EXAMPLE

//Get next positive integer entered as input data
int next = 0;
while (next <= 0)
 next = keyboard.nextInt(); //keyboard is a Scanner object

(continued)

 4.1 Java Loop Statements 199

FIGURE 4.1 The Action of the while Loop in Listing 4.1

while (count <= number)
{
 System.out.print(count + ", ");
 count++;
}

{
 System.out.print(count + ", ");
 count++;
}

Execute End loop

True

Start

False

Evaluate
count<=number

While in Practice
§  What’s the output?

•  Iteration 1: count = 0, < 5? true, print 0, +1
•  Iteration 2: count = 1, < 5? true, print 1, +1
•  …
•  Iteration 5: count = 4, < 5? true, print 4, +1
•  Iteration 6: count = 5, < 5? false, stop

Calculate the Sum of 1…100

Input Checking
§  Ask user to input an integer between 0

and 100, keep reading until we get the
correct input

Early Exit
 break;
Exit a loop and continue to execute the statement
after the loop
§  Example: Compute factorial

Go To Next Iteration
 continue;
Skip next part of a loop, and start the next iteration
upon invocation
§  Example: Calculate the sum of multiples of 3

within [1, 100]

Compute the Sum of Multiples of 3

§  What’s wrong with the following implementation?

The do-while Loop
§  Similar to a while loop,

except that the loop body
is executed at least once

§  Syntax
do

Body
while (Boolean_Expression);
•  Don’t forget the semicolon

204 CHAPTER 4 / Flow of Control: Loops

RECAP The do-while Statement

SYNTAX

do
 Body
while (Boolean_Expression);

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}. The
Body is always executed at least once. Be sure to notice the semicolon at
the end of the entire statement.

(continued)

statements. With a do-while loop, the loop body always executes at least
once; with a while loop, the loop body may execute zero times.

The semantics of a do-while loop is shown in Figure 4.4. Like the
semantics of the while loop shown in Figure 4.2, this semantics assumes that
the body of the loop contains no break statement.

FIGURE 4.4 The Semantics of the do-while Statement

Execute Body

End loop

True

Start

False

do
 Body
while (Boolean_Expression)

Evaluate
Boolean_
Expression

The do-while Loop
§  First, the loop body is executed
§  Then, the boolean expression is checked
•  As long as it is true, the loop is executed again
•  If it is false, the loop is exited

§  Equivalent while statement
Statements
while (Boolean_Expression)

 Statements

An Example of the do-while Loop

 4.1 Java Loop Statements 203

The do-while loop in Listing 4.2 can be rewritten as an equivalent while
loop, as follows:

{
 System.out.print(count + ", ");
 count++;
}
while (count <= number)
{
 System.out.print(count + ", ");
 count++;
}

Although we do not recommend rewriting your do-while loops in this way,
this example helps illustrate the difference between these two types of loop

FIGURE 4.3 The Action of the do-while Loop in Listing 4.2

{
 System.out.print(count + ", ");
 count++;
}

Execute

End loop

True

Start

False

Evaluate
count<=number

do
{
 System.out.print(count + ", ");
 count++;
} while (count <= number);

 4.1 Java Loop Statements 203

The do-while loop in Listing 4.2 can be rewritten as an equivalent while
loop, as follows:

{
 System.out.print(count + ", ");
 count++;
}
while (count <= number)
{
 System.out.print(count + ", ");
 count++;
}

Although we do not recommend rewriting your do-while loops in this way,
this example helps illustrate the difference between these two types of loop

FIGURE 4.3 The Action of the do-while Loop in Listing 4.2

{
 System.out.print(count + ", ");
 count++;
}

Execute

End loop

True

Start

False

Evaluate
count<=number

do
{
 System.out.print(count + ", ");
 count++;
} while (count <= number);

Loop Practice
§  Write a while loop or a do-while loop that

will compute the sum of the first n positive
odd numbers. For example, if n is 5, you
should compute 1 + 3 + 5 + 7 + 9.

Some short-forms
§  Nested expression, used a lot in a loop
•  n = n + 1; à n++; or ++n;
•  n = n – 1; à n--; or --n;
•  n = n + m; à n += m;
•  n = n – m; à n -= m;

The for Loop
§  Syntax

•  Example
int count;
for (count = 1; count < 3; count++)

 System.out.println(count);

 4.1 Java Loop Statements 217

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}. Notice
that the three items in parentheses are separated by two, not three,
semicolons.

EXAMPLE

for (next = 0; next <= 10; next = next + 2)
{
 sum = sum + next;
 System.out.println("sum now is " + sum);
}

FIGURE 4.6 The Semantics of the for Statement

Execute Update_Action

Execute Body
End loop

True

Start

False

for (Initializing_Action; Boolean_Expression; Update_Action)
 Body

Evaluate
Boolean_

Expression

Execute
Initializing_Action

 4.1 Java Loop Statements 217

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}. Notice
that the three items in parentheses are separated by two, not three,
semicolons.

EXAMPLE

for (next = 0; next <= 10; next = next + 2)
{
 sum = sum + next;
 System.out.println("sum now is " + sum);
}

FIGURE 4.6 The Semantics of the for Statement

Execute Update_Action

Execute Body
End loop

True

Start

False

for (Initializing_Action; Boolean_Expression; Update_Action)
 Body

Evaluate
Boolean_
Expression

Execute
Initializing_Action

An Example of the for Loop
216 CHAPTER 4 / Flow of Control: Loops

FIGURE 4.5 The Action of the for Loop in Listing 4.5

Execute
countDown = 3;

Execute

Execute
countDown––;

for (countDown = 3; countDown >= 0; countDown–)
{
 System.out.println(countDown);
 System.out.println("and counting.");
}

End loop

True

Start

False

Evaluate
count >= 0

{
 System.out.println(countDown);
 System.out.println("and counting.");
}

RECAP The for Statement

SYNTAX

for (Initializing_Action; Boolean_Expression; Update_Action)
 Body

(continued)

4.1 Java Loop Statements 215

When it is executed, a for statement is equivalent to code involving a while
for statement of the preceding form is equivalent to the following:

Initializing_Action;
while (Boolean_Expression)
{
 Statements
 . . .
 Update_Action;
}

for statement is basically another notation for a kind of while loop,
a for statement—just like a while statement—might not repeat its loop body
at all.

Listing 4.5 provides an example of a for
summarized in Figure 4.5. Figure 4.6 describes the semantics of a for loop in
general.

A for loop
is logically
equivalent to a
while loop

LISTING 4.5 An Example of a for Statement

public class ForDemo
{

public static void main(String[] args)
 {

int countDown;
for (countDown = 3; countDown >= 0; countDown--)

 {
 System.out.println(countDown);
 System.out.println("and counting.");
 }
 System.out.println("Blast off!");
 }
}

Screen Output

3
and counting.
2
and counting.
1
and counting.
0
and counting.
Blast off!

Another Example: The Sum of 1…n

•  Possible to declare variables within a for loop
•  Note that variable i is local to the loop

Loop Practice
§  Write a for loop that will compute the sum

of the first n positive even numbers. For
example, if n is 5, you should compute 2 +
4 + 6 + 8 + 10

Summary of Loops
 4.1 Java Loop Statements 201

When a do-while loop is executed, the loop body executes first. After
that, a do-while loop behaves in exactly the same way as a while loop. The

body executes one more time. This is done again and again as long as the

The syntax for a do-while statement is as follows:

do
 Body
while (Boolean_Expression); Note the semicolon!

The Body can be a simple statement, but it is more likely to be a compound
do-while loop is

do
{
 First_Statement
 Second_Statement
 . . .
 Last_Statement
} while (Boolean_Expression);

Boolean_
Expression. Also note that although we place the ending brace } and the while
on the same line, some programmers prefer to place them on different lines.
Either form is fine, but be consistent.

FIGURE 4.2 The Semantics of the while Statement

End loop
Execute Body

True

Start

False

Evaluate
Boolean_Expression

while (Boolean_Expression)
 Body

A do-while
loop also repeats
its body while
a boolean
expression is true

The body of
a do-while
loop often is
a compound
statement

 4.1 Java Loop Statements 217

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}. Notice
that the three items in parentheses are separated by two, not three,
semicolons.

EXAMPLE

for (next = 0; next <= 10; next = next + 2)
{
 sum = sum + next;
 System.out.println("sum now is " + sum);
}

FIGURE 4.6 The Semantics of the for Statement

Execute Update_Action

Execute Body
End loop

True

Start

False

for (Initializing_Action; Boolean_Expression; Update_Action)
 Body

Evaluate
Boolean_

Expression

Execute
Initializing_Action

204 CHAPTER 4 / Flow of Control: Loops

RECAP The do-while Statement

SYNTAX

do
 Body
while (Boolean_Expression);

The Body may be either a simple statement or, more likely, a compound
statement consisting of a list of statements enclosed in braces {}. The
Body is always executed at least once. Be sure to notice the semicolon at
the end of the entire statement.

(continued)

statements. With a do-while loop, the loop body always executes at least
once; with a while loop, the loop body may execute zero times.

The semantics of a do-while loop is shown in Figure 4.4. Like the
semantics of the while loop shown in Figure 4.2, this semantics assumes that
the body of the loop contains no break statement.

FIGURE 4.4 The Semantics of the do-while Statement

Execute Body

End loop

True

Start

False

do
 Body
while (Boolean_Expression)

Evaluate
Boolean_
Expression

The while loop The do-while loop
The for loop

§  Three types:

Next Class
§  More about Loops

