COMP110-001: Introduction to Programming, SSI'15

Meeting time and place: MTWRF 9:45am - 11:15am, FB009

Course website: http://cs.unc.edu/~yihong/COMP110/COMP110-001.html

Instructor: Yi Hong

- Office: SN226
- Email: <u>yihong@cs.unc.edu</u>
- Office Hours: MW 3:00 4:00pm, or by appointment

Course Description and Target Audience

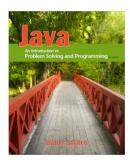
This is an introductory course to programming for students with no previous programming experience. There are two primary goals:

- 1) Learn fundamental computer programming skills, and
- 2) Improve problem solving and logical thinking skills.

The course is designed to use the Java programming language. Comp 116 is another introductory computer programming course, but with emphasis on scientific computing. Both COMP 110 and COMP 116 satisfy the prerequisite to continue with further programming courses, e.g., COMP 401. *Students can only receive credit for one of COMP 110, COMP116, or COMP 121.*

Objectives: By the end of the course, students should be able to

- Develop problem solving techniques
- Understand and develop basic algorithms
- Apply fundamental programming concepts, such as variables, loops, conditionals, functions, and arrays, in programming assignments
- Use pseudocode and Object Oriented design techniques for the planning and development of programming sequences
- Understand the basic components of computer programming in Java, which can be applied to other languages as well (C, C++, Python, etc.)
- Analyze existing programs to identify problems or potential improvements.


Prerequisites and Course Requirements

- Although this course has no prerequisites, a basic background in math, especially algebra, is required.
- I assume basic computer skills (using a web browser, writing email, using word processing applications, downloading and installing software, etc.).
- If you are not comfortable using a computer, consider taking COMP 101 ("Power Tools for the Mind") before taking COMP 110.
- If you have previous programming experience, such as in a high school course, (especially, a Computer Science AP course) consider taking COMP 401

("Foundations of Programming") instead. If you are interested in taking COMP 401 without taking COMP 110, please see me first.

Textbooks and Resources

- *Textbooks:* Java: An Introduction to Problem Solving and Programming: 6th Edition, by Walter Savitch and Kenrick Mock, Prentice Hall © 2011.
- The 5th edition is very similar to the 6th edition.
- You can also use the Kindle edition if you want.
- URL: http://cs.unc.edu/~yihong/COMP110/COMP110-001.html. Most of the course information will be posted on this website.

Topics

- Introduction to computers and programming tools
- Variables, types, values and declarations
- Input and output
- Expressions and statements
- Flow of control: branching and loops
- Arrays, and some data structures
- Object-Oriented Programming

What to Expect

- <u>*Reading assignments*</u>. These will be general directions for reading your textbook. It is a better idea to do them before coming to each class.
- <u>Assignments</u>. For the in-class labs and the out-class homework, they will all be programming assignments, which require the submission of a Java program that can generate the correct results.
- <u>Exams</u>. There will be an in-class written mid-term exam and an in-class written final exam during the (University) scheduled time slot.
- <u>Attendance</u>. Attendance is required for this class, and is a factor in your grade. This includes class participation.

Grading Criteria

Labs and Assignments	60%
Midterm Exam	15%
Final Exam	20%
Participation	5%

Late Policy

An assignment is considered late if it is submitted after **11:59pm** on the due date. Each student has 3 free "late days", which may be used at any time and in any combination.

Using a late day gives the student an extra 24 hours to turn in the assignment. Unused late days are each worth 2 extra credit points on the final exam. Once a student's late days have been exhausted, late assignments will not be accepted for credit.

Attendance Policy

Class presence is required, and there will be 5 randomly chosen classes that students need to sign the attendance sheet when you come to the class. Missing one of them will lose 20 percent of your participation grades.

Important Dates

- Last day of late registration: Thursday, May 14
- Midterm exam: Friday, May 29
- Final exam: Wednesday, June 17

Honor Code

- You may discuss general approaches for the assignments, but **all code must be your own**, and you must be able to explain your code.
- Exams are to be entirely your own work. You may not collaborate with other students or use any computers, books, notes, or previously completed assignments.
- Please be familiar with the UNC Honor Code (https://studentconduct.unc.edu/) and the Computer Science Honor Code (http://cs.unc.edu/academics/).
- You will be required to sign an honor code pledge to hand in with every assignment.

Course Schedule

This is a tentative outline of the lectures and subject to changes as needed.

Date	Lecture Topic(s)	Reading	Assignments
Wed. May 13	Lecture 1: Introduction Lecture 2: Computer Basics	Chapter 1.1-1.2	Homework 0
Thurs. May 14	Lecture 3: Programming Basics Lecture 4: Primitive types	Chapter 1.3 Chapter 2.1	
Fri. May 15	Lab 0 Lab 1		Homework 0 Due Homework 1
Mon. May 18	Lecture 5: String & Console I/O Lecture 6: Review of Chapter 1 & 2	Chapter 2.2-2.3	Lab 0 & 1 Due
Tues. May 19	Lecture 7: Branching 1 Lecture 8: Branching 2	Chapter 3.1-3.3	
Wed. May 20	Lab 2 Lab 3		Homework 1 Due Homework 2

		1	
Thurs. May 21	Lecture 9: Loop Statements Lecture 10: More Loops	Chapter 4.1-4.2	Lab 2 & 3 Due
Fri. May 22	Lecture 11: Classes Lecture 12: More Classes	Chapter 5.1	
Mon. May 25	HOLIDAY (Me		
Tues. May 26	Lab 4 Lab 5		Homework 2 Due
Wed. May 27	Lecture 13: Information Hiding and Encapsulation Lecture 14: Mid-Term Review	Chapter 5.2	Lab 4 & 5 Due Mid-Term Practice
Thurs. May 28	Review Mid-Term Practice Lecture 15: Objects and References	Chapter 5.3	
Fri. May 29	Mid-Term Exam		Homework 3
Mon. June 1	Review Mid-Term Exam Lecture 16: Constructors and Static Methods	Chapter 6.1-6.2	
Tues. June 2	Lab 6		
Wed. June 3	Lecture 17: Writing Methods and Overloading Lecture 18: Package & Review of Classes	Chapter 6.3-6.4 Chapter 6.7	Lab 6 Due
Thurs. June 4	Lecture 19: Arrays Basics Lecture 20: More Arrays	Chapter 7.1-7.2 Chapter 7.5	
Fri. June 5	Lab 7		Homework 3 Due Homework 4
Mon. June 8	Lecture 21: Inheritance Basics Lecture 22: Polymorphism	Chapter 8.1-8.2 Chapter 8.3	Lab 7 Due
Tues. June 9	Lecture 23: Exception Handling Lecture 24: Streams and File I/O	Chapter 9.1, 9.3 Chapter 10.1-10.2	
Wed. June 10	Lab 8		
Thurs. June 11	Lecture 25: Recursion Lecture 26: Array-Based Data Structures	Chapter 11.1 Chapter 12.1	Lab 8 Due
Fri. June 12	Lecture 27: Collections Lecture 28: Linked Data Structures	Chapter 12.2-12.3	Homework 4 Due
Mon. June 15	Final Exam Review		
Tues. June 16	Self-Review		
Wed. June 17	Final Exam		