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Abstract. We introduce a neural network framework, utilizing adversarial learn-
ing to partition an image into two cuts, with one cut falling into a reference
distribution provided by the user. This concept tackles the task of unsupervised
anomaly segmentation, which has attracted increasing attention in recent years
due to their broad applications in tasks with unlabelled data. This Adversarial-
based Selective Cutting network (ASC-Net) bridges the two domains of cluster-
based deep learning methods and adversarial-based anomaly/novelty detection
algorithms. We evaluate this unsupervised learning model on BraTS brain tu-
mor segmentation, LiTS liver lesion segmentation, and MS-SEG2015 segmenta-
tion tasks. Compared to existing methods like the AnoGAN family, our model
demonstrates tremendous performance gains in unsupervised anomaly segmenta-
tion tasks. Although there is still room to further improve performance compared
to supervised learning algorithms, the promising experimental results shed light
on building an unsupervised learning algorithm using user-defined knowledge.

1 Introduction

In computer vision and medical image analysis, unsupervised image segmentation has
been an active research topic for decades [14,17,19,20,26], due to its potential of apply-
ing to many applications without requiring the data to be manually labelled. Recently,
advances in GANs [15] have given rise to a class of anomaly detection algorithms,
which are inspired by AnoGAN [24] to identify abnormal events, behaviors, or regions
in images or videos [10,13,25]. The AnoGAN learns a manifold of normal images by
mapping from image space to a latent space based on GANs. To detect the anomaly,
AnoGAN needs iterative search in the latent space to find the closest corresponding
images for a query image. The AnoGAN family, including f-AnoGAN [23] and other
works [4,5,16,27,28], focus on the reconstruction of the corresponding normal images
for a query image, but not directly working on the anomaly detection. As a result, their
reconstruction quality heavily affects the performance of anomaly detection.

To center the focus on the anomaly without needing faithful reconstruction, we
propose an adversarial-based selective cutting neural network (ASC-Net)3, shown in
Figure 1. This network aims to decompose an image into two selective cuts based on

3 Our source code is available on Github: https://github.com/raun1/ASC-NET.

https://github.com/raun1/ASC-NET
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Fig. 1. Overview of our proposed ASC-Net for unsupervised anomaly segmentation.

a reference image distribution. Typically, the reference distribution is defined by a set
of images provided by users or experts who have vague knowledge and expectation of
normal cases. In this way, one cut will fall into the reference distribution, while other
image content outside of the reference image distribution will group into the other cut.
These two cuts allow to reconstruct the original input image semantically and perform a
simple intensity thresholding to cluster normal and abnormal regions. To consider these
two cuts simultaneously, we extend U-Net [21] with two upsampling branches, as used
in CompNet [11], a supervised image segmentation approach. Meanwhile, one branch
connects to a GAN’s discriminator network, which allows introducing the knowledge
contained in the reference image distribution. With the discriminator component aiding,
the network can separate images into softly disjoint regions; that is, the generation of
our selective cuts is under the constraint of the reference image distribution. As a result,
we obtain a joint estimation of anomaly and the corresponding normal image, thus
bypassing the need for perfect reconstruction. Furthermore, under the constraints of the
GAN discriminator and the reconstruction of the original input, our ASC-Net becomes
an unsupervised solution for anomaly detection, since we do not have any labels for the
anomaly, with only a collection of normal images in the reference distribution.

We evaluate our proposed unsupervised anomaly segmentation network on three
public datasets, i.e., MS-SEG2015 [7], BraTS-2019 [1,2,18], and LiTS [6] datasets.
For the MS-SEG2015 dataset, an exhaustive study on comparing multiple existing
autoencoder-based models, variational-autoencoder-based models, and GAN-based mod-
els is performed in [3]. Compared to the best Dice scores reported in [3], we have sig-
nificant gains in performance, which are increased by 23.24% without post-processing
and 20.40% with post-processing4. For BraTS dataset, our experiments show that f-

4 Different from that in [3], we use a simple open-and-closed operation for post-processing.
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AnoGAN, the one performs the best after post-processing in [3], has difficulty recon-
structing the normal images required for anomaly segmentation. By constrast, we ob-
tain a mean Dice score of 63.67% for the BraTS brain tumor segmentation and 32.24%
for the LiTS liver lesion segmentation, under the two-fold cross-validation settings for
both datasets. In addition, we improve the Dice score for the liver lesion segmentaiton
to 50.23% using a simple post-processing scheme of open and closed sets.

Overall, the contributions of our proposed method are summarized below:
– Proposing an adversarial based framework for unsupervised anomaly segmentation,

which bypasses the normal image reconstruction and works on anomaly detection
directly. This framework presents a general clustering strategy to generate two se-
lective cuts based on a reference image set with human knowledge.

– To the best of our knowledge, our work is the first one to apply an unsupervised
segmentation algorithm to the BraTS 2019 and LiTS liver lesion public datasets.
Besides, our method outperforms the AnoGAN family and other popular methods
presented in [3] on the publicly available MS-SEG2015 dataset.

2 Adversarial-based Selective Cutting Network (ASC-Net)

2.1 Network Framework

Figure 1 describes the framework of our proposed ASC-Net, which includes two com-
ponents, i.e., the main module M and the discriminator D, and one simple clustering
step T based on thresholding. Overall, the main module includes normal and anomaly
branches to semantically reconstruct the original image for clustering, while the dis-
criminator brings user-defined knowledge into the normal branch in the main module.

Main Module M . The main module aims to generate two selective cuts, which guide
a follow-up simple reconstruction of an input image to cluster image pixels based on
intensity thresholding. The M follows an encoder-decoder architecture like the U-Net,
including one encoder and two decoders. The encoder E extracts features of an input
image Iin, which could be an image located within or outside of the reference distri-
bution {Ird}, a collection of normal images. One decoder in green (the second branch)
is designed to generate a “fence” cut Cf that is defined by an image fence formed by
{Ird}. The Cf aims to generate an image Ifc and tries to fool the discriminator D.
The other decoder in blue (the first branch) is designed to generate another “wild” cut
Cw, which captures leftover image content that is not included in Ifc. As a result, the
Cw produces another images Iwc to complement the fence-cut output Ifc. The comple-
mentary relation between these two cuts Cf and Cw is enforced by a positive Dice loss
discussed later. Figure 2 demonstrates the “disjoincy” of Ifc and Iwc, like their com-
plementary histogram distribution and different thresholded images at different peaks.

The reconstructor R consists of a 1 × 1 convolution layer with the Sigmoid as the
activation function, which is applied on the concatenation of the two-cut outputs Ifc
and Iwc to regenerate the input image Iin back. This reconstructor R ensures that the
Cf does not generate an image Ifc far from the input image Iin and also ensures that
the Cw does not generate an empty image Iwc if the anomaly or novelty exists. Figure 3
shows the histogram separation of the reconstructed images, compared to the original
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Fig. 2. Visualization of the “disjoincy” between images Ifc (top) and Iwc (bottom) generated by
two cuts of ASC-Net. From left to right: the generated image, its histogram, and the following
four columns representing the histogram equalized images of the thresholded peaks with the first
peak being the first image, etc. The first peak of Ifc is disjoint with the last peak of Iwc, etc.

input images which present complex histogram peaks and have difficulty in separating
the brain tumor from backgorund and other tissues via a simple thresholding. The dis-
continuous histogram distribution of Iro is inherited from the two generated sub-images
Ifc and Iwc through a simple weighted combination. As a result, the segmentation task
becomes relatively easy to be done on the reconstructed image Iro.

Fig. 3. Histogram comparison of two sample
images. From left to right: the input image, its
histogram, its reconstructed image using ASC-
Net, and the histogram of the reconstructed im-
age. The histograms of the input images vary
greatly, while the ones of their reconstructions
show peaks at similar ranges, which enables a
thresholding based pixel-level separation.

Discriminator D. The GAN discrimina-
tor tries to distinguish the generated im-
age Ifc, according to a reference distribu-
tion Rd defined by a set of images {Ird},
which are provided by the user or ex-
perts. The Rd typically includes images
collected from the same group, for in-
stance, normal brain scans, which share
similar structures and lie on a manifold.
Introducing D allows us to incorporate
our vague prior knowledge about a task
into a deep neural network. Typically, it
is non-trivial to explicitly formulate such
prior knowledge; however, it could be im-
plicitly represented by a selected image
set. The Rd is an essential component that
makes our ASC-Net possible to generate
selective cuts according to the user’s in-
put, without requiring other supervisions.

Thresholding T . To cluster the reconstructed image Iro into two groups at the pixel
level, we choose the thresholding approach with the threshold values obtained using
the histogram of Iro. We observed that for an anomaly that is often brighter than the
surrounding tissues like the BraTS brain tumor, the intensity value at the rightmost peak
of the histogram is a desired threshold; while an opposite case like darker LiTS liver
lesions, the value at the leftmost peak would be the threshold. We also observed that
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the histograms of the reconstructed images for different inputs reflect the same cut-off
point for the left or right peaks, which allows using one threshold for an entire dataset.

Loss Functions. The main module M includes three loss functions: (i) the image gen-
eration loss for Cf (LossCf

), (ii) the “disjoincy” loss between Cf and Cw (LossCw
),

and (iii) the reconstruction loss (LossR). In particular, the Cf tries to generate an im-
age Ifc that fools the discriminator D by minimizing LossCf

= 1
n

∑n
i=1 |D(I

(i)
fc )−1|.

Here, n is the number of samples in the training batch. The Cw tries to generate an
image Iwc that is complement to Ifc by minimizing the positive Dice score LossCw =
2|Ifc∩Iwc|
|Ifc|+|Iwc| . The last reconstruction takes an Mean-Squared-Error (MSE) loss between

the input image Iin and the reconstructed image Iro: LossR = 1
n

∑n
i=1 ‖I

(i)
in − I

(i)
ro ‖22.

The discriminator D tries to reject the the Cf output Ifc but accept the images from
the reference distribution Rd, by minimizing the following loss function: LossD =

1
n+m

(∑n
i=1 |D(I

(i)
fc )− (−1)|+

∑m
i=1 |D(I

(i)
Rd

)− 1|
)

. Here, m is the number of the
images in Rd. Even though D and Cfc are tied in an adversarial setup, here we do not
use the Earth Mover distance [22] in the loss function, since we would like D to iden-
tify both positive samples and negative samples with equal precision. Therefore, we use
Mean Absolute Error (MAE) instead.

2.2 Architecture Details and Training Scheme

We use the same network architecture for all of our experiments as shown in Fig. 1. The
encoder E consists of four blocks of two convolution layers with a filter size of (3, 3)
followed by a max pooling layer with a filter size of (2, 2) and batch normalization
after every convolution layer. After every pooling layer we also introduce a dropout of
0.3. The number of feature maps in each of the convolution layer of a block are 32,
64, 128, and 256. Following these blocks is a transition layer of two convolution layers
with feature maps of size 512 followed by batch normalization layers. The Cfc and Cwc

decoders are connected to the E and mirror the layers with the pooling layers replaced
with 2D transposed convolutional layers, which have the same number of feature maps
as the blocks mirror those in the encoder. Similar to a U-Net, we also introduce skip
connections across similar levels in the encoder and decoders. The reconstructor R is
simply a Sigmoid layer applied to the concatenation of Ifc and Iwc, resulting in a sim-
plified CompNet [11]. The Discriminator D mimics the architecture of the E, except for
the last layer where a dense layer is used for classification. All the intermediate layers
have ReLU activation function and the final output layers have the Sigmoid activation.
The only exception is the output of the discriminator D, which has a Tanh activation
function to separate Ifc and images from the Rd to the maximum extent.

We use Keras with Tensorflow backend and Adam optimizer with a learning rate of
5e-5 to implement our architecture. We follow two distinct training stages:

– In the first stage, we train D and M in cycles. We start training D with {Rd}
with True labels and {Ifc} with False labels. These training samples are shuffled
randomly. Following D, we train M with {Iin} as input and the weights of D
frozen while preserving the connection between {Ifc} and D. The objective of
the M is to morph the appearance of {Iin} into {Ifc} to fool D with the frozen
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weights. We call these two steps one cycle, and in each step there may be more than
one epochs of training for M or D.

– In the second stage, M and D continue to be trained alternatively; however, the
input images to D are changed, since the training purpose at this stage is to focus
on the differences between the {Rd} and {Iin}, while ignoring the noisy biases
created by the M in transforming {Iin} to {Ifc}. To achieve this, we augment the
reference distribution {Rd} with its generated images via M , i.e., {Ifc(Rd)}. We
treat them as true images, and the union set {Rd ∪ Ifc(Rd)} is used to update D.

Runtime Analysis. We use two Nvidia TitanX GPUs and on average a discriminator
cycle takes 2.5 ms to process a single 2D image slice with size of 240 × 240, while the
main module cycle takes 15.5 ms to process a single 2D image slice during training.

3 Applications

We evaluate our model on three unsupervised anomaly segmentation tasks: MS lesion
segmentation, brain tumor segmentation, and liver lesion segmentation. We use the MS-
SEG2015 [7] training set, BraTS [1,2,18], and LiTS [6] datasets in these tasks.

MS-SEG2015. The training set consists of 21 scans from 5 subjects with each scan
dimensions of 181× 217× 181. We resize the axial slices to 160× 160, so that we can
share the same network design as the rest of the experiments.

BraTS 2019. This dataset consists of 335 T1-w MRI brain scans collected from 259
subjects with high grade Glioma and 76 subjects with low grade Gliomas in the training
set. The 3D dimensions of the images are 240× 240× 155.

LiTS. The training set of LiTS consists of 130 abdomen CT scans of patients with liver
lesions, collected from multiple institutions. Each scan has a varying number of slices
with dimensions of 512×512. We resize these CT slices to 240× 240 to share the same
network architecture with other tasks.

For all experiments, the image intensity is normalized to [0, 1] over the 3D volume;
however, we perform the 3D segmentation task in the slice-by-slice manner using axial
slices. To balance the sample size in Iin and Rd, we randomly sample and duplicate the
number difference to the respective set.

MS Lesion Segmentation. In this task, we randomly sample 2870 non-tumor, non-
zero, Brats-2019 training set slices to make our reference distribution Rd as in [3], while
they use their own privately annotated healthy dataset. Meanwhile, the 2870 non zero
2D slices of the MS-SEG2015 training set are used in the main module M . We train
this network using three cycles in the first stage and one cycle in the second stage and
take the threshold at 254 intensity based on the right most peak of the image histogram.

We obtain an average Dice score of 32.94% without any post processing. By using
a simple post-processing with erosion and dilation5 with 5 × 5 filters, this number im-
proves to 48.20% Dice score. In comparison, a similar study conducted by [3] consisting
of a multitude of algorithms including AnoVAEGAN [4] and f-AnoGANS, obtained a

5 We use this operator to improve the connectivity of the generated anomaly mask.
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Iin Ifc Iwc Iro Mgt Mest Mest ∩ Iin

Fig. 4. Sample results of MS-SEG2015, Brats-2019 and LiTS (top to bottom) obtained from the
various branches of the network. The Ifc in the second row is contrast enhanced to present the
content contained in the brain region. None of these include any of the post processed images.

best mean score of 27.8% Dice after post processing by f-AnoGANS. Before post pro-
cessing the best method was Constrained AutoEncoder [8] with a score of 9.7% Dice.
Sample images of our method are included in Fig. 4

Brain Tumor Segmentation. In this task, we perform patient-wise two-fold cross-
validation on the Brats-2019 training set. In each training fold, we use a 90/10 split
after removing empty slices. The 2D slices from the 90% split without tumors are used
to make our reference distribution Rd; while the 2D slices with tumors from the 90%
split and all the slices from the 10% split are used for training our model. As a result,
the sample size of Rd for fold one and two amounts to 11,745 and 12,407 respectively,
while the size of Iin amounts to 11,364 and 10,786, respectively. We train this network
using two cycles in the first stage and one cycle in the second stage.

We obtain an average Dice score of 63.67% for the brain tumor segmentation. Fig-
ure 4 shows samples generated by our ASC-Net. Figure 5 shows our attempt to apply
f-AnoGANs [23] by following their online instructions. The failure of AnoGANs in
the reconstruction brings to light the issue with the regeneration based methods and the
complexity and stability of GAN based image reconstruction.

Liver Lesion Segmentation. To generate the image data for this task, we remove the
non-liver region by using the liver mask generated by CompNet [11] and take all non-
zero images. We have 11,926 2D slices without liver lesions used in the reference dis-
tribution Rd. The remaining 6,991 images are then used for training the model. We
perform slice-by-slice two-fold cross-validation and train the network using two cycles
in both first and second stages. To extract the liver lesions, we first mask out the noises
in the non-liver region of the reconstructed image Iro and then invert the image to take
a threshold value at 242, the rightmost peak of the inverted image.

We obtain an average Dice score of 32.24% for this liver lesion segmentation, which
improves to 50.23% by using a simple post processing scheme of erosion and dilation
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Fig. 5. Query images (top) and their reconstructions (bottom) using f-AnoGANs [23].

Fig. 6. Stability: The first image is the input image, the second is the ground truth. The rest of
images are reconstruction from various re-runs of the framework with variable training cycles
and stage. All runs are able to isolate the anomaly in question.

with 5×5 filter. Sampled results are shown in Fig. 4. In comparison, a recent study [12]
reports a cross-validation result of 67.3% under a supervised setting. Note that the an-
notation in the LiTS lesion dataset is imperfect with missing small lesions [9,12]. Since
we use the imperfect annotation to select images for the reference distribution, some
slices with small lesions may be included and treated as normal examples.

4 Discussion and Future Work

In this paper we have presented a framework that performs two-cut split in an unsu-
pervised fashion guided by an reference distribution using GANs. Unlike the meth-
ods in the AnoGAN family which operate as a reconstruction-based method and needs
faithful reconstruction of normal images to function properly, we treat the anomaly
segmentation as a constrained two-cut problem that requires a semantical and reduced
reconstruction for clustering. Our ASC-Net focuses on the anomaly detection with the
normal image reconstruction as a byproduct, thus still producing competitive results
where reconstruction dependent methods such as f-AnoGAN fails to work on. The cur-
rent version of our ASC-Net aims to solve the two-cut problem, which will be tasked
to handle more than two selective cuts in the future. Theoretical understanding of the
proposed network is also required, which is left as a future work.

Limitations and Opportunities. One reason of our low Dice scores could be that we
had to select non-tumor or normal slices as our reference distribution, which does not
account for other co-morbidities. This affects the performance of the framework as it has
no other guidance and would consider co-morbidities as an anomaly as well. However,
this provides possibility of bringing other anomalies into the users’ attention.
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Fig. 7. Termination of network
training affects the reconstruction
result. Left to right columns in
each row: the input image, the im-
age reconstructed via two cycles
in the first stage and one in the
second stage, and the image re-
constructed via adding one cycle
in the second stage.

Termination and Stability. The termination point of
this network training is periodic. The general guide-
line is that the peaks should be well separated and we
terminate our algorithm at three or four peak separa-
tion. However, continuing to train further may not al-
ways result in the improvement for the purpose of seg-
mentation due to accumulation of holes as shown in
Fig. 7, even though visually the anomaly is captured in
more intricate detail. We however encourage training
longer as it reduces false positive and provide detailed
anomaly reconstruction, though the Dice metric might
not account for it. In our experiments, we specify the
number of cycles in each stage. However, due to the
random nature of the algorithm and the lack of a par-
ticular purpose and guidance, the peak separation may
occur much earlier, then training should be stopped ac-
cordingly. The reported network in our Brats-2019 ex-
periments has an average Dice score of 6% over the
network trained longer as shown in Fig. 7. Regarding
the stability, Figure 6 demonstrates an anomaly estimated by different networks that are
trained with different number of training cycles. We observe that while the appearance
of Iro changes, we still obtain the anomaly as a separate cut since our framework works
without depending on the quality of reconstruction.
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25. Philipp Seeböck, Sebastian Waldstein, Sophie Klimscha, Bianca S Gerendas, René Donner,
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