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Abstract—Brain MRI segmentation plays an important role in
analyzing brain anatomical structures and understanding brain
images. In this paper, we consider building a uniform 3D brain
MRI segmentation framework using the pre-training and fine-
tuning style to fully leverage existing public brain images and
segmentation masks. Based on existing Transformer-based 3D
image segmentation models, UNETR and Swin UNETR, we study
the necessity and benefit of using pre-training, through pre-
training on a big collection of over 6,000 brain scans from OASIS,
ADNI, and CC359, and fine-tuning with limited segmentation
masks to perform three downstream tasks, i.e., skull stripping,
4-structure segmentation, and 33-structure segmentation. Experi-
mental results demonstrate that in most cases the pre-training can
help reduce 90% of segmentation masks and half the time. Also,
our method outperforms the recent method SynthSeg by a good
margin. Our pre-trained model and source code are available
online at https://github.com/AllanIverson/medical-segmentation.

Index Terms—Brain MRI segmentation, 3D brain scan, pre-
training, fine-tuning, Transformer

I. INTRODUCTION

Brain MRI segmentation, e.g., brain skull stripping, seg-
mentation of gray matter (GM), white matter (WM), and
cerebrospinal fluid (CSF) of a brain scan, is a fundamental
task in medical image analysis, which helps understand brain
scans and analyze brain anatomical structures of interest. To
tackle a specific brain image segmentation task, researchers
typically build and train a corresponding segmentation model,
as shown in Fig. 1(a). For instance, the current solution
often provides one model for brain skull stripping [1], [2],
and another one for segmenting GM, WM, and CSF [3],
[4], although both work on the same brain images. Also,
in practice, annotating medical images at pixel- or voxel-
level needs help from experts, which is labor-intensive and
time-consuming. Fortunately, many brain image datasets, e.g.,
OASIS [5], ADNI [6], CC359 [7], are publicly available with
a good amount of segmentation masks, although they are
collected for different purposes and often used separately in
their own tasks [8]. In this paper, we consider building a
practical and general brain image segmentation model that
fully leverages existing public brain image datasets and then
transferring it to handle different brain segmentation tasks with
images collected from different domains and limited brain
segmentation masks, as shown in Fig. 1(b).

Thanks to the rapid development of self-supervised learning
techniques [9], [10], especially the pre-training models, such
as MAE [11], I-JEPA [12], DeiT [13], we can pretrain a big
model on a large scale of images without annotations and
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Fig. 1: Comparison between the current solution and our
proposal for addressing multiple brain image segmentation
tasks in a uniform framework. We pretrain a big self-learning
model and finetune it with a low cost for each task.

finetune it for the downstream brain segmentation tasks. Since
advanced pretraining models are mostly based on two visual
backbone networks, i.e., Vision in Transformer (ViT) [14]
and Swin-Transformer (Swin-T) [15], for image encoding, we
follow these two state-of-the-art (SOTA) methods for handling
3D medical images, i.e., ViT-based UNETR [16] and Swin
UNETR [17], and study their potential of handling brain
segmentation tasks in one uniform framework. In particular,
we aim to answer the following three questions: (1) When do
we need pre-training? Is a pre-trained model always helpful?
(2) With a pre-trained model, how many image annotations
from the target domain are required for fine-tuning to reach the
performance of a model trained on a large number of masks?
(3) Is the pre-trained model better than a sophisticatedly
designed brain segmentation model? By answering these three
questions, we know how pre-training benefits brain image
segmentation and how to use it in practice.

To answer these questions, we collect over 6,000 3D brain
scans from ADNI, OASIS, and CC359, including images with
and without a skull, to train a big model based on either
3DViT-B [16] or 3D Swin-T [17]. The downstream tasks of
brain segmentation include the simple brain skull stripping
(a binary segmentation), a coarse-grained partitioning with
four structures (i.e., white matter, subcortical gray matter,
cortex, and CSF), and a fine-grained segmentation with 33
structures (e.g., ventricle, brain stem, left thalamus, right
thalamus, etc.). To evaluate the contribution from pre-training,
we assume that in the source domain, e.g., OASIS, we have
many segmentation masks available; however, in the target
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domain, e.g., ADNI, we have no or only a few masks available
for training, as that we often encounter in practice use. We also
compare our models with a recent brain segmentation model
SynthSeg [18], to present the advantage of using pre-training.

Experimental results demonstrate that with the help of the
pre-trained model, for most cases we can reduce 90% of the
masks and half of the time to achieve comparable performance
with the model trained on all available masks in the target
domain. The more difficult the segmentation task is, the more
benefits we can gain from using pre-training. Besides, the pre-
training is extensible to many different downstream tasks and
easy to use once we collect some masks in our target domain.
Overall, the contributions of this paper are summarized below:

• We propose a uniform framework for brain MRI segmen-
tation using the pre-training and fine-tuning style, which
needs pre-training only once but can be fine-tuned many
times for different brain segmentation purposes.

• We pretrain a big model on over 6,000 brain MRI scans
and demonstrate its big gain of reducing annotation and
training time requirements, via evaluating three brain
segmentation tasks with different difficulty levels.

• Our model outperforms the current SOTA method Synth-
Seg [18], and more importantly, our method can easily
use existing images and masks and be straightforwardly
extended to a new domain, which is practical and instruc-
tive for clinical use.

II. RELATED WORK

Brain MRI segmentation has been an active research topic
for decades [19], [20], including traditional methods based
on region growing [21], thresholding [22], fuzzy c-means
algorithms [23], machine learning based methods like using
auto-context [24], and advanced learning methods based on
deep neural networks [4], [18], [25]. In recent years, due to the
high accuracy and efficiency of deep learning-based methods,
they have been the first choice for brain MRI segmentation.

A. CNNs and Brain Image Segmentation

Due to the powerful feature extraction capability of con-
volutional neural Networks (CNNs), they have been widely
used in medical image segmentation, e.g., MR brain image
segmentation [26]. Especially, fully convolutional network
(FCN) [27] and the family of UNets [28] are two classical
CNN designs for image segmentation, which are extended to
the 3D version [29], [30] for segmenting medical image vol-
umes like brain scans. SynthSeg [18] is a recent work on brain
MRI segmentation based on CNNs, which can handle brain
images with any contrast and resolution without retraining.
Although CNN-based methods have been successfully used
in brain image segmentation, the convolutions used in these
models have limited receptive fields, which greatly limits its
further improvement on the segmentation accuracy.

B. Transformer and Pretrained Models

In natural language processing (NLP), Transformer-based
models allow long-distance modeling by stacking a set of

self-attention blocks, which have the flexibility of learning
both short- and long-distance information [31]. Also, unlike
CNN-based models whose performance rapidly saturates with
model capacity, Transformer-based models are more power-
ful to handle large-scale datasets [32]–[34]. Along with the
development of Vision in Transformer (ViT), Transformer-
based models have been the new favorite for medical image
segmentation [16], [17], [35].

To learn from large-scale datasets with the most unlabelled
images, self-supervised learning is a popular and effective
choice and allows for pre-training. Models driven by a large
number of data have achieved comparable and even better
performance, compared to supervised learning methods, as
demonstrated in [36]–[38]. In the past decades, more and
more datasets become publicly available and easily accessible,
which has facilitated the emergence of numerous relevant
endeavors on employing self-supervised learning techniques
in the domain of medical image analysis. For instance, Tang
et al. [39] collect 5050 publicly available CT images to
pre-train a Swin-T structure segmentation network to obtain
SOTA performance on the Beyond the Cranial Vault (BTCV)
Segmentation Challenge with 13 abdominal organs using the
Medical Segmentation Decathlon (MSD) dataset. Ghesu et
al. [40] collect more than 100 million publicly available
medical images in various forms and achieve success in the
detection of abnormalities from chest radiography scans and
hemorrhage detection on brain CT by using contrast learning.
Even Azizi et al. [41] observe that although medical images are
apparently different from natural images, the model pre-trained
on natural images can still help improve the dermatology and
chest X-ray classification performance on medical images.

Therefore, although CNN-based self-learning methods have
been explored in medical image analysis [42], we prefer a
Transformer-based pretraining strategy due to its success in
image analysis like [11]–[13]. Therefore, we collect more
than 6,000 brain image volumes to pretrain a transformer-
based brain image encoder and perform three downstream
brain MRI segmentation tasks with varying difficulties. To
our knowledge, our work is the first one to explore pretraining
brain MRI segmentation on such a large scale and outperforms
the recent method SynthSeg [18] by a good margin.

III. METHOD

As shown in Fig. 1(b), our brain segmentation model in-
cludes two stages, i.e., the pre-training and fine-tuning stages.

A. Pre-training Stage

MAE [11] has been successfully used in pre-training natural
images and videos [43]. In medical domains, researchers
demonstrate that conducting MAE pre-training on MRIs
can substantially enhance the performance of downstream
tasks [44]. Hence, we adopt the MAE-like design as in Fig. 2.
In particular, our pre-training model adopts the reconstruction-
based self-learning technique, by using a heavyweight en-
coder based on Transformer to extract image features and
a lightweight decoder to reconstruct the masked 3D image
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Fig. 2: Pre-training stage: collecting brain images with (w) and
without (w/o) brain skulls from multiple datasets, followed by
a standardized processing step, a large image encoder but a
light-weight decoder, and then reconstructing the input image
back by performing self-supervised learning like MAE [11].
No segmentation masks are used in this stage.

patches. Before inputting brain MRIs into the network, we
have a standardized processing step to normalize all images
collected from different datasets, as described in Section IV-A.
Encoder. We have two choices for our pre-training encoder,
one is 3D ViT-B used in UNETR [16] and the other is 3D
Swin-T used in Swin UNETR [17]. Both models are 3D
Transformer designs for medical image segmentation. The 3D
ViT-B encoder has a 12-layer self-attention-block stack with
12 heads per layer. Self-attention is computed among all 3D
patches. Each 3D patch is projected into a 768-dimensional
token, which is kept consistent with the vanilla ViT [14].

For the 3D Swin-T encoder, we use an FCN-like down-
sampling method [27], which differs from the ViT-based
encoder in several ways. Firstly, its self-attention is computed
by using a sliding window, and its receptive field is not as
wide as ViT. Secondly, it has a mechanism to reduce the
resolution and longitudinally stretch the number of channels,
which is similar to the convolution operation of CNN. Table I
compares the model size of these two encoders in terms of
the number of parameters. The 3D ViT-B is twice the size
of the 3D Swin-T. Typically, a Transformer model with more
parameters is more powerful and can fit a larger dataset, which
is also demonstrated in our experiments.
Lightweight Decoder. To perform the reconstruction of
masked image patches, we use only four layers of self-
attention blocks, compared to the 12 blocks used in the
3D ViT-B encoder. Also, it connects feature maps extracted
from the encoder at the same resolution by skipping connec-
tions [28], as done in UNETR [16].
Loss Functions. For UNETR with 3D ViT-B encoder, we
adopt the mean squared error (MSE), the same loss with
MAE [11]. As for Swin UNETR with 3D Swin-T encoder,
we follow Tang’s work [39], which utilizes masked volume
inpainting, rotation angle prediction, and contrastive learning
to effectively extract features from image patches.
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Fig. 3: Fine-tuning stage: using all brain segmentation masks
from the source domain and some from the target domain
to finetune the pre-trained encoder and a CNN decoder to
perform brain image segmentation.

TABLE I: Model size comparison between two pre-training
encoders. The number 16 indicates that the ViT uses a 3D
patch of 16×16×16.

Model Backbone #Parameter
UNETR 3D ViT-B (16) 89.2M

Swin UNETR 3D Swin-T 42.6M

B. Fine-tuning Stage

In the pre-training stage, we do not use any segmentation
masks. To perform brain segmentation, we need to finetune
the pre-trained encoder and re-train a lightweight decoder for
segmentation. Fig. 3 illustrates the shared network design for
different downstream brain segmentation tasks. We assume a
scenario where a good amount of segmentation masks are
available in the source domain, like a public dataset, and
a few masks are provided in the target domain like our
private dataset. We use the combination of segmentation masks
collected from these two domains for fine-tuning.

After the same standardized processing step as used in the
pretraining stage, we finetune the pre-trained encoder and train
a CNN decoder to perform each segmentation task. Thanks to
the pre-training model, this fine-tuning stage is very efficient
and typically takes 10-20 GPU hours to complete its training.
CNN Decoder and Loss Functions. We attempt to use a
transformer-based decoder and observe that it cannot effec-
tively integrate features from different resolutions, as done
in the CNN-based U-shape network. Therefore, during the
fine-tuning stage, we adopt the same CNN decoders used in
UNETR [16] and Swin UNETR [17]. For all our downstream
tasks, a combination of cross entropy and dice coefficients is
used as the loss function.

IV. EXPERIMENTS

A. Datasets

We collect 3D brain MRI scans and segmentation masks
from three datasets, i.e., OASIS [5], ADNI [6], and CC359 [7].
OASIS [5]. This dataset contains 416 T1-weighted brain scans
of OASIS-1 collected from 416 subjects, who are aged from
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Fig. 4: Visualization of brain MRI scans sampled from our
three datasets, i.e., OASIS, ADNI, and CC359.

18 to 96 years old and 100 of whom are clinically diagnosed
with mild to moderate Alzheimer’s disease. To build our
dataset, we use both raw image scans with skulls and their pre-
processed images after skull stripping. The images have a size
of 256×256×256, with a resolution of 1mm×1mm×1mm.
Each image has a binary brain extraction mask (i.e., brain and
non-brain regions), a four-structure segmentation mask (i.e.,
white matter, subcortical gray matter, cortex, CSF), and a 35-
structure mask (e.g., brain stem, 3rd ventricle, right amygdala,
etc.). Since OASIS has all the masks we need for experiments,
we treat it as the source domain and others, e.g., ADNI,
CC359, as the target domain, during the fine-tuning stage.
ADNI [6]. This dataset includes over 10,000 1.5T/3T T1-
weighted structure MRI scans collected from more than 2,000
subjects, who are healthy or diagnosed with mild cognitive
impairment or Alzheimer’s Disease. Some subjects have brain
scans at multiple time points. The original image size is
256×176×240, with a variety of different voxel spacing.
Thanks to [45], we collect brain segmentation masks with 138
structures for over 5,000 raw images. To be consistent with the
OASIS segmentation masks, with the help of ChatGPT [46],
we group some small structures into a four-structure segmenta-
tion mask and a 33-structure segmentation mask, respectively.
Since there are two anatomical regions missing in the ADNI
segmentation mask, we only use the corresponding 33 struc-
tures for both datasets. Figure 5 visualizes the segmentation
masks sampled from the OASIS and ADNI datasets. We also
have preprocessed images without skulls for ADNI. The pre-
processing step includes denoising, bias field correction, skull
stripping, and affine registration to the SRI24 atlas. However,
we do not have brain segmentation masks for this set.
CC359 [7]. This dataset contains 359 brain MRIs collected
from older healthy adults aged from 29 to 80 years, using
three scanners, i.e., GE, Siemens, and Philips. This dataset
provides brain extraction masks for all image volumes, which
are generated using supervised classification. In this data
set, MRIs collected from Siemens scanner have a size of
150×288×288 with a resolution of 1mm×0.88mm×0.88mm,

Fig. 5: Visualization of segmentation masks with partial brain
structures. Top: OASIS, bottom: ADNI.

scans from Philips scanner have a size of 192×256×256 with
a resolution of 1mm×1mm×1mm, and those from GE have a
size of 200×256×256 with a resolution of 1mm×1mm×1mm.

We randomly take 70% of images from each dataset to
form a large set of 6,010 images for pre-training, including
3,548 images with skull and 1,633 images without skull from
ADNI, 289 images with skull and 289 images without skull
from OASIS, and 251 images with skull from CC359. For the
remaining 30% of the images, we have 858 of them divided
for validation and 1,717 for testing. To make sure the test set
contains only unseen subjects, we remove the images from
those subjects whose images at some time points are used in
pre-training. As a result, we have 380 image volumes in total
for the test, including 245 brain image volumes from ADNI,
83 from OASIS, and 52 from CC359.
Standardization. Since our images have varying sizes and res-
olutions, we resample all image volumes, resulting in images
with a resolution of 1mm×1mm×1mm. All images are then
padded or cropped, resulting in an image size of (192, 192,
192). Limited by our GPU memory, we randomly sample 3D
image patches with a size of (160, 160, 160) for UNETR, and
(96, 96, 96) for Swin UNETR. Lastly, we normalize the image
intensity to [0, 1]. Table II summarizes our three datasets.

TABLE II: Summary of our standardized datasets.

Dataset Modality Resolution #Subjects #Images
OASIS T1 1mm3 416 832
ADNI T1 1mm3 2334 7401
CC359 T1 1mm3 359 359

B. Downstream Tasks

We have 289 images from OASIS with binary, four-
structure, and 33-structure masks as our source domain. With
the help of the pre-trained model, we perform the following
three downstream tasks in different target domains:

• Skull-stripping. For this task, our target domain is CC359.
We have 289 binary brain masks from OASIS for fine-
tuning and then explore by adding how many additional
masks, we can achieve comparable performance with the
fully-supervised segmentation model which uses all 251
masks from the target domain CC359 for training.
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Skull Stripping 4-Structure Segmentation 33-Structure Segmentation
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(CC359)
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Fine-tuning
(GPUs Hours)
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(ADNI)
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Score↑

Fine-tuning
(GPU Hours)

#Masks
(ADNI))

Dice
Score↑

Fine-tuning
(GPUs Hours)

UNETR
with

3DViT-B

w/o 251 99.2% 13.16 3548 94.7% 79.12 3548 88.8% 109.28

w

0 97.3% 10.52 0 89.6% 9.96 0 75.8% 13.96
5 98.5% 11.72 (+1.20) 5 93.1% 15.44 (+5.48) 5 83.0% 17.44 (+3.48)
10 98.7% 12.04 (+1.52) 10 93.4% 15.80 (+5.84) 10 84.5% 20.52 (+6.56)
20 98.8% 12.44 (+1.92) 20 93.9% 16.64 (+6.68) 20 85.1% 21.52 (+7.56)
40 99.0% 13.28 (+2.76) 40 94.3% 18.44 (+8.48) 40 86.0% 23.52 (+9.56)
60 99.1% 15.92 (+5.40) 100 94.6% 29.60 (+19.64) 100 87.0% 29.24 (+15.28)

100 99.2% 16.48 (+5.96) 200 94.8% 38.48 (+28.52) 300 88.4% 44.40 (+30.44)
– – – 300 95.0% 47.12 (+37.16) 600 89.0% 52.44 (+38.48)

Swin
UNETR

with
3DSwin-T

w/o 251 98.7% 10.36 3548 94.9% 95.64 3548 90.9% 165.60

w

0 91.1% 9.36 0 73.4% 11.68 0 73.4% 11.40
5 98.3% 10.16 (+0.80) 5 74.0% 19.80 (+8.12) 5 82.3% 18.60 (+7.20)
10 98.5% 10.40 (+1.04) 10 86.7% 20.20 (+8.52) 10 84.7% 20.60 (+9.20)
20 98.6% 10.88 (+1.52) 20 91.2% 20.28 (+8.60) 20 85.4% 21.72 (+10.32)
40 98.8% 11.60 (+2.24) 30 91.4% 21.48 (+9.80) 40 86.4% 25.56 (+14.16)

100 98.9% 14.32 (+4.96) 100 92.9% 22.42 (+10.74) 300 89.7% 44.08 (+32.68)
– – – 200 94.5% 29.12 (+17.44) 600 90.7% 67.72 (+56.32)
– – – 300 94.9% 41.68 (+30.00) – – –

TABLE III: Comparison between two segmentation models with (w) and without (w/o) pre-training via three brain segmentation
tasks. The highlighted rows show results that are produced by using pre-training and are comparable with those using all masks
without pre-training. The number after + indicates the additional GPU hours required to finetune the model with masks from
the target domain, i.e., CC359 or ADNI, compared to fine-tuning it only using masks from the source domain, i.e., OASIS.

• Four-structure segmentation. For this task, our target
domain is ADNI. Similarly, we have 289 brain masks
from OASIS with four anatomical regions for fine-tuning.
The fully-supervised model for comparison has all 3,548
segmentation masks from ADNI for training.

• 33-class segmentation. This task has the same target
domain and the same data for fine-tuning and testing. The
only difference is segmenting more anatomical regions.

C. Other Settings

We use the AdamW optimizer with an initial learning rate
of 1e-4 and a regularized learning rate of 1e-5. Our model
is implemented using PyTorch-2.0 and is trained on four
NVIDIA GeForce RTX 3090 GPUs, with a batch size of three
3D MRI scans per GPU. We have different training settings for
pre-training and fine-tuning. In the pre-training stage, to train
the encoder with the 3D ViT-B backbone, we set a maximum
of 200 epochs and select the model with the best reconstruction
for fine-tuning. For the encoder with the 3D Swin-T backbone,
we have 120k iterations during pre-training. In the fine-tuning
stage, the maximum number of epochs is 100 and we use
the early stopping based on the model’s performance on the
validation set. Besides, we reduce the learning rate during the
fine-tuning phase to avoid excessive modification of the model.

D. Experimental Results

Q1: When do we need pre-training? Is a pre-training model
always helpful?

Figure 6 shows the multi-class segmentation results on
ADNI with and without pre-training. For both cases, the
segmentation accuracy increases as we add more and more
segmentation masks from the ADNI training set. For both
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Fig. 6: ADNI image segmentation with (w) and without (w/o)
pre-training using UNETR with 3D ViT-B as the backbone
encoder. The upper bound is calculated by using all 3,548
brain masks in the ADNI training set.

4-structure and 33-structure segmentation tasks, using pre-
training achieves higher segmentation accuracy and gradually
approaches the upper bound computed by using all masks in
the ADNI training set. Also, for difficult tasks like the 33-
structure segmentation, pre-training gains more improvement
on the segmentation accuracy with limited annotations. That is,
pre-training is quite helpful when handling the segmentation
of many anatomical regions with limited brain masks.

Table III reports more quantitative results on three down-
stream tasks with different difficulty levels. For simple brain
segmentation like the skull-stripping task, if we have more
than 250 brain masks, segmentation models like UNETR or
Swin-UNETR can achieve over 98% of segmentation accuracy.
The only benefit provided by pre-training is the number
reduction of required brain segmentation masks. However,
as the difficulty level of a segmentation task increases, we
need more masks to achieve good segmentation accuracy. For
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Fig. 7: Visualization of segmentation results on three down-
stream tasks. Top to bottom: the ground-truth mask, masks
predicted by the model trained on all ADNI masks without pre-
training, and masks predicted by the model after pre-training
and fine-tuning and having comparable results, corresponding
to the highlighted ones in Table III.
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Fig. 8: Comparison between using the same number of masks
from the source (OASIS) and target (ADNI) domains and
using all segmentation masks from the source domain.

instance, we need more than 3,500 brain masks to achieve a
95% Dice score for 4-structure segmentation and 89%-90%
for 33-structure segmentation. In such cases, pre-training can
greatly reduce the number of required brain masks for training.

In summary, we need pre-training when we have limited
brain segmentation masks in our target domain, especially for
the difficult segmentation tasks with many anatomical regions
of interest. For some simple segmentation tasks like binary
segmentation, pre-training may not be very helpful, especially
when we can easily obtain hundreds of segmentation masks
for images in our target domain. Even like this, using pre-
training with zero masks in the target domain can still provide
a good starting point for segmentation.

Q2: With a pre-trained model, how many image annotations
from the target domain are required for fine-tuning to reach the
performance of a model trained on a large number of masks?

In Table III, using UNETR with 3DViT-B encoder, we

Groundtruth Pre-training 
+ 300 ADNI

Pre-training
+ 289 OASIS

SynthSeg

Fig. 9: OASIS result comparison between SynthSeg and ours.

need 100 (40% of 251) masks for skull stripping, 100 (2.8%
of 3548) for 4-structure segmentation, and 300 (8.5% of
3548) for 33-structure segmentation, to achieve the UNETR’s
performance trained on all masks. On the other hand, Swin-
UNETR needs fewer masks for skull stripping, only 40 (16%
of 251), but more masks for 4-structure and 33-structure
segmentation. The qualitative results are visualized in Fig. 7. If
we are satisfied with just over 90% of segmentation accuracy,
for the skull-stripping tasks, we do not need any masks from
our own target domain. Only using the OASIS mask for fine-
tuning, we can obtain good results that are ready to use,
especially using the UNETR network with pre-training. For the
4-structure segmentation, we need a few masks from our target
domain to obtain over 90% accuracy. With 5 ADNI masks and
UNETR, we can obtain a 93.1% Dice score. The 33-structure
segmentation is more difficult, but with 20 ADNI masks, we
can also obtain over 85% Dice score for both UNETR and
Swin-UNETR. More importantly, we need less than half the
time for fine-tuning to obtain a good multi-class segmentation
model, compared to training a model on all masks. However,
this is not the case for the skull-stripping task. Overall, by
using pre-training, we can reduce the required amount of
segmentation masks and for most cases, we can reduce 90%.
Further, pre-training can further reduce the training time when
working on multi-class segmentation, typically half the time.

We also explore the possibility of reducing the masks in
the source domain of OASIS, like using the same amount
of masks in both source and target domains. As shown in
Fig. 8, using all available segmentation masks in the source
domain is a better choice. That is, we probably would like to
use all masks we can collect from the public datasets to help
the segmentation in our private dataset. Therefore, in all other
experiments, we fully leverage the brain segmentation masks
provided in our OASIS training set.

Q3: Is the pre-trained model better than a sophisticatedly
designed brain segmentation model?

Table IV and Figure 9&10 show the comparison between
SynthSeg [18] and ours using pre-training and different num-
bers of brain masks for fine-tuning. SynthSeg was trained on
more than 1,000 brain scans, including 500 masks from ADNI.
It obtains an 83.2% Dice score on our OASIS test set. We
first randomly choose 300 segmentation masks from the ADNI
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Fig. 10: Comparison between our models with a recent brain segmentation model SynthSeg [18], tested on the OASIS dataset.

TABLE IV: Comparison between our pre-training models and
SynthSeg [18] on OASIS (the target domain). Our source
domain only contains 300 ADNI masks and SynthSeg has 500
ADNI masks, 500 HCP [47] masks, and 20 T1-39 [48] masks.

Method #Masks #Masks Dice
(Source Domain) (Target Domain) Score↑

SynthSeg 1020 0 83.2%
Fine-tuning 1 300 0 84.3%
Fine-tuning 2 0 289 93.2%
Fine-tuning 3 300 289 93.8%

dataset to finetune our pre-trained model, it achieves a 1% Dice
improvement over SynthSeg. By only using OASIS masks
(fine-tuning 2) and having both ADNI and OASIS masks (fine-
tuning 3), our pre-trained model can further improve the Dice
score by 8.9% and 9.5%, respectively. This result demonstrates
the potential of a pre-trained model, which can fully leverage
masks from different domains and benefit a lot by using masks
from the target domain. On the contrary, fine-tuning SynthSeg
is non-trivial. That is, our pre-trained model is general and
extensible to downstream brain segmentation takes.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a uniform framework for brain
MRI segmentation, which is pre-trained once on over 6,000
brain MRI scans and fine-tuned many times for different down-
stream brain segmentation tasks. The pre-training technique
can greatly reduce the demand for brain segmentation masks
and the training time for segmentation. One limitation of our
work is the lack of zero-shot testing, i.e., evaluating another
unseen brain image dataset. Also, we are interested in applying
our model in practice, using a private dataset collected from
hospitals to evaluate the performance of our pre-trained model.
We will explore these two directions in future work.
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