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Abstract—Atlas construction is a cornerstone in medical imag-
ing, facilitating research, diagnosis, and personalized treatment
planning. In this paper, we introduce an edge-assisted 3D latent
diffusion model, Med3Diffusion, trained on the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) dataset, to enhance
atlas construction by synthesizing high-quality brain MRI scans
across ages. These generated images augment the original ADNI
dataset, addressing the issue of age-related data imbalance and
improving the performance of the current atlas-building methods.
We employ two state-of-the-art atlas construction methods, i.e.,
Aladdin and a VoxelMorph-based model, to construct the atlases
with this enriched dataset. Our approach not only compensates
for the scarcity of certain age groups in the existing dataset but
also improves the diversity and quality of the atlas construction.
Additionally, experimental results demonstrate the potential of
our Med3Diffusion model in generating synthetic 3D medical
images for broader applications in medical fields. Our source
code is released at https://github.com/sjtu-media/Med3Diffusion.

I. INTRODUCTION

Medical imaging is fundamental to modern diagnostic pro-
cedures, providing essential insights into patient anatomy and
pathology. Its critical role spans diagnosis, treatment planning,
and disease progression monitoring. Central to these appli-
cations is the process of atlas construction, which involves
creating a standard reference from a collection of individual
scans. This reference, or atlas, is indispensable for several
reasons. Firstly, it provides a consistent benchmark for inter-
preting medical images, enabling the detection of deviations
from normal anatomy that may signal disease [1]. Also, atlases
enhance the accuracy of automated image analysis techniques,
e.g., segmentation [2] and anomaly detection [3], by providing
a representation of average anatomy. Beyond individual patient
care, atlas construction is vital for research, enabling the study
of anatomical variations [4] and disease progression [5].

A straightforward method for atlas construction involves
choosing a single representative image from the collection [6].
However, this approach often fails to capture the structural
diversity and complexity of the entire image collection [7]–[9].
To construct more representative atlases, various optimization-
based atlas methods have been proposed [7], [10]. Generally,
they start with an initial atlas, such as the collection’s average
image, and then iteratively minimize the geodesic distance
to each image in the collection using image registration
techniques. Learning-based approaches for image registration
and atlas construction [8], [9] perform image registration by
predicting deformation fields through models, thus bypassing
the time-consuming numerical optimization process.

Since the construction of atlases relies on datasets of indi-
vidual scans, a major challenge is the issue of data imbalance.
This occurs when available datasets do not uniformly represent
the diversity of the population, including variations across
different age groups, genders, or health conditions. Such
imbalance can lead to biased representations in the constructed
atlases, compromising their reliability and applicability.

Recent advancements in diffusion models [11] have demon-
strated their ability to generate high-resolution and remarkably
realistic natural images. The introduction of stable diffu-
sion [12] has further enabled the controlled generation of
high-quality images under various conditions. Such models
offer a solution to the data imbalance problem in medical
imaging datasets, facilitating the creation of more unbiased
and representative atlases. However, generating high-quality
3D medical images, especially under specific conditions like
age and gender, is still in its early stages, with only a few
studies exploring this area [13], [14].

A significant challenge faced by current methods arises
from the unique structural complexity of human tissues and
organs, especially in brain MRI scans. When diffusion models
are directly applied to medical image generation tasks, they
can sometimes produce images with anomalous topological
structures or blurred image appearance. These inaccuracies are
critical concerns, as maintaining precise structural integrity is
essential for reliable medical analysis and atlas building.

To address this challenge, we introduce a medical edge-
assisted 3D diffusion model, Med3Diffusion, which inte-
grates edge detection outputs into the generative process of
3D diffusion models. This integration significantly enhances
the model’s ability to preserve essential structural details in
synthesized images. We apply our Med3Diffusion model to
generate synthetic brain MRI scans across various age and
gender conditions, specifically targeting the mitigation of the
data imbalance in existing datasets. By leveraging diffusion
models, our method augments datasets by generating data
for underrepresented conditions, promoting a more balanced
distribution across different ages and genders. This approach
not only addresses the scarcity of data in certain subgroups
but also improves the overall quality and fairness of atlas
construction. Experiments on augmenting two representative
atlas building methods, i.e., Aladdin [9] and VoxelMorph-
based model [8], demonstrate a marked improvement in the
quality and unbiasedness of atlas construction by using our
method to balance the learning datasets.

https://github.com/sjtu-media/Med3Diffusion


Med3Diffusion

Synthetic MRIs

Atlas Construction

Original MRIs

MRIs

Age group 60

Age group 70

Age group 80

Age group 90

Unconditional

Atlas

Construction

Atlases
Atlases

MRIs

Conditional

Atlas

Construction

Conditions

Atlases

(a)

(c) Atlas Construction

Conditions Denoising step Cross Attention

Denoising Process

(b) Med3Diffusion

Downsample

Edge Detection

Sample

Noise

Fig. 1. Overview of our proposed method. (a) Synthetic MRI scans are generated using our Med3Diffusion model, then combined with original scans for
atlas construction. (b) The denoising process of our Med3Diffusion for generating MRI scans under given conditions, using edge detection samples from the
training set that match these conditions. (c) Two atlas-building strategies using both conditional and unconditional models.

Our contributions in this paper are summarized as follows:
• We propose Med3Diffusion, which integrates edge im-

ages of medical volumes into the generative process of the
3D latent diffusion model. This integration significantly
enhances the structural integrity of generated images,
ensuring a more accurate representation of the intricate
anatomical structures essential for atlas construction.

• We apply Med3Diffusion to the brain MRI generation,
demonstrating its improved image quality over the origi-
nal latent diffusion model and its potential to address the
data imbalance problem across age and gender conditions.

• We demonstrate a marked improvement in the quality and
unbiasedness of atlas construction by augmenting current
state-of-the-art (SOTA) atlas building methods.

II. METHODOLOGY

In this paper, we focus on the task of building brain atlases
across different ages. As illustrated in Fig. 1, we first generate
synthetic brain MRIs using our proposed Med3Diffusion,
which helps balance the image distribution of a dataset across
conditions such as age and gender to build unbiased brain
atlases. To enhance the structural integrity of the generated
image volumes, we integrate edge images of brain MRIs
into the generative process of a 3D condition latent diffusion
model (LDM). By combining the original and synthetic MRIs,
we create an enriched dataset that is then fed into an atlas
construction model, either Aladdin [9] or the model based on
VoxelMorph [8], to complete the atlas construction.

A. Med3Diffusion

Considering that medical images, e.g., brain MRIs, are
often 3D volumes with millions of voxels, directly using
diffusion models to learn the data distribution in this high-
dimensional image space would require significant memory
usage and computational cost. Following Rombach et al. [12],
we employ a 3D Variational Autoencoder (VAE) [15] to map
3D medical scans into latent space. This latent space per-
ceptually corresponds to the original image space but greatly
reduces computational complexity. That is, given a 3D scan
x ∈ RD×H×W , the encoder E of the VAE maps x to the latent
representation z = E(x) ∈ Rc×d×h×w, with downsampling
performed at a factor of f = D

d = H
h = W

w , and the decoder
D reconstructs the origin scan from z, i.e., x̂ = D(z).

We pre-train the VAE on our training set collected from the
ADNI dataset [16] before training the diffusion model. The
loss function of the VAE is defined as

LV AE = Lsim(x, x̂) + λ · Lreg(z), (1)

where Lsim is the voxel-level similarity term, Lreg is the
regularization term, and λ is a constant value to balance these
two terms. During the training process, we employ the L2

norm as the voxel-level similarity between the original image
input x and its reconstruction x̂. Additionally, we incorporate
the Kullback-Leibler (KL) divergence between latent z and the
standard normal distribution as a regularization to mitigate the
high variance of the data distribution in the latent space.



We extend the diffusion model to 3D and learn the dis-
tribution of data within this 3D latent space. During the
diffusion process, the diffusion model gradually injects noise
into the data through a Markov chain of length T . Conversely,
in the reverse denoising process, the model reconstructs the
original data from the noise by progressively removing the
model-predicted noise. For noise prediction, we utilize a 3D
UNet [17] ϵθ(·, t) as illustrated in Fig. 1. Here, θ represents
the learnable parameters and t represents the time step.

To enable our model to generate data under various con-
ditions such as different ages and genders, we introduce
the cross-attention mechanism into the UNet architecture,
following the approach of Rombach et al. [12]. We encode
the conditions of age and gender into numerical vectors y,
which are then mapped into conditional embeddings τϕ(y) ∈
RM×dτ using a Multilayer Perceptron (MLP), where M is
the sequence length and dτ is the feature dimension of the
embedding. These conditional embeddings τϕ(y) are then
interacted with the intermediate layers of UNet through cross-
attention layers implemented as follows:

Attention(Q,K, V ) = softmax(
QKT√

df
)V (2)

Q = W
(i)
Q · φi(zt), K = W

(i)
K · τϕ(y), V = W

(i)
V · τϕ(y)

where zt represents the latent at time step t, φi(zt) ∈ RN×di
ϵ

denotes the flattened intermediate representation of UNet, i in-
dicates the i-th layer in the UNet, N is the sequence length and
diϵ is its feature dimension, W (i)

Q ∈ Rdf×di
ϵ , W (i)

K ∈ Rdf×dτ ,
W

(i)
V ∈ Rdf×dτ are the learnable projection matrices of the

cross-attention layer, df is the feature dimension used for the
cross-attention layer.

As shown in Fig. 2, images generated by LDMs may
exhibit structural abnormalities, distortions, or blurred edges.
To address this, we consider introducing brain structure as
a condition to constrain the image generation of diffusion
models. An edge image is a good choice since it contains
structural information while being computationally efficient to
process. By incorporating edge images derived from Canny
edge detection [18] into our diffusion model, we ensure that
the generated image maintains crucial structural details.

To work in the latent space, the edge image e ∈ RD×H×W

are downsampled to e′ ∈ Rd×h×w and concatenated with
noise latent. This combined input is then taken by the UNet,
as shown in Fig. 1. During the training process, we have the
edge image of a training sample as input. During the inference
phase, we leverage edge images from the training set that
match or are similar to the target conditions, facilitating the
generation of images that better align with specific structural
requirements in that age or gender group.

We train Med3Diffusion by optimizing the loss function:

L = EE(x),y,ϵ∼N (0,I),t

[
∥ϵ− ϵθ(zt, e

′, τϕ(y), t)∥
2

2

]
, (3)

where I is the identity matrix, t is the time step uniformly
sampled from {1, · · · , T}, and T is the pre-defined total time
step of the diffusion model.

3D LDM Med3Diffusion 3D LDM Med3Diffusion

Fig. 2. Visualization of image scans generated by LDM and Med3Diffusion
in two views. Images in each row are generated under identical conditions
by 3D LDM and Med3Diffusion, respectively. Scans generated by LDM may
exhibit structural abnormalities or distortions, as highlighted in the red boxes.

B. Atlas Construction

We utilize a well-trained Med3Diffusion to generate image
scans under various conditions, thereby augmenting existing
datasets where certain conditions are underrepresented. By
incorporating the synthetic 3D scans with the original ones to
form an augmented dataset, we can use this enriched dataset
for atlas building based on current atlas construction models.
In this paper, we employ two distinct approaches for atlas
construction: Aladdin [9] and a VoxelMorph-based model [8].

Aladdin [9] is a joint atlas construction and diffeomorphic
registration framework that operates without specific condi-
tions, generating a single atlas for the entire image collection.
We divide the augmented dataset into several age groups,
allowing Aladdin to create a specific atlas for each age group.
Hence, we leverage the diversity and balance of the augmented
dataset to ensure adequate representation of age groups that
initially had sparse data. Without the augmented dataset, using
Aladdin on just the original dataset probably results in biased
atlases for certain age groups due to insufficient data.

The VoxelMorph-based model in [8] is capable of gener-
ating condition-specific atlases based on factors such as age
and gender. This innovative approach integrates the atlas gen-
eration process with the subsequent registration network [19],
training them simultaneously. As a result, it generates an atlas
under a given condition and then warps the atlas to images
corresponding to that condition. Training this model with
an augmented dataset mitigates potential biases arising from
disparities in data distribution across different conditions in
the original dataset. This approach ensures a more balanced
and accurate representation across diverse conditions.

III. EXPERIMENTS

A. Dataset and Experimental Settings

Dataset. We utilize a dataset from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [16] comprising 1417 brain
MRI scans labeled as Cognitively Normal (CN) for our exper-
iments. The dataset is subject-wisely divided into training and



TABLE I
DICE SCORES BETWEEN SEGMENTATION MASKS OF THE SYNTHETIC SCANS AND DEFORMED SCANS IN THE TEST SET. THE BEST RESULT IS IN BOLD.

Model Total (N=440) Age 60 (N=8) Age 70 (N=170) Age 80 (N=217) Age 90 (N=45)

3D LDM 58.20±23.99 60.13±19.19 56.99±24.01 59.63±24.03 55.82±23.88

Med3Diffusion (ours) 70.91±20.79 74.77±19.03 70.26±21.12 71.76±19.96 69.04±22.92

TABLE II
DICE SCORES BETWEEN SEGMENTATION MASKS OF THE SCANS IN THE TEST SET AND THE ATLASES DEFORMED TO THEM. THE BEST RESULT IS IN BOLD.

Method MRI Generation Total (N=440) Age 60 (N=8) Age 70 (N=170) Age 80 (N=217) Age 90 (N=45)

Aladdin [9]

No 76.27±12.25 73.41±18.21 75.13±13.30 77.33±10.94 75.95±12.34

3D LDM 76.17±12.06 75.16±12.82 75.13±12.99 77.50±11.03 73.88±12.31

Med3Diffusion (ours) 77.20±11.83 77.44±11.99 76.11±13.04 77.91±10.79 77.85±11.47

Dalca et al. [8]

No 77.93±10.69 76.59±11.12 76.93±11.87 78.63±9.77 78.55±9.78

3D LDM 77.57±10.44 76.40±10.87 76.80±11.59 78.20±9.52 77.66±9.73

Med3Diffusion (ours) 78.35±10.60 77.32±10.92 77.47±11.79 78.99±9.70 78.75±9.68

test sets, with 977 and 440 scans, respectively. Furthermore,
as Aladdin [9] operates without specific conditions, we divide
the dataset into four age groups: 60 (i.e., [55, 64)), 70 (i.e.,
[65, 74)), 80 (i.e., [75, 84)), and 90 (i.e., [85, 94)). That is, for
each age group i, it contains brain MRI scans collected from
subjects aged between i − 5 and i + 5. All scans are of the
image shape 138×176×138. During the experimental process,
scans are padded and then downsampled to 104× 128× 104
to fit into a single RTX 3090 GPU.

Image Generation. We train Med3Diffusion using medical
scans from the original dataset along with their corresponding
edge images detected by the Canny algorithm. After training,
we use the trained Med3Diffusion to generate synthetic scans
under various age and gender conditions to augment the origi-
nal dataset. During the generation process, the model samples
edge image volumes from the training set that match or closely
resemble the specific conditions under which the new images
are being generated. This ensures that the augmented dataset
contains 100 scans for each age from 55 to 95, with an equal
distribution of 50 scans for both males and females.

We then employ the entire augmented dataset to train the
VoxelMorph-based model proposed by Dalca et al. [8], en-
abling it to generate specific atlases under various conditions.
For Aladdin [9], we also divide the augmented dataset into
four age groups, training Aladdin model separately to construct
specific atlases for each age group.

Experimental Settings. We implement Med3Diffusion with
PyTorch. We set the downsampling factor f = 4, the num-
ber of latent channels c = 2, the regularization coefficient
λ = 10−7 in the VAE loss function. The results of Canny edge
detection are obtained using the Canny image filter imple-
mented in SimpleITK [20], with the low threshold set at 0.05
and the high threshold set at 0.1. The edge detection results
are directly downsampled by f = 4 and then concatenated
with noise latent in the latent space. Initially, we train the
VAE using AdamW optimizer for 300 epochs. Subsequently,

we freeze the VAE and train the UNet in latent space using
AdamW for 500 epochs to ensure convergence. Both VAE and
UNet are trained on a single RTX 3090 GPU with a learning
rate of 10−4, a batch size of 2, and a weight decay of 10−2.

B. Experimental Results

In assessing the quality of scans generated by our
Med3Diffusion, we employ the Fréchet Inception Distance
(FID) as a metric. The FID is calculated using an approach
similar to Pinaya et al. [14], where features are extracted
via a pre-trained MedicalNet [21]. The FID for our proposed
Med3Diffusion is 2.05e-4, indicating superior image quality
due to a lower FID compared to that of the 3D LDM without
edge detection integration, which records a FID of 9.34e-4.

To further demonstrate the structural integrity of image
scans generated using our Med3Diffusion compared to those
generated directly by the 3D LDM, we generate images for
the test dataset under specific conditions using both models.
We then obtain segmentation masks for these scans using
a pre-trained brain MRI segmentation model SynthSeg [22].
Subsequently, we employ a pre-trained registration model [19]
to calculate the deformation field from the image scans in
the test dataset to the generated ones. By deforming the
segmentation masks of the test images to match those of
the generated scans, we compute the dice score to measure
their structural overlaps. This allows us to quantitatively
compare the structural integrity of the scans generated by
the two models. The results, reported in Table I, significantly
outperform 3D LDM across all age groups, indicating the
scans generated by Med3Diffusion exhibit greater structural
integrity. This also highlights the superior capability of our
Med3Diffusion model in maintaining the detailed and accurate
structural features necessary for effective medical analysis and
diagnosis. Fig. 2 presents the generated medical volumes using
the 3D LDM and our Med3Diffusion model. Some structures
in the images generated by the 3D LDM appear incomplete



or less well-defined, especially in the coronal view; while our
model exhibits better structural integrity.

C. Atlas Construction Results

We evaluate the quality of the atlases constructed using
different approaches by comparing the dice scores between the
anatomical segmentation masks of the scans in the test set and
the anatomical segmentation masks of the atlases registered
to these scans. The segmentation masks are obtained using
SynthSeg [22]. We train the Voxelmorph-based model [8]
separately on the original dataset and datasets augmented with
scans generated either by the LDM or our Med3Diffusion.
Additionally, we train twelve specific Aladdin [9] models for
each of the four age groups after dividing these three datasets
accordingly. The performance of the atlases constructed by
these trained models across the entire test set and within each
age group is reported in Table II. The results indicate that
both VoxelMorph-based [8] and Aladdin [9] atlas construction
methods show consistent improvements after utilizing the
dataset augmented by our Med3Diffusion model.

More importantly, using the dataset augmented by
Med3Diffusion for atlas construction shows more pronounced
improvements in age groups with a limited number of scans
in the original training set, such as the age groups of 60s and
90s. Take the Age 60 and 90 columns of Table II for example.
Using our Med3Diffusion and Aladdin for atlas building, the
Dice score improves from 73.41% to 77.44% for age 60 and
from 75.95% to 77.85% for age 90, respectively. This advance-
ment is primarily due to the mitigation of biases in these age
groups, achieved by adding data generated by Med3Diffusion.
Consequently, our method results in the construction of more
unbiased and representative atlases for these age groups.

On the other hand, the results of the atlases built using
the dataset augmented by 3D LDM closely resemble those
obtained using the original dataset, suggesting that the con-
tribution of LDM-generated data to atlas construction is not
significantly beneficial and may, in some instances, even be
counterproductive. This underscores the necessity for cautious
consideration when using generative models to augment re-
alistic datasets and further highlights the superiority of our
Med3Diffusion assisted by edge images of medical volumes.

The dataset augmented by Med3Diffusion can also improve
the robustness of atlas construction methods, especially in
age groups that are underrepresented in the original dataset.
As shown in Fig. 3, atlases constructed using the original
dataset by Aladdin may exhibit instability in these age groups.
When registering these atlases to certain images, abnormal
shrinkage and deformation can occur in the brain’s pallidum
and putamen regions, deviating significantly from the target
images. However, training Aladdin with the Med3Diffusion-
augmented dataset does not exhibit such instability.

Fig. 4 visualizes the brain atlases for ages 60, 70, 80, and
90 years estimated by Aladdin [9] and VoxelMorph-based
model [8]. It can be observed that the atlases constructed using
the augmented dataset exhibit clearer textures and less blurry
edges compared to those built only with the original dataset.

Target
Aladdin

w/o Diffusion

Aladdin

w/ Med3Diffusion

Fig. 3. Segmentation masks of target images, atlases constructed by Aladdin
registered to target images, trained on the original and Med3Diffusion-
augmented datasets, respectively. Regions in red boxes: pallidum and putamen.

With the aid of synthetic data generated by Med3Diffusion,
the estimated atlases display clearer and more defined textures,
particularly evident in the fine details of the brain structures.

IV. CONCLUSION AND DISCUSSION

In this study, we introduce a Med3Diffusion model to aug-
ment the ADNI dataset, thereby constructing more representa-
tive and unbiased atlases. Our experiments have demonstrated
that utilizing the augmented dataset leads to improvements in
existing atlas construction methods, such as the Aladdin or
VoxelMorph-based model, particularly for groups that were
previously underrepresented in the original dataset. Our re-
search highlights the potential of using Med3Diffusion for
data augmentation in the field of medical image analysis. Due
to the GPU memory issue, we have to reduce the 3D image
volume size to some extent in this work. In future work, we
will explore the potential of generating larger image volumes
with limited computational resources.
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