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ABSTRACT

Diffeomorphic registration faces challenges for high dimen-
sional images, especially in terms of memory limits. Ex-
isting approaches either downsample/crop original images or
approximate underlying transformations to reduce the model
size. To mitigate this, we propose a Dividing and Down-
sampling mixed Registration network (DDR-Net), a general
architecture that preserves most of the image information at
multiple scales while reducing memory cost. DDR-Net lever-
ages the global context via downsampling the input and uti-
lizes local details by dividing the input images to subvolumes.
Such design fuses global and local information and obtains
both coarse- and fine-level alignments in the final deforma-
tion fields. We apply DDR-Net to the OASIS dataset. The
proposed simple yet effective architecture is a general method
and could be extended to other registration architectures for
better performance with limited computing resources.

Index Terms— Diffeomorphic Image Registration, Multi-
Scale Registration, Dividing and Downsampling

1. INTRODUCTION

Deformable image registration establishes pixel- or voxel-
level dense correspondences for 2D or 3D image pairs, which
form a deformation that transforms images into a common
space for comparison and further analysis. Such deformation
desires a good property of diffeomorphism, a smooth trans-
formation with a smooth inverse, to ensure the preservation
of topology when warping images. Classical image regis-
tration models, e.g., LDDMM [1], stationary velocity fields
(SVF) [2], successfully estimate diffeomorphic deformations;
however, these algorithms face challenges for practical appli-
cations due to their high computational cost.

Recently, deep learning based approaches open an alter-
native to address the above challenges, which motivates our
work in this paper. Supervised learning approaches [3] main-
tain the diffeomorphic property, but it requires the extra effort
of obtaining the ground-truth deformations. Meanwhile, its
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registration accuracy is limited by that of the obtained de-
formations. The unsupervised approaches [4, 5] have shown
promising diffeomorphic and efficient registration results
by introducing an integration layer into the network design,
based on scaling and squaring [0]. The flexibility in selecting
network architectures and loss functions allows unsupervised
approaches to further improve the registration accuracy. Cur-
rent registration networks are based on a variety of Variational
Auto-Encoders (VAEs) or UNets [7], which suffer the over-
smooth reconstruction issue and learn low-level statistics
rather than high level semantics [8, 9]. Building hierarchical
models is a potential solution, and existing methods either
follow a multi-level optimization strategy [10, 1 1] or apply a
multi-scale upsampling design after feature extraction [12].
However, these approaches are unable to process large vol-
umes at multiple scales under limited resource constraints.

We introduce a hierarchical model, Dividing and Down-
sampling mixed Registration network (DDRNet), with two
stages of learning. Instead of handling the original images
directly, we work on chunked and downsampled images first.
By fusing the chunked and downsampled results to the origi-
nal scale afterwards, we obtain a good estimation of deforma-
tion fields for a better registration. That is, we learn from im-
ages at different scales, i.e., images with different resolutions,
which allows us to extract multi-scale image features. This
design helps us handle coarse-to-fine analysis while effort-
lessly enforcing regularization constraints at different scales.
Also, the separation of learning from different scale images
greatly reduces the time and memory cost of training an entire
registration network on the original image scale. As a result,
we obtain a trade-off between fully leveraging the available
data under limited computing resources and jointly gaining
an improved registration accuracy with capturing multi-scale
features and applying multi-scale regularizations.

We evaluate our method on OASIS dataset [13, 14]. Ex-
periments demonstrate that our approach outperforms base-
lines in most cases of image matching, smoothness of the de-
formation, and an applied segmentation task. More impor-
tantly, our method has advantages in both time and memory
usage, specifically for high resolution images that the baseline
deep learning model cannot handle at the original scale.
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Fig. 1. Architecture of our proposed image registration network, DDR-Net, using multi-scale dual-phased learning.

2. METHOD

2.1. Architecture Overview and Backbone Registration

As shown in Figure 1, our proposed DDR-Net includes two
phases of learning. The phase one consists of two compo-
nents, i.e., a local branch that handles the registration for the
chunked subvolumes of the original ones, and a global branch
that handles the registration of the downsampled volumes. In
the phase two, our universal model which combines the out-
puts from the phase one is trained. Each branch outputs a
deformation field ¢ at its own corresponding level, and they
share partial network designs as discussed below.

At each scale, we have a diffeomorphic image registration
problem. Given an image pair, a source image I and a target
image Iy, each of size n, X ny, X n,, the goal of diffeomor-
phic image registration is to estimate a smooth deformation
field ¢ : RmeXmwXns _ RnaXnyXns with a smooth ¢~ 1,
such that the image deformed from the source, i.e. ¢ - Iy, is
similar to the target image I;. Such a diffeomorphic defor-
mation field is driven by a smooth velocity field v, ¢ € [0, 1],
via a differential equation 4 ¢ = v; o ¢, with an initialization
of an identity deformation id, i.e., ¢g = id. This formulation
estimates an optimal velocity field v that drives a deforma-
tion field ¢ to match an image pair. This registration network
has three components, i.e., estimating the velocity field, solv-
ing the differential equation for deformations, and deforming
an image with interpolation. To estimate the velocity fields,
the global and local branches follow the same UNet [7] ar-
chitecture. The UNet takes in image pairs and outputs the
mean p and the variance X for sampling a corresponding sta-
tionary velocity field v. This stationary assumption simplifies
the solution of the deformation field ¢ ,i.e., ¢ = e”. Similar
to VoxelMorph [4], we adopt the scaling and squaring algo-
rithm [6] to approximate this solution, which is implemented
as a differentiable layer in the network. Then we use an in-

Algorithm 1: Two-Phase Learning

1 Phase One Training;
Input: Chunk pair {/S¢, IT¢} and downsampled
one {ISp, ITp} of source and target images.
Output: Velocity fields v and vp.
while not reaching maximum iterations do
Train chunk and downsampled branches in Fig. 1
individually.
end while
Phase Two Training;
Input: Original image pair {Isrc, ITeT}, v1 from
merged v., and v9 from upsampled vp.
QOutput: Velocity field v and deformation ¢.
while not reaching maximum iterations do
Train the universal model in Fig. 1.
end while

terpolation layer to deform the source image at each branch.
For each voxel p in the target image, we compute its location
@(p) in the source image and compute its intensity value us-
ing linear interpolation. This differentiable operation allows
the backpropagation of network errors.

2.2. Two-Phase Learning

Phase One. At this stage, both global (downsampled) and lo-
cal (chunk) branches are trained separately till convergence.
This training process converges faster with reduced memory
utilization. After training, given each image pair, we obtain
one velocity field, vy, for high-resolution subvolumes and an-
other one, v9, for low resolution donwsampled volumes.

The loss functions used in this phase are similar for both
the global and local branches. We use the Mean Squared Er-
ror (MSE) on the deformed images for calculating the image
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Fig. 2. Qualitative comparison among SyN, VoxelMorph
(VM), and ours. Left to right: the median slices of images
from OASIS, the source and target images Iy, I, the warped
one ¢ - Iy, the image difference, and the deformation ¢. Al-
gorithms work on 3D while visualizing in 2D.

matching, and a KL-divergence loss on the estimated flow pa-
rameters by the network, i.e., the mean p and the covariance
o, to enforce the smoothness of the velocity field [4, 12].
Phase Two. For the universal branch in this phase, the pre-
viously obtained velocity fields v; and v, are merged to pro-
duce a velocity field v at the original scale of input data. To
achieve this, we introduce a concatenation layer, followed by
a convolution layer as shown in Fig. 1. The merged velocity
field is then integrated to generate a deformation field at the
original resolution, which warps the original source volume
to generate a deformed image via interpolation.

During training, we use the MSE loss for image matching,
and regularize the generated velocity field by using an L2 loss
on its gradient. Also, we have a loss on the generated defor-
mation ¢ to penalize the total number of locations where the
Jacobian determinants |.J (¢ (z))| are negative, as done in [15].
Algorithm 1 describes the two-phase learning in detail.

3. EXPERIMENTS AND RESULTS

3.1. Dataset and Experimental Settings

We use the OASIS dataset [13, 14], which contains T1 MRI
brain scans collected from 414 subjects preprocessed with
skullstripping, bias-correction, registered and resampled into
the freesurfer’s talairach space. After preprocessing, each vol-
ume has dimensions of [160,192,224]. We divide these 414
subjects into sets of 264, 100 and 50 as our training, test and
validation groups, respectively. We then randomly pair im-

Fig. 3. The deformed images and corresponding ¢ for the
chunk branch (the left four columns) and the downsampled
one (the right most column) of our results shown in Fig. 2.

ages in each set and choose 350 pairs for training, 50 for val-
idation, and 100 for testing.

We measure registration performance with the root mean
square error (RMSE), the Dice score, and computing the num-
ber of foldings by counting the negative determinant of the
gradient of the deformation field. We compare our algorithm
to the classical registration algorithm ANTs SyN [16] from
the ANTsPy package with manually tuned parameters on a
few training images and to the deep learning based diffeomor-
phic method VoxelMorph (VM) [4] with their given default
parameters. Our method and VM are trained on an NVIDIA
GeForce TITAN X GPU.

3.2. Experimental Results

Figure 2 shows the qualitative results and the top half of Ta-
ble 1 presents the quantitative results for all three registra-
tion methods compared. Although SyN shows, whiter space
in the middle, it has darker red spots throughout the edges,
whereas VoxelMorph shows a darker shade of blue and red
spots throughout the image. Our algorithm, on the contrary,
shows a much lighter shade of blue and red showing less de-
viations from actual values. Also, we visualize the deforma-
tions generated by both chunk and downsampled branches,
which is shown in Fig. 3. Overall, our approach produces
better matching results and smoother deformations with less
number of foldings', while not generating unwanted back-
ground artifacts like VoxelMorph. Figure 4 presents the de-
tailed Dice comparison in segmenting brain anatomical struc-
tures’ using the three methods.

ICompared to SyN, we have a slightly larger mean number of foldings
but a much smaller number in standard deviation.

2Structures: cerebral white matter (Cbal-WM), cerebral cortex (Cbal-
Ctx), lateral ventricle (Lat-Vent), inverse lateral ventricle (Inf-Vent), cere-
bellum white matter (Cebm-WM), cerebellum cortex (Cbm-Ctx), thala-
mus (Thal), caudate (Cau), putamen (Put), pallidum (Pall), 3rd ventricle
(3Vent), 4th ventricle (4 Vent), brainstem (BStem), hippocampus (Hi), amyg-
dala (Amy), accumbens (Acc), ventral-dc (VentDC), vessel (Vess), choroid-
plexus (ChPlex). Left and right hemispheres are merged.



_ #Foldings . Training (per Inference Memory
Method | RMSE () (% Ratio(e™3)) Avg. Dice epoch /in total)  (per image pair) (GB on GPU)
SyN [16]| 1.084+0.000 47.70+145.14 (0.69 + 2.1) 0.67 - 10 min (CPU) -
VM [4]] 1.104+0.001 51.43+83.76 (0.74 + 1.2) 0.72 248s/1.3d 440ms 8.6
DDR-Net | 0.99+0.000 48.694+69.26 (0.70 £ 1.0) 0.73 117s+460s * /0.3d 124ms+562ms * 4.4+11.8 *
Downsampled | 7.31+0.003 4.45+10.49 (0.00 £ 0.1) 0.10 375s 221ms 79
Chunk | 5.8240.000  25.49-429.46 (0.374+ 0.42) 0.35 117s 124ms T 441

Table 1. Registration comparison of three methods and our ablation study on the OASIS 3D dataset. *These results are in the
form of Phase One + Phase Two. These results are reported for one chunk.
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Fig. 4. Boxplot indicating Dice scores for anatomical structures for all three algorithms.

Further reduction of foldings is possible by adjusting the
constraint on the determinant of the jacobian loss, while at the
cost of the image matching accuracy. Also, the proposed work
could be compared with current multi-resolution work [11];
however, our dataset size of [160,192,224] does not fit in
memory with its architecture. We intend to crop our image
for comparison, which is currently left as future work.

Memory and Time Cost. As reported in Table 1, SyN [16]
does not have a GPU implementation, so it takes about
10 minutes to register an image pair on CPU. For Voxel-
Morph [4] and our method, we have shown the training
time over 350 images, the inference time for a single pair
of images and the total memory utilized on the GPU during
training. Compared to VoxelMorph, our downsampled and
chunk branches can be trained in parallel and use half of Vox-
elMorph’s memory consumption, while the integration on
the original scale takes up maximum utilization of the GPU.
Inference time for our model is slightly more due to the fact
that we work on original resolutions. However, since we are
dividing the learning strategies into two phases, the amount
of time required to converge for each individual network
is much faster compared to VoxelMorph, which is reduced
from 450 epochs to 50 epochs each. The fast convergence
helps greatly reduce the training time to 0.3 days, as against
VoxelMorph which takes 1.3 days to train until convergence.

Ablation Study. Our ablation study results are reported in the
bottom half of Table 1. The network with only a downsam-
pled branch has added an additional upsampling layer to go
back the original resolution. Both networks, one with only the
downsampled or chunk branch, have overly smoother defor-
mations due to upsampling, smaller size, or lower resolutions,
but worse image matching and segmentation performance.

4. DISCUSSION AND CONCLUSIONS

In this paper, we presented a multi-scale framework for dif-
feomorphic image registration. Our method not only allows
more accurate registration of two images, but also produces
smoother deformations, compared to existing methods. In the
diffeomorphic framework, our method enables the velocity
integration at the full-scale of input volumes, without having
to reduce model size or input image sizes, to fit in memory.
Instead of training an entire architecture at sub-optimal image
sizes leading to getting stuck in local minima, our method al-
lows more control over the smoothness and similarity of each
network in our architecture. The approach is simple enough
to be applied on other registration frameworks. The demand
for our proposed approach is necessary, since datasets with
increase in resolutions are becoming abundant.

A question that naturally arises is why to use independent
networks instead of a single combined network to solve the
image registration problem. In theory, a combined network
is possible, however, such a solution would have limitations
of sacrificing image quality to be able to fit in memory. We
also observe from experiments that such a combined network
with cropped images easily gets stuck in local minima and
takes longer time for training. However, our proposed so-
lution is simple and effortlessly beneficial both in terms of
memory and using the available resources optimally. Further-
more, the individual networks work on individual registration
tasks, which makes it easier to optimize.

In the future work, we will explore other deep learning
based architectures in a similar way to make them possible to
handle higher resolution images. Other modality images, e.g.,
T2w, could also be tested using the proposed architecture.
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