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Abstract. Deep learning based methods provide efficient solutions to
medical image registration, including the challenging problem of diffeo-
morphic image registration. However, most methods register normal im-
age pairs, facing difficulty handling those with missing correspondences,
e.g., in the presence of pathology like tumors. We desire an efficient solu-
tion to jointly account for spatial deformations and appearance changes
in the pathological regions where the correspondences are missing, i.e.,
finding a solution to metamorphic image registration. Some approaches
are proposed to tackle this problem but cannot properly handle large
pathological regions and deformations around pathologies. In this paper,
we propose a deep metamorphic image registration network (MetaReg-
Net), which adopts time-varying flows to drive spatial diffeomorphic de-
formations and generate intensity variations. We evaluate MetaRegNet
on two datasets, i.e., BraTS 2021 with brain tumors and 3D-IRCADb-01
with liver tumors, showing promising results in registering a healthy and
tumor image pair. The source code will be available online.

Keywords: Pathological Image Registration · Image Metamorphosis ·
Diffeomorphisms · Residual Networks

1 Introduction

Deformable image registration (DIR) establishes pixel/voxel dense correspon-
dences between 2D/3D images using a deformation that transforms images into
a common space for fusion or comparison [33]. Existing DIR methods include
classical registration models, e.g. SyN [5], Large Deformation Diffeomorphic
Metric Mapping (LDDMM) [7,10], Stationary Velocity Fields (SVF) [4], and re-
cent deep-learning-based methods, e.g., QuickSilver [36], VoxelMorph [13], SYM-
Net [27]. These methods focus on registering image pairs with no missing corre-
spondences, i.e., all pixels or voxels in the source image are matched with those in
the target image using a bijective mapping function. Such assumptions limit their
ability to tackle registration between image pairs with appearing or disappear-
ing structures, e.g., developing brain scans during myelination, a healthy image
and a tumor one, etc. These image pairs have both spatial deformation caused
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Fig. 1. Overview of our metamorphic image registration network, MetaRegNet.

by the movements of shared structures and intensity changes caused by missing
correspondences between unshared ones. Such intensity changes challenge exist-
ing methods, including diffeomorphic image registration that provides smooth
transformation with a smooth inverse to preserve topology between image pairs.

To capture spatial and intensity changes simultaneously, we turn to meta-
morphic image registration [34], which introduces a source term to simulate the
intensity changes in the diffeomorphic image registration framework [20]. The
model complexity of traditional metamorphic image registration makes them
impractical when handling large-scale and high-resolution images. To reduce the
computational cost of existing methods, researchers propose some deep-learning-
based solutions to handle pathological image registration, a special case of deep
metamorphic image registration, e.g., the existence of tumor regions as in [24,28].
Existing methods use either a cost function masking (CFM) strategy, which
completely separates deformations and intensity changes in the pathological and
non-pathological regions, or a clean/healthy source or target image where a tu-
mor is simulated to match with the other one with tumor. These methods ignore
the deformations of healthy regions effected by the pathological regions, which
causes large artifacts within and surrounding the pathological regions.

To address this challenge, we reformulate traditional metamorphic image
registration and propose a deep metamorphic solution MetaRegNet, see Fig. 1.
Based on Lipschitz continuous ResNet blocks proposed in [21], MetaRegNet con-
sists of two pathways for jointly integrating spatial deformations and intensity
changes along the trajectory from the source to target images. That is, MetaReg-
Net produces diffeomorphic deformations to account for spatial deformations
between images, and jointly learns intensity changes to account for the tumor
appearance between them. In this paper, we simplify the problem and limit our
task to registering a healthy source to a pathological target, leaving other cases
for future work. Our contributions in this paper are summarized below:
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– We propose a novel registration network for image-to-image metamorphosis,
which uses the time-varying flow to drive diffeomorphic spatial mappings and
simultaneously learns the incremental intensity variations between a healthy
source image and a target image with one or more pathological regions.

– We conduct experiments on the BraTS 2021 brain tumor MRI [25] and 3D-
IRCADb-01 liver CT [1] datasets and compare to a metamorphic version of
VoxelMorph [13]. Our method produces significantly better results qualita-
tively and quantitatively, for both estimations of diffeomorphic mappings for
spatial alignment and intensity variations in pathological regions.

1.1 Related Work

Mask-based Methods. This category assumes that pathological masks are
available for learning; so that, the healthy and pathological regions can be treated
separately. In [9], masks exclude the pathological regions from measuring the im-
age similarity loss. The geometric metamorphosis [29] uses masks to separate the
foreground and background deformation models for capturing intensity and spa-
tial changes separately. Similarly, masking strategies are used in [12,28]. Joint
registration and segmentation approaches are also proposed in [11,16,28,35], but
these methods fail to have good appearance matching or smooth deformations.
Differently, we automatically learns the amount of intensity changes and how to
balance them with spatial deformations. The mask softly restricts the estimated
intensity changes within the pathological regions, resulting continuous deforma-
tions and greatly reduced artifacts surrounding the pathological regions.
Reconstruction-based Methods. Another choice for metamorphic image reg-
istration is to reconstruct a pathological image into a clean quasi-normal one
before registration [18,8,19]. A variety of techniques have been proposed, such
as image in-painting [31], Variational AutoEncoder (VAE) based approaches [8],
and a low-rank decomposition model to learn a normal image appearance [23].
These approaches do not require masks of pathological regions; however, their
registration quality is limited by the imperfect or over-smoothed reconstructions.
Also, these methods require extra healthy image scans for training and work well
only if the size of the pathological region, like tumor or lesion, is relatively small.
Other Methods. In [8,32,24], researchers disentangle the shape and appearance
changes of an image when performing registration. In [17,15], a biophysical model
is adopted to introduce a growing tumor into a healthy image and perform image
registration with another tumor image; however, modeling the growth of a tumor
is a non-trivial task. In [14], a semi-langrangian scheme is proposed to carry out
registration for each pair but has limited ability to handle a large-scale dataset.

The model in [24] is the closest one to ours. It also uses residual networks and
deforms a pathological source image to a fixed healthy atlas, which is a special
case of ours, since we allow choosing different healthy images. More importantly,
unlike them, we do not need a hyper-parameter to balance spatial deformations
and intensity changes, which is not practical since it varies with different inputs.
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2 Background and Reformulation

In the LDDMM framework [7], diffeomorphic image registration is formulated as
a minimization problem, which estimates a smooth deformation field ϕ : Ω → Ω,
where Ω ⊆ Rnx×ny×nz (i.e., the size of a 3D image). The formulation is given as

E(v) =
1

2

∫ 1

0

∥v∥2L dt+
1

σ2
∥I1 − I(1)∥22, s.t. It +∇IT v = 0, I(0) = I0. (1)

Here, v is the time-dependent velocity field, L is a spatial regularizer to ensure the
smoothness of v; I0 and I1 are the source and target images, I(0) and I(1) are the
deformed images at t = 0 and t = 1, respectively; σ controls the influence of the
regularization term and the image matching term. This formulation is an image-
based version of LDDMM, where the image intensity is driven by the velocity
field v. We can also use map-based implementation, which uses a deformation ϕ
that is driven by the velocity field and then used to warp the source image.

Metamorphic registration can be formulated based on the diffeomorphic LD-
DMM model [20], by introducing a control variable q in the image transport
equation, as shown in Eq. (2). This introduced variable q simulates an intensity
source term and models intensity changes caused by appearing or disappearing
objects in the image. The new optimization function is formulated as

E(v, q) =
1

2

∫ 1

0

∥v∥2L dt+ ρ∥q∥2Q dt s.t. It +∇IT v = q, I(0) = I0, I(1) = I1, (2)

where ρ is a constant value to balance the intensity variations introduced by the
control variable q, Q is a smooth operator applied on q. Different from LDDMM,
metamorphic registration moves the image matching term into the constraints
and can achieve a perfect matching between warped image I(1) and the target
image I1, due to the introduced q. The solution in [20] presents a tight coupling
of velocity fields that drive spatial deformations and additive intensity changes.
Reformulation. In the deep learning framework, we use the map-based image
registration and disentangle the velocity fields into two parts, i.e., vsdt that drives
the spatial deformation ϕ and vivt that drives the intensity variation q. Hence, we
replace the transport equation in Eq. (2) with a reformulation of two separate
dynamics, using the following two ordinary differential equations (ODEs):

dϕ

dt
= vsdt ◦ ϕ(t), ϕ(0) = id and

dq

dt
= vivt · q(t), q(0) = 0, (3)

where id is the identity map, the spatial deformation ϕ lies in a vector space that
has the same size as the velocity field v, and the scalar intensity variation q has
the same size as the image I. The transported image I(1) is the combination of
the deformed source image ϕ(1) · I0 and the total intensity changes q(1).

3 Deep Metamorphic Image Registration

Based on the above reformulation, we propose a metamorphic image registra-
tion network (MetaRegNet) to jointly model spatial deformations and intensity
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changes. Overall, MetaRegNet adopts a UNet network to estimate two initial ve-
locity fields vsd0 and viv0 , which drive the spatial deformation ϕ and the intensity
variations q over time. The combination of the deformed source image and es-
timated intensity changes matches the target image. The proposed architecture
is presented in Fig. 1, with each component described below.

Estimation of Initial Flows. To obtain spatial deformations and intensity
variations, we first estimate their initial driven flows. We adopt a UNet [30] to
estimate the initial values vsd0 and viv0 from an image pair. As shown in Fig. 1, the
network includes a non-probabilistic U-Net architecture, which directly outputs
the flow estimation, without sampling from the mean and variance as done in [13].
This non-probabilistic approach is simple and works well in our experiments.

Integration of Spatial Deformations and Intensity Variations. To solve
Eq. (3) with the estimated initial flows, we utilize Lipschitz Continuous ResNet
Blocks (LC-RB) proposed in [21]. These LC-RB blocks are used as numerical in-
tegration schemes for solving ODEs. We use the version without sharing weights
among seven blocks, which models time-varying velocity fields and produces dif-
feomorphic deformations. That is, we obtain the diffeomorphic deformation ϕ(1),
which captures the spatial transformations between the source and target images
and deforms the healthy source image to generate parts of the final image.

Another branch with the same number of LC-RB blocks produces incre-
mental residual mappings of additive intensity changes between the input pair,
starting from q0. The intensity variations produced at the end, q(1), are added
onto the deformed source to approximate the target image I1. Naively, if q(1)
was a simple pixel-/voxel-wise subtraction of the input pair, it would perfectly
reconstruct I1; however, this solution fails to meet the anatomical matching
constraint of image registration. To address this, we add a regularization similar
to [24], which restricts the learned intensity variations within the pathological
region of the target image, i.e., missing correspondences only happen within the
pathological regions. We assume the availability of the binary mask M of the
pathological region, like a tumor, and use it to mask out intensity variations in
non-pathological regions, i.e., q(1) ⊗M. When registering two healthy images,
our model is downgraded to standard registration because of the empty mask.

Interpolation and Output. In this step, we generate the final output to ap-
proximate the target image I1. Firstly, with ϕ(1) we generate the deformed source
image using a differentiable interpolation layer. For each voxel p in the target
image, this layer computes its location given at ϕ(p) in the source image and
obtains its intensity value using linear interpolation. Upon this, we produce our
final metamorphic output by adding the generated intensity variations, which
performs a pixel-wise addition of q(1)⊗M to the deformed image ϕ(1) · I0.

Loss Function. Similar to metamorphic image registration formulated in Eq. (2),
we have the image matching between our metamorphic output and the target
image, and the regularization on the spatial deformation and the intensity vari-
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ation. The overall loss function is formulated as

L =λ1Lsim(
1

|Ω|
∥I1 − (ϕ(1) · I0 + q(1)⊗M)∥22) + λ2Lreg(∇(q(1)⊗M)

+λ3LJdet(0.5(|J(ϕ(1))| − J(ϕ(1)))), (4)

where Ω is the image spatial domain and |Ω| indicates the number of pixels or
voxels in an image, and λ1, λ2 and λ3 are the balancing weights, which are set
to [1.0, 1.0, 0.001], respectively, in our experiments. We use mean squared error
(MSE) as the image similarity metric Lsim to measure the goodness of image
matching. We also discourage dramatic intensity changes within the learned
intensity values by using a diffusion regularizer Lreg on the estimated intensity
changes, where ∇ is the spatial gradient operator. Besides, to restrict the learned
deformations to be diffeomorphic we use LJdet, where we penalize the total
number of locations where the Jacobian determinants |J(ϕ(1))| are negative.

4 Experiments

Datasets. (1) BraTS 2021 [6,26,22]. This dataset includes image scans collected
from 1251 subjects. Each scan is pre-processed by skull-strpping, co-registering
to a common anatomical template, and being interpolated to the same resolution
of 1×1×1mm3, which is followed by an intensity normalization between 0 to 1.
We select 120 slices with no tumor as our healthy image set and 120 slices with
tumors as our pathological set, by checking their corresponding tumor masks. We
keep aside 20 images from each set for testing and 5 for validation. As a result,
we have 240 random image pairs for training, 5 pairs for validation, and 20 pairs
for testing. (2) 3D-IRCADb-01 [1]. This database is composed of 3D CT scans
of 20 different patients with hepatic tumors. Each image has 74∼260 slices with
size of 512× 512, which is resampled to a pixel spacing of 1mm. Since the pixel
values are in Hounsfield and in the range of [−1000, 4000], we perform a color
depth conversion using the mapping as in [3]: g = h−m1

m2−m1
× 255. Here, g is the

converted gray level value, h is the Hounsfield value in the raw image, and m1

and m2 are the minimum and maximum of the Hounsfield range, respectively.
Then, we crop the liver region using the provided liver mask and normalize the
image intensity to [0, 1]. We collect 20 slices that contain healthy liver regions
and 6 slices that have a pathological regions in the liver. We take 12 slices from
the healthy set and 3 slices from the unhealthy set to make our training set,
resulting in 36 image pairs, and take 3 healthy slices and 1 unhealthy slice to
make 3 pairs for validation, and 5 healthy slices and 2 unhealthy slices to make
10 pairs for testing. Due to the limited training samples, we extend the training
set to 144 pairs, via rotating each image by 90, 180 and 270 degrees. For both
datasets, we have subject-wise splitting for training, validation, and test sets.
Baseline Methods. For comparison, we choose the diffeomorphic version of
VoxelMorph [13], a deep-learning-based image registration model, as our base-
line. Since VoxelMorph cannot handle the metamorphic image registration prob-
lem, we modify it and adopt the cost-function-masking (CFM) strategy [9] to
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Fig. 2. Qualitative comparison between VM-CFM and our MetaRegNet on brain and
liver datasets. Given an input pair on the top, the final output, its intensity difference
to the target, and the spatial deformation are shown from left to right for each sample.

exclude the similarity measure of the tumor regions using their masks during
training. This modified VoxelMorph is denoted as VM-CFM.
Implementation and Settings. We implement our MetaRegNet using Keras
and TensorFlow and train it in an end-to-end fashion, with the Adam optimizer
and a fixed learning rate of 1e−4. Both our architecture and the baseline model
VM-CFM have been deployed on the same machine with an Nvidia TITAN X
GPU. We build our method on top of the R2Net implementation with default
parameters reported in [21]. All models are trained from scratch.
Evaluation Metrics. We measure the average Sum of Squared Distance (SSD)
between the deformed source and target images, including the whole image (SSD-
total) and the healthy region only (SSD-healthy). To measure the number of
foldings in the estimated spatial deformations, we report the number of voxels
with negative Jacobian determinants. Also, we measure the segmentation Dice
score by using estimated deformations and the inference time as well.
Experimental Results. Table 1 reports our quantitative results. Compared to
VM-CFM, our model provides a better matching, not only in the healthy region
but also in the whole image, for both brain and liver datasets. Fig. 2 presents
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Table 1. Comparison between VM-CFM and our method on brain and liver datasets.
The Dice of brain segmentation is not reported since we do not brain masks.

Data Method SSD (e−1) SSD (e−1) Dice #Foldings Time (ms)
SSD-total SSD-healthy (per img. pair)

Brain VM-CFM 0.13±0.003 0.1±0.002 – 88.585±76.63 21
MetaRegNet 0.08±0.002 0.07±0.002 – 3.62±6.34 23

Liver VM-CFM 1.5±0.004 0.07±0.003 0.88 23.16±34.56 22
MetaRegNet 0.40±0.012 0.04±0.002 0.95 1.00±4.90 24

I0 I1 M q(1)⊗M ϕ(1) · I0 Final
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Fig. 3. Image appearance separation learned by MetaRegNet. Left to right: clean source
image I0, pathological target image I1, tumor mask M, learned intensity changes within
the tumor region q(1)⊗M, the deformed source image ϕ(1) · I0, and the final output.

the visual improvement, showing better matching in both tumor and healthy
regions, for images with either large or small tumors. Our deformations are much
smoother, as demonstrated by the much fewer foldings reported in Table 1 and
smoother maps within tumors and their surrounding regions in Fig. 2. Unlike
VM-CFM, we have spatial deformations going under the tumor regions, and the
rest appearance changes are contributed by the intensity variance, indicating
the appearing tumors from a healthy source to a pathological target, which is
also observed in Fig. 3. To further evaluate the effectiveness of MetaRegNet, we
use deformation maps to transfer the segmentation mask of the source image to
match the target one. Since only liver masks are available, we apply our method
on liver segmentation and obtain a mean Dice score of 0.95, compared to 0.88
produced by VM-CFM. And we only takes 2ms more for registering one pair.

5 Conclusion and Future Work

In this paper, we propose a metamorphic image registration framework, MetaReg-
Net, which utilizes LC-ResNet blocks as flow integrator and allows for joint esti-
mation of spatial deformation and intensity variation between a healthy source
image and a pathological target image. Although we work on 2D images, our
method is general and straightforward to apply on 3D images. In the future
work, we will work on the BraTS-Reg challenge [2], which provides 3D images
and landmarks for evaluation. One limitation of our method is the need of using
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tumor masks. We can fully leverage existing tumor segmentation networks and
use them to produce the required masks or integrate them into our network,
which is left as our future work. Another extension of our work is registering any
pairs of healthy and pathological images, including the registration between two
pathological image scans, which is also our future work.
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