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A B S T R A C T

Classical diffeomorphic image registration methods, while being accurate, face the chal-
lenges of high computational costs. Deep learning based approaches provide a fast al-
ternative to address these issues; however, most existing deep solutions either lose the
good property of diffeomorphism or have limited flexibility to capture large deforma-
tions, under the assumption that deformations are driven by stationary velocity fields
(SVFs). Also, the adopted squaring and scaling technique for integrating SVFs is time-
and memory-consuming, hindering deep methods from handling large image volumes.

In this paper, we present an unsupervised diffeomorphic image registration frame-
work, which uses deep residual networks (ResNets) as numerical approximations of the
underlying continuous diffeomorphic setting governed by ordinary differential equa-
tions, which is parameterized by either SVFs or time-varying (non-stationary) velocity
fields. This flexible parameterization in our Residual Registration Network (R2Net) not
only provides the model’s ability to capture large deformation but also reduces the time
and memory cost when integrating velocity fields for deformation generation. Also,
we introduce a Lipschitz continuity constraint into the ResNet block to help achieve
diffeomorphic deformations. To enhance the ability of our model for handling images
with large volume sizes, we employ a hierarchical extension with a multi-phase learning
strategy to solve the image registration task in a coarse-to-fine fashion. We demonstrate
our models on four 3D image registration tasks with a wide range of anatomies, includ-
ing brain MRIs, cine cardiac MRIs, and lung CT scans. Compared to classical methods
SyN and diffeomorphic VoxelMorph, our models achieve comparable or better registra-
tion accuracy with much smoother deformations. Our source code is available online at
https://github.com/ankitajoshi15/R2Net.

© 2023 Elsevier B. V. All rights reserved.

1. Introduction

Image registration seeks optimal global or local correspon-
dences between images, which is a fundamental task in med-

∗Corresponding author: Tel.: +86-132-6258-0581;
e-mail: yi.hong@sjtu.edu.cn (Yi Hong)

ical image analysis and has been an active research field for
years (Sotiras et al., 2013; Haskins et al., 2020). Deformable
image registration is the process of aligning a pair of images by
establishing dense local correspondences between them. Such
nonlinear transformations bring images to a common coordi-
nate system for information fusion or for further analysis. Tra-
ditional deformable image registration methods, such as Large
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Deformation Diffeomorphic Metric Mapping (LDDMM) Beg
et al. (2005), Stationary Velocity Fields (SVF) Arsigny et al.
(2006), aim to estimate smooth deformation fields based on op-
timizing a cost function that balances an image matching term
with a smoothness regularity on deformation fields. Specifi-
cally, deformable image registration prefers a smooth deforma-
tion that has a smooth inverse, i.e., a diffeomorphic deforma-
tion. Such diffeomorphic image registration provides satisfac-
tory results in registering medical images because of its capa-
bility of preserving topologies in medical scans while achieving
good matching accuracy. However, these methods suffer effi-
ciency issues in practice due to their high computational cost in
solving complex optimization on high dimensional image pairs.

In recent years, deep learning based methods, like Voxel-
Morph (Dalca et al., 2018), SyMNet (Mok and Chung, 2020a),
have been proposed to address the computational challenge
faced by traditional methods. These methods fully leverage the
advantages of learning from large amounts of data, resulting in
a function that maps the embedding of the input image pairs
to the deformation fields for alignment. Due to no need of op-
timization at the inference stage and the availability of GPU-
based implementations, such learning-based approaches highly
accelerate the inference stage of image registration. Unfortu-
nately, most deep deformable image registration methods sacri-
fice the diffeomorphic property to some extent because achiev-
ing it in the deep learning framework is challenging. One typ-
ical solution is based on a scaling and squaring (SS) strategy,
as firstly used in VoxelMorph Dalca et al. (2018) and in Krebs
et al. (2018), and later in Hoopes et al. (2021); Mok and Chung
(2020b). Such SS-based approaches assume that the deforma-
tion field is driven by stationary velocity fields (SVFs), which
limit the flexibility of registration models to handle large de-
formations (Vercauteren et al., 2009). Also, using SS for inte-
grating velocity fields is computationally expensive in terms of
time and memory costs, making them difficult to handle high-
dimensional and high-resolution images.

To relax the assumption of SVFs and provide efficient solu-
tions for diffeomorphic image registration, we consider the re-
lation between deep residual networks (ResNets) with the Eu-
lerian discretization scheme of ordinary differential equations
(ODEs) and propose a Residual Registration Network (R2Net)
framework. Our R2Net provides an unsupervised diffeomor-
phic image registration solution that leverages ODE-based pa-
rameterization of diffeomorphisms, using both stationary and
non-stationary velocity fields to drive deformation fields. As
a result, we have two variants, i.e., SVF-R2Net and NSVF-
R2Net, to provide flexibility in capturing large deformations.
Furthermore, we propose their multi-scale variants, i.e., SVF-
MS-R2Net and NSVF-MS-R2Net, to fully leverage the multi-
ple scales at different resolutions of input image pairs and uti-
lize the available computing resources, so that we do not have
to compromise on the size of the input data, or on the resolution
of generated velocity fields, or on the deep model sizes, while
performing registration of large and high-resolution datasets.

1.1. Background
For a given pair of images, namely, the source or moving im-

age denoted by IS (x), x ∈ Rd, and the target or reference image

denoted by IT (y), y ∈ Rd, d = 2, 3, the goal of image registration
is to estimate an optimal transformation ϕ ∈ T , within a set of
possible transformations T , which aligns the source image IS

to the target image IT with the lowest energy cost. That is, im-
age registration can be formulated as an optimization problem
that aims to minimize the following energy function:

arg min
ϕ∈T
M(IT , ϕ · IS ) + R(ϕ), (1)

where M quantifies the level of alignment between the de-
formed source and target images, and penalizes the dissimilarity
between them. Also, the transformation ϕ needs some desirable
properties like smoothness, which are enforced by the regular-
izer R that penalizes the non-smoothness of the transformation.

In particular, deformations may be restricted to a space of
mappings with certain desirable properties, such that the defor-
mation has to be diffeomorphic. Diffeomorphism is defined as
a one-to-one and smooth (i.e., infinitely differentiable) defor-
mation, having a smooth inverse as well Ashburner (2007). To
achieve this, the deformation ϕ is typically driven by smooth ve-
locity vector fields Beg et al. (2005). A diffeomorphic deforma-
tion field can be treated as an integral of a smooth time-varying
velocity field vt, t ∈ [0, 1] via the following ODE:

d
dt
ϕt = vt ◦ ϕt, ϕ0 = id. (2)

Here, ϕt indicates the deformation at the time point t. ϕ0 is
the identity map and ϕ1 is the deformation that transforms the
source image IS to the target image IT . Given the velocity
fields {vt} and ϕ0, the solution ϕ1 is the numerical integration
of Eq. (2), given as

ϕ1 = ϕ0 +

∫ 1

0
vt(ϕt)dt. (3)

Diffeomorphic deformations can be also parameterized using
SVFs as proposed in Arsigny et al. (2006), where the velocity
is constant over time (vt = V,∀t) and is governed by the ODE:

d
dt
ϕt = V(ϕt). (4)

For this simplified SVF version, the solution of ϕ(t) is repre-
sented as the exponential of the velocity V , given as

ϕ(t) = exp(tV). (5)

1.2. Related Work
Traditional Optimization-Based Methods. Traditional de-
formable image registration methods aim to find the transforma-
tion trajectory between the source and target image pairs, which
is an ill-posed two-boundary-value problem since the solution is
not-unique and many trajectories could achieve the same goal.
To address this issue, various regularizations are used according
to some physical assumptions on how the image is allowed to
deform, which determines how the estimated deformations will
be regularized. Multiple methods (Ashburner, 2007; Glocker
et al., 2008; Yeo et al., 2010; Zhang et al., 2017; Avants et al.,
2008) have been proposed, which constrains the deformations
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to be symmetric, diffeomorphic, volume preserving, etc. To
estimate diffeomorphic deformations, classical registration al-
gorithms are proposed to successfully align image pairs with
smooth deformations, such as Large Deformation Diffeomor-
phic Metric Mapping (LDDMM) (Beg et al., 2005; Ceritoglu
et al., 2009; Joshi and Miller, 2000), Stationary Velocity Field
(SVF) (Arsigny et al., 2006; Hernandez et al., 2007; Ashburner,
2007; Higham, 2005), DARTEL Ashburner (2007), diffeomor-
phic demons Vercauteren et al. (2009), and symmetric normal-
ization (SyN) Avants et al. (2008).

Among diffeomorphic image registration frameworks, LD-
DMM and SVF are both fluid-based image registration ap-
proaches; the deformations in the LDDMM framework are
driven by time-dependent velocity fields, while SVF deforma-
tions are driven by a constant velocity field. While SVF has ad-
vantages in lower computational memory cost and faster com-
putation, the setting of stationary velocity fields limits its ability
to handle large deformations Arsigny et al. (2006). Also, de-
spite its satisfactory results, in the SVF framework the exp(·) is
not surjective, i.e., not all images can be reached by an exp(V)
from the source image, which makes the registration under large
deformations uncertain. In other words, SVFs are less flexi-
ble, since one can only invert for a subset of deformation maps
living on the manifold of diffeomorphisms. It has been shown
that SVFs are only adequate for registration problems involving
two topologically similar images Mang and Ruthotto (2017).
Instead, non-stationary velocity fields are beneficial for appli-
cations involving large and highly non-linear transformations,
even for the registration of longitudinal data with large motions
over time Mang and Ruthotto (2017).

In summary, most traditional methods formulate the image
registration problem on Riemannian manifolds and employ an
iterative optimization procedure to estimate the deformations
for every image pair. Their formulations are elegant and achieve
satisfactory registration results in most cases. However, the
complex mathematical formulations and high-dimensional opti-
mization make such algorithms computationally expensive. In
practice, having a fast, memory-efficient, and even paralleliz-
able image registration approach is critical in clinical applica-
tions; so that we can tackle image alignments in a short amount
of time or handle high-resolution volumes on a large scale.

Learning-Based Methods. Deep learning based approaches
have been shown to provide fast and efficient solutions in the
inference stage with highly parallelizable implementations ex-
ecuted on GPUs. Existing deep learning based models tackle
the challenging problem of image registration using either su-
pervised (Rohé et al., 2017; Cao et al., 2017; Yang et al., 2017;
Fan et al., 2019) or unsupervised techniques (Li and Fan, 2017;
De Vos et al., 2019; Vos et al., 2017; Balakrishnan et al., 2019;
Dalca et al., 2018) Both methods learn the mapping from im-
age pairs to their deformation fields, while their main difference
lies in whether the true deformations are provided for training
or not. In particular, supervised approaches maintain the dif-
feomorphic property, which is inherited from the original im-
age registration models, e.g., LDDMM. However, they require
extra effort of obtaining the ground-truth deformations. Mean-
while, the registration accuracy of these supervised methods is

limited by that of the provided deformations.
On the other hand, unsupervised approaches reformulate the

traditional image registration model in the deep learning frame-
work. Most unsupervised methods make use of spatial trans-
former networks (STNs) Jaderberg et al. (2015) to allow for
differentiable warping and interpolation, which can be inte-
grated using deep neural networks. Unsupervised methods have
demonstrated promising image registration accuracy in a va-
riety of image registration tasks Hoopes et al. (2021); Hering
et al. (2021); Wu et al. (2022). A simple way to maintain the
diffeomorphic property is introducing an integration layer into
the network, which solves Eq. 5 in the SVF framework using
the scaling and squaring methodology (Higham, 2005; Arsigny
et al., 2006). Such SVF-based formulation of solving image
registration has been widely used (Krebs et al., 2018; Dalca
et al., 2018; Mok and Chung, 2020b,a; Joshi and Hong, 2022).

However, similar to the traditional SVF-based registration
methods, although SVF-based registration algorithms produce
diffeomorphic deformations they face the same drawback as
discussed in the SVF-based traditional algorithms, which are
not able to handle large deformations. Along with this issue,
another drawback faced by SVF-based deep learning methods
is the computational cost of the scaling and squaring step. To
reduce the memory cost, the integration step is often carried out
using a half-scale of the original size of velocity fields, which
leads to missing details in the deformation fields. These issues
result in sub-optimal solutions for diffeomorphic image regis-
tration using SVF-based deep learning methods.

Currently, there are limited deep learning-based works tack-
ling the diffeomorphic image registration problem based on
the parameterization of time-varying velocity fields (Wu et al.,
2022; Xu et al., 2021). These two methods solve the defor-
mation equation based on neural ordinary differential equations
(NODEs) Chen et al. (2018) and model the problem as learn-
ing the optimizer in the image registration formulation. These
methods are not as fast as the current unsupervised methods,
since they have to perform registration (or learn the correct op-
timizer settings) for every new image pair in the inference stage.
While residual networks (ResNets) based model has been pro-
posed for modeling deformations Ben Amor et al. (2021), they
parameterize time-dependent affine velocity fields in order to
perform affine diffeomorphic registration on shapes. However,
their architecture needs further exploration to fit deformable im-
age registration tasks. ResNets are also used in Yang et al.
(2021) to learn deep multi-scale residual representations to
boost registration accuracy.

Overall, there is a lack of deep registration models that not
only provide diffeomorphic solutions but also use the parame-
terization of time-varying velocity fields.
Multi-Scale Extensions. Despite unsupervised deep learning-
based registration being a popular choice for aligning images,
they still face significant challenges in achieving accurate and
efficient solutions for the task of diffeomorphic image registra-
tion. Firstly, current registration methods are based on a vari-
ety of variational auto-encoders (VAEs) or UNets Ronneberger
et al. (2015), which suffer from producing over-smooth upsam-
pling velocity fields or learning only low-level statistics rather
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Fig. 1. Overview of our proposed network. The Lipschitz Continuous ResNet block (LC-ResNet) without shared weights corresponds to the time-varying
velocity field, while the one with shared weights corresponds to the stationary velocity field. Both models use N=7 LC-ResNet blocks; s in the right LC-
ResNet block indicates the s-th block, s = 1, 2, · · · ,N.

than high-level semantics (Razavi et al., 2019; Nalisnick et al.,
2018). Secondly, as mentioned before, the integration layer is
computationally expensive, resulting in a compromise in mod-
els or data inputs, such as integrating the velocity fields at half-
scale, downsampling the input data size, or reducing the size of
the deep learning models. Lastly, registration networks handle
high-dimensional medical image volumes, which have a large
number of parameters to optimize and increase the difficulty in
obtaining an accurate and efficient solution.

A potential solution to address the above issues is to incorpo-
rate a hierarchical approach based on a multi-resolution strat-
egy, i.e., using a coarse-to-fine optimization scheme. Exist-
ing methods follow a multi-level optimization strategy (Hering
et al., 2019; Mok and Chung, 2020b) or apply a multi-scale
upsampling design after feature extraction Krebs et al. (2019);
Mok and Chung (2020b). However, these approaches still have
difficulty in handling large volumes under multiple scales, due
to the constraints of limited resources. It is a challenging task to
handle high-resolution image volumes while using a multi-scale
strategy to leverage limited memory and improve registration
accuracy at the same time.

1.3. Contribution

In this paper, we present a Residual Registration Network
(R2Net), a diffeomorphic image registration framework, which
has the flexibility of generating smooth deformations driven
by either stationary or time-varying velocity fields. Also,
its multi-scale extension (MS-R2Net) provides the possibility

of handling registration between high-dimensional and high-
resolution image volumes efficiently. This paper extends a pre-
liminary version of two works presented at the Medical Imag-
ing with Deep Learning (MIDL) 2022 Joshi and Hong (2021)
and the IEEE International Symposium on Biomedical Imaging
(ISBI) 2022 Joshi and Hong (2022).

In this journal version, we provide theoretical extensions,
new results, analysis, and discussion. Theoretically, we study
new ways of generating initial velocity fields of our R2Net
model, evaluate the correctness of using ResNets to solve
ODEs, and have a natural extension to a multi-scale architec-
ture for large image volumes. Experimentally, we show exten-
sive analysis of different architectures and evaluate our models
on four datasets with 3D image volumes, including MRI cardiac
scans, MRI brain scans, and lung CT images. Our contributions
can be summarized as follows:

• We propose a deep diffeomorphic image registration
framework, which has flexible parameterizations of defor-
mation fields driven by either stationary velocity fields,
SVF-R2Net, or time-varying (non-stationary) velocity
fields, NSVF-R2Net. The non-stationary version improves
the flexibility of capturing large deformations.

• We demonstrate two efficient multi-scale extensions, MS-
NSVF-R2Net and MS-SVF-R2Net, which adopt a dual-
phased learning strategy to tackle high-resolution image
volumes while fully utilizing computational resources.

• We provide a thorough study of different medical image
modalities and anatomies, as well as the time and mem-
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ory cost of our registration models. Experiments show our
models’ efficiency and effectiveness in maintaining diffeo-
morphic properties and registration accuracy, without sac-
rificing the original resolution of input images, the integra-
tion scale of deformations, or the model size of the back-
bone deep neural networks.

The remainder of the paper is organized as follows. Section 2
introduces our method and discusses the network architectures.
Section 3 describes our conducted experiments, with details re-
garding the used datasets, settings, and also discussions on ex-
perimental results. We conclude our analysis in Section 4.

2. Method

Figure 1 presents an overview of our proposed R2Net. Given
a pair of images, we adopt a U-Net to estimate the initial veloc-
ity fields, which are integrated via a well-designed residual net-
work to obtain the corresponding deformation fields. Our goal
is to use these deformation fields to deform the source image
and match the target image as closely as possible; meanwhile,
we prefer diffeomorphic deformation fields that preserve the
topology of object structures in image scans. Since the resid-
ual network (ResNet) plays an essential role in achieving the
diffeomorphic deformation, we start with the discussion of our
customized ResNet blocks, followed by a detailed description
of the basic R2Net and its multi-scale extension.

2.1. ResNet Blocks with Lipschitz Continuity
ODE Solver in Registration Based on ResNet Blocks. In dif-
feomorphic image registration, solving the ODE (see Eq. 1) that
governs the evolution of deformation fields is a core component,
which needs to be implemented in the framework of deep neural
networks. To address this issue, we employ residual deep net-
works (ResNets) as numerical schemes of differential equations
to integrate stationary or non-stationary velocity fields, since
ResNets have connections to the Euler’s method used for solv-
ing ODEs in scientific computing (Haber and Ruthotto, 2017;
Weinan, 2017; Ruthotto and Haber, 2020). For instance, an
interpretation of ResNets as incremental flows of diffeomor-
phisms was recently published in Rousseau et al. (2020) in the
context of supervised learning with the application to image
classification. Also, there are multiple works that provide in-
sights on ResNets from an aspect of ODEs or partial differential
equations (PDEs) Lu et al. (2018); Ruthotto and Haber (2020).
These works relate the incremental mapping (residual blocks)
defined by ResNets as numerical schemes of differential equa-
tions used in diffeomorphic registration models, especially to
LDDMM Rousseau et al. (2020).

According to these theoretical insights, we use ResNets to
solve the equation of integrating flows given by Eq. 3 and its
stationary form as given by Eq. 4. In a typical ResNet-based ar-
chitecture, given an initial value, like the identity deformation,
each learnable residual block takes current states one step for-
ward, which incrementally maps the learned embedded features
onto a new space, with an update that takes the form:

xl+1 = xl + F (xl, θl), (6)

where xl is the input to the lth residual unit and θl are the train-
able network parameters associated with the lth residual unit.
That is, a deep residual network can be also viewed as a dis-
cretization of a dynamical system governed by a first-order
ODE, where the network layers are viewed as time steps and the
network parameters, {θl}, are viewed as the control to optimize
Liu and Theodorou (2019). Such network-based discretization
of velocity fields {vt} in Eq. 3 and Eq. 4 can be treated as a sim-
ple combination of basis functions using a ResNet mapping in
Eq. 6, which can be rewritten as:

vt+1(ϕt+1) = vt(ϕt) + F (vt(ϕt), θt). (7)

Similarly, each mapping block t is viewed as a time-step, and θt
represents the network parameters.

In this way, the entire ResNet architecture implements the
composition of a series of incremental deformation mappings,
which is a discretized version of Eq. 3 by replacing the inte-
gral with a summation. This interpretation makes F (·, θt) to be
a parameterization of a deformation flow field, and a series of
identical ResNet blocks F (.; θt) integrate the time-dependent
velocity fields. Moreover, the interpretation of F (·, θt) with
shared weights is viewed as the numerical implementation of
the exponential of velocity fields in Eq. 4, which is the analyt-
ical solution of deformation fields driven by stationary veloc-
ity fields Rousseau et al. (2020). Overall, the residual blocks
{F (·, θt)} resemble the forward Euler method by composing a
series of incremental deformation mappings with a given initial
value Weinan (2017), which helps us solve the ODEs (Eq. 3 and
Eq. 4) required in image registration.
Lipschitz Continuous ResNet (LC-ResNet) Blocks. As
pointed out in Younes (2010) (Theorem 8.7), a smoother v
yields a smoother deformation ϕ. In the LDDMM frame-
work, an admissible Hilbert space of velocity fields with ade-
quate smoothness conditions is defined as a reproducing ker-
nel Hilbert space (RKHS). A recent work connects neural net-
works and RKHS Bietti and Mairal (2019) (Proof for Proposi-
tion 14), which shows that convolutional neural networks with
homogeneous activation functions (e.g., tanh) fall under RKHS.
Also, according to the Cauchy-Lipschitz theorem, under ade-
quate smoothness assumptions on the velocity fields v, a Lips-
chitz continuous integration over time is a well-defined map-
ping on the space of time-dependent diffeomorphisms. Re-
cently, a number of works advocate the importance of Lips-
chitz continuity in assuring the generalizability of deep learn-
ing models to the perturbation of outputs Yoshida and Miyato
(2017); Gouk et al. (2021).

Based on the above theories, we employ the method pro-
posed in Miyato et al. (2018) to enforce Lipschitz continuity
in our Residual blocks, i.e., using the spectral normalization
for each convolutional layer of the residual blocks. This opera-
tion normalizes the spectral norm of the weight matrixW, i.e.,
ŴS N := W

δ(W) , where the function δ(W) computes the spec-
tral norm ofW. After the spectral normalization, the network
weights satisfy the Lipschitz constraint δ(ŴS N) = 1. Hav-
ing this condition implies that the Hilbert space of admissible
velocity fields is an RKHS. In particular, the authors adopt a
fast approximation by using the power iteration method (Miy-
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ato et al. (2018), Algorithm 1), which replaces the weightsW
with δ(W), the largest singular value of W. This strategy is
used to avoid the added computational complexity of comput-
ing the singular valued decomposition to compute the eigenval-
ues. We follow the Keras implementation1 for computing the
spectral norm of the weight matrix.

The architecture of our Lipchitz continuous residual network
(LC-ResNet) block is shown on the right of Fig. 1. Each block
consists of a convolutional layer, which uses spectral normal-
ization (SN) as a regularizer on the weights. This SN-enforced
convolution ensures that the velocity field v is a Lipschitz con-
tinuous mapping. After the convolution layer, a point-wise
Leaky ReLu activation function is applied to introduce the non-
linearity into the network, which is followed by a second con-
volutional layer with spectral normalization. We control the
magnitude of the velocity field by using a tanh layer followed
by a scaling layer which further scales the per voxel value by a
factor of 2. There are N such ResNet blocks, which indicate N
time steps of integration, and each block generates the velocity
field at the t-th time step. As a result, we use LC-ResNet blocks
to map a smooth initial velocity field to the desired diffeomor-
phic deformations.

2.2. Basic Model: R2Net
Building upon the LC-ResNet blocks, we design two ver-

sions of our Residual Registration Network (R2Net): Station-
ary Velocity Field based Residual Registration Network (SVF-
R2Net) and Non-Stationary Velocity Field based Residual Reg-
istration Network (NSVF-R2Net). These two networks share
the same architecture as shown in Fig. 1, and their main dif-
ference is whether the weights are shared within the residual
blocks. Our basic R2Net takes an image pair as input, maps
them to an initial velocity field, integrates velocity fields to gen-
erate a diffeomorphic deformation, and deforms the source im-
age using generated deformation to match the target image.
Initial Velocity Field Estimation. Assume the source and tar-
get images IS and IT have the same size of H×W×D, which are
defined over an n = 3 dimensional spatial domain Ω ⊂ R3. Dif-
ferent from traditional optimization-based image registration
algorithms, the deep registration network uses a convolutional
neural network (CNN) to learn the mapping from the source
and target images, which is represented by an initial velocity
field. The adopted CNN is based on a U-Net Ronneberger et al.
(2015), which takes the concatenated source and target images
as inputs and predicts a dense initial velocity field v0. The en-
coder part of the U-Net uses 3D convolutions with a kernel size
of 3 × 3 × 3 and a stride of 1, followed by the Leaky ReLU
activation functions and 3D convolutions with a kernel size of
3 × 3 × 3 and a stride of 2 for downsampling. The number of
filters used in each layer is shown in Figure 1. The decoder
mirrors the encoder with the convolution replaced by the trans-
posed convolution for upsampling, along with a skip connection
to the corresponding encoder block at the same resolution level.
Integration Using LC-ResNet Blocks. Since deformations
are driven by initial velocity fields under the government of

1https://github.com/IShengFang/SpectralNormalizationKeras

Eq. 2, this component of R2Net is to learn the mapping from
the generated initial velocity field to a diffeomorphic deforma-
tion field, i.e., the integration of deformations driven by veloc-
ity fields. As discussed in Sec. 2.1, we utilize the ResNet as
numerical schemes of differential equations and relate the in-
cremental mappings defined by LC-ResNet blocks to diffeo-
morphic registration models. The LC-ResNet blocks without
sharing weights, which model the case of time-varying veloc-
ity fields, constitute the integration component of our NSVF-
R2Net. Similarly, we utilize LC-ResNet blocks with shared
weights to model the stationary velocity fields, which consti-
tute the integration component of the SVF-R2Net.
Image Interpolation. To measure the goodness of image
matching result, we need to generate the deformed source im-
age using the integrated deformation field ϕ and compare it with
the target image. In order to warp the original source image vol-
ume, we use a linear interpolation layer, which basically com-
putes for every voxel, a corresponding source image voxel loca-
tion. The values at neighboring voxels are interpolated in order
to obtain the intensity value for the location in the target image.
This is a differentiable operation and therefore allows for the
backpropagation of errors.

2.3. Loss functions
The objective function of traditional image registration in-

cludes two terms, i.e., image matching, measuring the simi-
larity between the deformed source and target images, and the
smoothness regularizer, measuring the smoothness of the ve-
locity fields. Deep registration networks have similar loss func-
tions; therefore, our networks also have a similarity loss Lsim

and a regularizer loss Lreg.
Similarity Loss. When measuring the distance between the
deformed source image ϕ · IS and the target image IT , the mean
squared error (MSE) is a commonly-used loss function, which
is given as

Lsim(IT , ϕ · IS ) = ∥IT − ϕ · IS ∥
2
2

=
1
|Ω|

∑
x∈Ω

(IT (x) − ϕ(x) · IS )2.
(8)

Here, Ω is the image spatial domain and |Ω| indicates the num-
ber of pixels or voxels in an image. The MSE loss is suitable
for image pairs that have similar intensity distributions and lo-
cal contrast, like our brain and cardiac image scans.

However, for the task of lung CT image registration, the in-
tensity at the corresponding points of the source and target im-
ages vary, because of the altered density of the lung tissue dur-
ing breathing. For such cases, the MSE is not a desired similar-
ity loss, instead, we use the normalized gradient fields (NGF)
loss following the approach proposed in Rühaak et al. (2017);
Hering et al. (2019):

Lsim(IT , ϕ · IS ) =
∫
ω

1 −
⟨∇(ϕ · IS ),∇IT ⟩

2
ϵ

∥∇(ϕ · IS )∥2ϵ ∥∇IT ∥
2
ϵ

, (9)

where ω is the image domain limited to the region within the
lung mask, with ⟨ f , g⟩2ϵ =

∑3
j=1( f jg j + ϵ

2), ∥ f ∥ϵ =
√
⟨ f , f ⟩ϵ .

Here, ϵ > 0 is the edge parameter that is used to suppress small
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Fig. 2. Multi-scale R2Net architecture with the two-phase registration process. In Phase 1, the chunk and downsampled branches are trained. In phase 2,
the universal model is trained. For both Phase 1 and 2, the baseline architecture used is either SVF-R2Net or NSVF-R2Net as shown in Fig. 1.

CHUNKCHUNK

CHUNK

MERGE

Fig. 3. The chunking process for generating the inputs of the chunk branch
in the MS-R2Net architecture. We have an overlap of 2 pixels during the
chunking process. During the merging process, we average the values in
the overlap region to obtain the original-sized volume. In this figure we
can see the original volume being chunked into eight subvolumes.

image noise. We set it to be 1 as used in Hering et al. (2021).
This similarity measure helps estimate an accurate alignment,
since it will avoid the noise within the lung CT scans.
Regularizer Loss. To encourage the smoothness of the de-
formation field, we regularize its determinant of the Jacobian,
which shows how much each image pixel or voxel was stretched
or compressed in the deformation. Typically, a determinant
larger than 1.0 indicates an expansion at the pixel/voxel loca-
tion, and one between 0 and 1 signifies compression, whereas
having negative values in the Jacobian determinant means the
foldings happening at those voxel positions in the deformations.
We aim to keep the Jacobian determinant of the deformation
field to be positive to avoid having foldings. We integrate this
loss into our overall objective function:

Lreg(ϕ) =
1
|Ω|

∑
x∈Ω

0.5
(∣∣∣J (ϕ(x))

∣∣∣ − J (ϕ(x))
)
, (10)

where J(ϕ(x)) is the determinant of the Jacobian of the defor-
mation field at its location x.

2.4. Multi-Scale Variant: MS-R2Net

As discussed before, most SVF-based deep learning solu-
tions use the scaling and squaring step for integration and solve
the registration problem by reducing the number of unknowns
either through a coarse parameterization (reducing input/model
size) or by using a coarse grid (reducing the velocity field size).
Such approximations and simplifications can result in sub-
optimal registration quality Himthani et al. (2022); Mang et al.
(2019); Brunn et al. (2021). It has also been recently shown that
image registration at higher image resolution is more accurate
Himthani et al. (2022). Building a multi-scale design has been
demonstrated to be an efficient way to improve registration ac-
curacy by avoiding bad local minima Mok and Chung (2020b),
but such approaches are unable to process large volumes at mul-
tiple scales under limited resource constraints. Accurate regis-
tration method for high-dimensional multi-resolution 3D im-
ages has immense potential for time-sensitive medical studies.
Existing methods that follow a multi-level optimization strategy
Mok and Chung (2020b); Hering et al. (2019) or apply a multi-
scale upsampling design for feature extraction are still unable to
process large volumes at multiple scales with available comput-
ing resources. Here, we introduce our multi-scale architectures
SVF-MSR2Net and NSVF-MSR2Net, as shown in Fig. 2. In
both networks, we employ two phases for learning, to further
improve the run-time and better utilize the available resources.
As a result, we obtain a trade-off between fully leveraging the
available data under limited computing resources while at the
same time capturing multi-scale features to achieve better reg-
istration accuracy.
Phase One: Local and Global Learning. The goal of phase
one is to learn initial velocity fields at a reduced size, for in-
stance, half of the original size at each dimension. Chunking
and downsampling images are two typical strategies to achieve
the size reduction, so that, we can learn the initial velocity
fields globally and locally. Therefore, phase one consists of
two branches, i.e., a local branch that handles the registration
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for the chunked subvolumes of the original input image pairs,
and a global branch that handles the registration of the down-
sampled volumes of the original input volumes.

Chunk branch. The input to the chunk branch is the subvol-
umes of the original image volumes. We use a chunking pro-
cess as shown in Fig. 3 to divide/chunk the original 3D source
and target volumes into a bunch of subvolumes. For instance,
if the original 3D source and target images, IS and IT , are of
size H×W ×D, then the chunk branch receives each input as k3

subvolumes with a resolution of H/k×W/k×D/k. In our exper-
iments, we set k = 2. The subvolume from the source image is
then concatenated with the corresponding one at the target im-
age to form the input pair of the chunk branch, which follows
the basic R2Net. This chunk branch is trained independently
until it converges.

Downsampled branch. The image pairs input to the down-
sampled branch are the downsampled volumes of the original
image pairs. Similarly, the downsampled volumes are of sizes
H/d ×W/d × D/d each, where d = 2 in our experiments. This
branch also takes the basic R2Net architecture and is trained
separately until convergence.

In this way, the local branch (chunk sub-volume learning)
and the global branch (downsampled volumes learning) are
trained separately. Both branches work on image pairs with re-
duced size, but the chunk branch maintains the original image
spacing (i.e., at the original resolution), while the downsam-
pled branch works on a lower resolution. Thanks to the reduced
image size, this training process converges faster with reduced
memory utilization. After training, for each image pair, we ob-
tain k3 initial velocity fields {vC} from the local branch, and one
initial velocity field vD from the global branch, which will be
used in the next phase of learning.
Phase Two: Integration at Original Scale. In this integra-
tion branch, we utilize the local details at the original resolution
from the chunk branch and the global context from the down-
sampled branch. In the second phase, the integration branch
takes the combination of the outputs from the two branches es-
timated in the first phase, resulting in the final output at the
original scale of the input image volumes.

Firstly, the multiple velocity fields {vC} from the chunk
branch are merged back to the original size, using the merg-
ing process as shown in Fig. 3. We keep some overlaps be-
tween chunks to reduce the discontinuity at the boundary of
each chunk. When merging back, we average the velocity fields
at these overlapping regions. As a result, we have the velocity
fields v1 that are of the same resolution as the original input
volume, with a size of H × W × D × p, p = 2 for 2D images
and p = 3 for 3D images. Similarly, the velocity fields from
the downsampled branch vD are upsampled back to the original
resolution, resulting in v2 with the same size of H ×W ×D× p.

Thus, v1 and v2 along with the original source and target im-
ages IS and IT become the inputs of the integration branch. We
concatenate the two velocity fields and pass them to a convolu-
tion layer, as shown in Fig. 2. The merged velocity fields are
then integrated using LC-ResNet blocks to generate the defor-
mation fields at the original resolution, which warp the original
source image to match the original target image. Since phase

two has no need of a U-Net-like network to estimate the initial
velocity, which saves a lot of GPU memory and makes it pos-
sible to integrate deformations at the original high resolutions.
As a result, we have multi-scale extensions for both SVF-R2Net
and NSVF-R2Net, which are abbreviated as MS-SVF-R2Net
and MS-NSVF-R2Net.

3. Experiments and Results

We evaluate our methods on the tasks of brain MRI inter-
subject registration, cardiac MRI intra-subject registration, and
thoracic CT intra-subject registration, using the following four
public datasets.

3.1. Datasets

ACDC. The Automated Cardiac Diagnosis Challenge (ACDC)
dataset at STACOM 2017 Bernard et al. (2018) has 150 patients,
each having their respective end-diastole (ED) and end-systole
(ES) phases. This dataset also contains segmentation for three
structures, namely, the left ventricular cavity, myocardium, and
the right ventricle. We perform the task of registering the ED
frames to the ES frames. To evaluate our methods, we divide
150 subjects of this dataset into sets of 108 for training, 12 for
validation, and 30 for testing. Each scan is resampled with a
spacing of 1.25×1.25×10 mm, the image intensity is normal-
ized to [0, 1] and then images are cropped to 176×176×16.
EMPIRE10. The EMPIRE10 challenge Murphy et al. (2011)
provides a lung dataset that contains 30 pairs of intra-patient
thoracic CT scans. Each pair belongs to a single subject. We
divide these 30 pairs, subject-wise, into two sets, 20 for training
and the rest 10 for testing. Due to the limited training samples,
we extend the training set to 200 pairs by random flips of the
image scans. Lung regions are cropped from the data with the
help of the provided lung masks, the image intensity is normal-
ized to [0, 1], and the volumes are resized to 192×192×192 with
a spacing of 1×1×1 mm.
OASIS 3D. We use the OASIS Brain MRI dataset (Marcus
et al., 2007; Hoopes et al., 2021), which contains T1-weighted
MRI scans for 414 subjects preprocessed with skull-stripping,
bias correction, registered and resampled into the freesurfer’s
Talairach space. After pre-processing, each 3D volume has di-
mensions of 160×192×224 with a spacing of 1.25×1.25×1.25
mm. We divide the 414 subjects into sets of 264, 50, and 100 as
our training, validation, and test sets, respectively. We then ran-
domly pair images in each set and choose 350 pairs for training,
50 for validation, and 100 for testing.
IBSR18. We use the IBSR18 dataset Valverde et al. (2015),
which is pre-processed with skull-stripping, bias correction,
registered, and positionally normalized into the Talairach ori-
entation. The MR brain data sets and their manual segmenta-
tions are provided by the Center for Morphometric Analysis at
Massachusetts General Hospital and are available online2. It
consists of T1-weighted scans for 18 subjects with dimensions

2http://www.cma.mgh.harvard.edu/ibsr/
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of 256 × 128 × 256, we crop and then pad each scan to the di-
mension of 224×224×224 with a voxel spacing of 1×1×1 mm.
Half of this size is the largest one that multi-scale VoxelMorph
can handle in our GPU. We divide the subjects into sets of 11,
5, and 3 as our training, test, and validation sets. We then ran-
domly pair images in each set to produce 110 pairs for training,
6 pairs for validation, and 20 pairs for testing.

3.2. Evaluation Metrics and Settings

Similarity. To evaluate the registration performance in terms
of image matching, we use two metrics, the root mean squared
error (RMSE) and the Dice score. The RMSE measures the in-
tensity difference between the deformed source image and the
target image, while the Dice score measures the structure differ-
ence using segmentation masks, i.e., computing the overlapping
between the deformed segmentation mask of the source image
and that of the target image.
Smoothness. To check the diffeomorphic property of our regis-
tration model and evaluate the smoothness of its estimated de-
formations, we compute the Jacobian determinants of the defor-
mation fields and measure the number of voxels with negative
Jacobian determinants. We report the absolute number of such
voxels, noted as γabs.
Computational Cost. To evaluate the effectiveness of our mod-
els, we measure the resource utilization and report the training
time, test time, and memory cost for all our experiments. All
the reported values for the time and memory costs are computed
by averaging the outputs of 10 runs.
Baselines. We compare our models with a classical registration
method, i.e., Symmetric Normalization (SyN) in the ANTsPy
package Avants et al. (2008) which is a top-performing classi-
cal image registration algorithm Klein et al. (2009). For SyN
settings, we use cross-correlation (CC) and Gaussian smooth-
ing with sigma values at each level of (9, 0.02, 0.02), with three
scales and 201 iterations, which are optimal for our tasks. An-
other baseline algorithm is VoxelMorph Dalca et al. (2018), the
one with the scaling and squaring approach as a differential
layer in the registration network. We use the default settings
of VoxelMorph as provided by their implementation3, except
for the heart dataset, where we follow the settings as given in
Krebs et al. (2019) and set σ = 0.05 and λ = 50000.
Other Settings. We implement our models in Keras with Ten-
sorflow as backend Abadi (2016). For all the experiments we
use the Adam Kingma and Ba (2014) optimizer with a learning
rate of 1 × e−4. All experiments are carried out on 3D datasets,
which are divided subject-wisely for evaluation. All the deep
learning based experiments are trained using a single NVIDIA
GeForce TITAN X GPU.

3.3. Experimental Results

Studying Ways of Velocity Estimation. In Fig. 1, we directly
use a U-Net output as the estimation of initial velocity fields.
Before reaching this final design, we explore other choices like
a variational Bayes approach proposed in Dalca et al. (2018);

3https://github.com/voxelmorph/voxelmorph

Krebs et al. (2018, 2019), which uses a probabilistic U-Net. We
compare the following six different ways to estimate the ini-
tial velocity fields, resulting in the non-probabilistic U-Net used
in our R2Net. This experiment is performed on NSVF-R2Net
and tested on the OASIS 3D dataset under the same settings.
The weights of all terms in the loss function are set to 1. All
networks are trained until convergence, with a maximum 200
number of epochs.

• NSVF-R2Net-Prob. This architecture follows a variational
Bayes approach and utilizes a probabilistic U-Net to gen-
erate the initial velocity field through a sampling layer as
used in Dalca et al. (2018). This architecture is the same
as introduced in our previous work Joshi and Hong (2021).
Similarly, we use a KL divergence loss on regularizing the
mean and variance of the sampled velocity fields to follow
a normal distribution. This KL loss helps obtain smooth
initial velocity fields.

• NSVF-R2Net-noKL. In this architecture, we remove the
velocity sampling layers from the NSVF-R2Net-Prob
model. Instead, we directly estimate the velocity fields
without using the KL loss. That is, this network has no
regularizer on velocity fields, and their smoothness is in-
directly enforced by our regularizer loss on the Jacobian
determinant of the deformation fields. Besides, similar to
NSVF-R2Net-Prob, we use the upsampling layers in the
U-Net architecture.

• NSVF-R2Net-Gauss. Based upon the above NSVF-R2Net-
noKL network, we introduce a Gaussian smoothing layer
after the output of the U-Net, in order to enforce smooth-
ness on the generated initial velocity fields.

• NSVF-R2Net-Multi. Along with the Gaussian smooth-
ing layer, we have an additional diffusion regularizer on
the spatial gradients of the initial velocity fields, given as∑

p∈Ω(||∇v(p)||22). That is, we apply multiple regularizers
on the initial velocity fields to enforce their smoothness.

• NSVF-R2Net-nonProb. In this architecture, we regress
back to the NSVF-R2Net-noKL version, but replace the
upsampling layers in the U-Net decoder with Conv3D
Transpose layers. We do not use any regularizer on the
velocity fields, but we assume the convolution layers have
the ability to smooth out them from coarse to fine by fol-
lowing the decoder.

• NSVF-R2Net-nonProb-Gauss. We further explore the ne-
cessity of adding additional regularizers on velocity fields.
Therefore, we add a Gaussian smoothing layer into NSVF-
R2Net-nonProb to smooth the initial velocity fields.

The experimental results are reported in Table 1. The com-
parison between NSVF-R2Net-Prob and NSVF-R2Net-noKL
shows that removing the KL loss would reduce the smooth-
ness of the velocity fields while increasing the accuracy of im-
age matching, as expected. A Gaussian smoothing layer would
help increase both matching accuracy and deformation smooth-
ness; however, the additional diffusion regularizer makes things
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Table 1. Top to bottom: ablation study for studying the estimation of velocity fields; results of all the compared algorithms across three popular datasets
namely ACDC, EMPIRE10, OASIS; and lastly the multiscale variants of the algorithms are evaluated on the IBSR18 dataset. For all methods, we measure
the Mean Square Error (MSE), Dice score across the available anatomical segmentations provided in the datasets, the number of the negative determinants
of the jacobian or foldings, and finally the time and memory costs for all methods. For the Dice score on both OASIS and IBSR datasets, statistical tests
demonstrate our NSVF-R2Net-nonProb is not significantly different from the top algorithms on these two datasets.

Experiment Algorithm MSE ↓ Dice ↑ Foldings γabs ↓ Time (ms) ↓ Memory (GB) ↓
NSVF-R2Net-Prob 2.68±0.00 0.61 3.55±11.6 838 8.5

Study on NSVF-R2Net-noKL 2.33±0.00 0.64 16.67±119.89 623 8.5
Velocity NSVF-R2Net-Gauss 2.32±0.00 0.65 14.81±117.48 645 8.5
Estimation NSVF-R2Net-Multi 2.55±0.00 0.62 34.35±28.42 817 8.5
(e−3) NSVF-R2Net-nonProb 2.66±0.00 0.63 2.72±4.05 624 8.5

NSVF-R2Net-nonProb-Gauss 3.05±0.00 0.60 15.28±131.43 635 8.5
SyN 2.76±1 0.69 0.00 7 min -
VM-Diff 3.45±1 0.68 0.00 40 0.883
SVF-R2Net-Prob 3.58±1 0.61 0.00 43 0.915

ACDC (e−3) NSVF-R2Net-Prob 3.49±1 0.61 0.00 43 0.915
SVF-R2Net-nonProb 3.50±1 0.71 0.00 36 0.915
NSVF-R2Net-nonProb 3.43±1 0.71 0.00 37 0.915
SyN 0.03±0.01 0.91 0.00 15 min -
VM-Diff 0.04±0.03 0.91 141.9±263.8 378 8.56
SVF-R2Net-Prob 0.08±0.03 0.78 0.00 876 8.59

EMPIRE10 NSVF-R2Net-Prob 0.03±0.01 0.93 0.00 872 8.59
SVF-R2Net-nonProb 0.03±0.01 0.90 0.00 645 8.59
NSVF-R2Net-nonProb 0.03±0.01 0.93 0.00 643 8.59
SyN 1.08±0.00 0.67 47.70±145.14 10 min -
VM-Diff 1.10±0.00 0.72 51.43±83.76 450 8.5
SVF-R2Net-Prob 1.54±0.0 0.69 28.41±17.56 840 8.5

OASIS(e−3) NSVF-R2Net-Prob 1.34±0.0 0.70 27.23±47.44 838 8.5
SVF-R2Net-nonProb 1.49±0.00 0.70 38.84±29.36 619 8.5
NSVF-R2Net-nonProb 1.33±0.00 0.71 33.53±22.04 624 8.5
SyN 1.97±0.00 0.61 0.00 17 min -

IBSR18(e−3) MS-VM-Diff 1.32±0.00 0.60 460.0±701.05 647 11.8
MS-SVF-R2Net-nonProb 1.58±0.00 0.58 81.85±80.98 1000 11.8
MS-NSVF-R2Net-nonProb 1.46±0.00 0.61 115.5±100.45 1000 11.8

worse. This is probably because the deformation field has a very
strong constraint of regularity in this case (Gaussian smoothing
plus diffusion regularizer plus the already enforced Lipschitz
continuity in the residual blocks of our architecture). As a re-
sult, it becomes difficult for the model to change the deforma-
tion fields far away from the identity map, causing slower con-
vergence and reduced image-matching accuracy. We observed
that NSVF-R2Net-nonProb provides the best balancing results
on the smoothness of the deformation fields, the accuracy of
image matching, and the inference time. The attempt on adding
a Gaussian smoothing layer into NSVF-R2Net-nonProb fails,
which has decreased registration accuracy and reduced smooth-
ness of deformation fields. This is because the excess regularity
constraints on the velocity fields lead to slower convergence and
worse image matching.

Overall, the results in Table 1 demonstrate that a variational
Bayes approach for estimating velocity fields is not necessary.
Due to its good balance between the image matching and defor-
mation smoothness of the NSVF-R2Net-nonProb, we use it to
estimate the initial velocity fields in our following experiments.
Evaluating Our Models on Three Datasets. We first evaluate
our method on the ACDC dataset Bernard et al. (2018). Table 1

shows that both of our architectures, SVF-R2Net-nonProb and
NSVF-R2Net-NonProb, improve registration accuracy in terms
of the Dice scores as compared to the baseline architectures.
We also observe from Fig. 4 that in the central heart region,
where the maximum deformation occurs, R2Net shows better
matching results, while VM-Diff suffers proper matching on the
boundaries of the heart region. All methods perform well in
producing diffeomorphic deformations with zero foldings.

The second experiment is performed on the EMPIRE10
dataset. Lung registration is a particularly challenging task with
both large and small deformations Hering et al. (2021) and it
is easy to get stuck in local minima Heinrich et al. (2013). It
can be seen from Table 1, that both our architectures SVF-
R2Net-nonProb and NSVF-R2Net-nonProb improve the reg-
istration performance of the baseline architectures in terms of
Dice scores. It should also be noted that for respiratory motion,
there are multiple intensity changes within the lungs because
of the lung tissue alterations caused by breathing Hering et al.
(2021), this will lead image matching to be sub-optimal even
for the baseline algorithms. However, from the image intensity
difference maps in Fig. 4, we can observe that while R2Net ar-
chitectures show a slight mismatch on the boundaries of the
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Image Pair SyN VM-Diff SVF-R2Net NSVF-R2Net
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Fig. 4. Registration comparison on cases showing large deformations among SyN, VM-Diff (VoxelMorph), and our models on three datasets, from top to
bottom, the ACDC heart MRI dataset, the Empire10 lung CT dataset, and the OASIS brain MRI dataset. The first column shows the input image source
(top) and target (bottom) image pair. Next, we show the deformed source image overlayed by the deformation map for all algorithms on the top row and
the image intensity difference maps between the deformed source and target image on the bottom row.
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Fig. 5. Multi-scale registration comparison among SyN, multiscale version MS-VM-Diff (VoxelMorph), and our multi-scale models on the IBSR18 dataset.
The first column shows the input image source (top) and target (bottom) image pair. Next, we show the deformed source image overlayed by the deformation
map for all algorithms on the top row and the image intensity difference maps between the deformed source and target image on the bottom row.

lungs, both SyN and VM-Diff produce a lot of background
noise, which makes the image intensity maps slightly red or
blue in the background, not in white as our R2Net architectures.
Also, all R2Net variants and SyN have no foldings in the defor-
mation fields; however, VM-Diff produces non-diffeomorphic
deformations while generating good image-matching results.

Another experiment is performed on the OASIS3D dataset.
As shown in Table 1, our architectures SVF-R2Net-nonProb
and NSVF-R2Net-nonProb slightly improve the registration ac-
curacy from the probabilistic ones, i.e., SVF-R2Net-Prob and
NSVF-R2Net-Prob, in terms of both MSE and Dice scores;
however, they also show an increase in the number of foldings.
Compared with VM-Diff, NSVF-R2Net-nonProb show compa-
rable Dice scores while with greatly reduced foldings. Qualita-
tive results have been shown in Fig. 4, where the image inten-
sity difference maps show that our models have better matching
with more white regions. Smoother deformation fields are also
seen in the visualizations of the generated red grids.

Evaluating MS-R2Net Variants on IBSR18 Dataset. To eval-
uate our multi-scale model, we choose the IBSR18 dataset,
which has the largest image volume size among our datasets.
We construct two multi-scale versions of our basic R2Net, i.e.,
MS-SVF-R2Net and MS-NSVF-R2Net. For comparison, we
choose SyN and a multi-scale extension VoxelMorph Dalca
et al. (2018); Krebs et al. (2018). In particular, we extend Vox-
elMorph with a U-Net that outputs velocity fields at three differ-
ent scales, i.e., the original scale and another two with a down-
sampling factor of 2 and 4, respectively. The integration of the
velocity fields, the deformation of the source image, and the
matching with the target image are performed on each scale.
Also, three KL divergence loss functions are applied at each
scale to ensure the smoothness of three velocity fields. We refer
to this multi-scale version of VoxelMorph as MS-VM-Diff in
our experimental results.

As reported in Table 1, our MS-NSVF-R2Net achieves
higher Dice scores compared to other methods and is compara-
ble to SyN. SyN achieves no foldings on this dataset, i.e., it pro-
vides completely diffeomorphic results. While both our vari-
ants give fewer foldings than MS-VM-Diff, MS-NSVF-R2Net
does better than MS-SVF-R2Net in producing better matching
results while slightly less smooth deformations. Overall, SyN
provides the best results, while needing a much longer time for
inference; when compared to MS-VM-Diff, our models pro-
duce both a higher Dice score and smoother deformations, with
slightly increased inference time in less than 0.4 seconds.

In Fig. 5, we can also see the qualitative results on an image
pair sampled from the IBSR18 dataset. It can be seen that the
intensity difference map is whiter for our method MS-NSVF-
R2Net-nonProb as compared to others. We can also see smooth
deformations generated from our MS-R2Net. Besides, Figure 6
shows the deformed images and their corresponding deforma-
tions for all image chunks and the downsampled image.

To assess the statistical equivalence of the top-performing al-
gorithms (SyN or VM-Diff) with our NSVF-R2Net-nonProb al-
gorithm for the OASIS and the IBSR18 datasets in the Dice
score, we perform the paired two one-sided t-tests (i.e., paired
TOST) Wellek (2002). In both cases, we observe that the dif-
ference was not statistically significant, and this test, therefore,
confirms that our model NSVF-R2Net-nonProb can be consid-
ered statistically equivalent to the top-performing algorithm.

Study of Computational Cost. We thoroughly study the com-
putational cost of the proposed architectures. In Table 1, our
models show comparable inference time and memory cost,
compared to VoxelMorph, which integrates velocity fields at
half scale. Specifically, in order to have a fair comparison, we
compare the SVF-R2Net and NSVF-R2Net architectures with
VoxelMorph, which performs full-scale integration of velocity
fields using the scaling and squaring method.
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Fig. 6. Deformed images and corresponding deformations ϕ for the chunk branch (the left four columns) and the downsampled branch (the rightmost
column) for an image pair sampled from the IBSR18 dataset, the same pair as shown in Fig. 5, which are generated by MS-SVF-R2Net (top two rows) and
MS-NSVF-R2Net (bottom two rows).

Table 2. Training Time (sec/iteration) and GPU Memory (GB) consumption for VM-Diff (diffeomorphic VoxelMorph, integrating at the original scale) and
our models. All experiments are carried out on one image pair, and the reported values are averaged over 10 runs on the OASIS 3D brain MRI dataset.

Data Size VM-Diff SVF-R2Net-Prob NSVF-R2Net-Prob SVF-R2Net-nonProb NSVF-R2Net-nonProb
n3 Time Memory Time Memory Time Memory Time Memory Time Memory
64 0.113 1.4 0.170 0.9 0.174 0.9 0.153 0.7 0.156 0.7
96 0.298 2.4 0.432 1.4 0.433 1.4 0.387 1.4 0.390 1.4
112 0.419 4.4 0.651 2.4 0.660 2.4 0.567 2.4 0.577 2.4
128 0.600 8.5 0.915 4.5 0.908 4.5 0.788 2.4 0.799 2.4
144 0.907 8.5 1 4.5 1 4.5 1 4.5 1 4.5
192 – – 3 8.5 3 8.5 2 8.5 2 8.5
224 – – 4 11.8 4 11.8 3 11.8 3.5 11.8

Table 2 shows the detailed study of the computational cost of
VM-Diff, SVF-R2Net-Prob, NSVF-R2Net-Prob, SVF-R2Net-
nonProb, and NSVF-R2Net-nonProb architectures. The public
implementation of VoxelMorph was modified, in that, the inte-
gration of the velocity fields was done on the original input sizes
instead of their default half size. It can be seen that our meth-
ods consistently need less memory compared to VM-Diff. Also,
VM-Diff cannot work with image sizes 1923 and higher. How-
ever, all four architectures of R2Net can handle these sizes. It is
also to be noted that both SVF-R2Net-Prob and NSVF-R2Net-
Prob took a little more time in seconds as compared to VM-Diff.
This is due to the more number of convolutional layers and
the KL-divergence loss in the loss functions. However, SVF-
R2Net-nonProb and NSVF-R2Net-nonProb further reduce the
time cost, taking just < 0.2 seconds more than VM-Diff for the
same input image size.

From this experiment, we can see that all R2Net variants can
handle higher resolutions of images and also scale up better,

compared to the baseline VM-Diff architecture. This also shows
the drawbacks of using scaling and squaring methodology for
integrating velocity fields. Considering that medical image vol-
ume resolutions are always on the rise, this gives motivation for
alternative approaches to be undertaken for the integration of
velocity fields such as the one introduced in our work.
Convergence Test for R2Nets. In this section, we test whether
our R2Net actually learns how to integrate the velocity fields
and generate deformations based on our designed LC-ResNet
blocks. That is, we want to evaluate if our LC-ResNet blocks
perform as a numerical integration scheme, like the scaling and
squaring algorithm to correctly integrate given velocity fields.

We use the following algorithm to determine whether an
SVF-R2Net has learned a meaningful model, given an unseen
test image pair, IS and IT , and a trained model Fθ. We choose
SVF-R2Net since it is also parameterized by stationary velocity
fields, similar to the scaling and squaring algorithm.

1. In the first step, evaluate a trained SVF-R2Net-nonProb,
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and obtain an integrated deformation field, for a given pair
of input images:

{v0, ϕ̂predicted} = Fθ(IS , IT ). (11)

We obtain an estimated initial velocity field v0 and the final
diffeomorphic deformation driven by this velocity field,
which is generated by integrating

∫ 1
0 vt(ϕt)dt using the LC-

ResNet blocks.
2. Next, using the same estimated initial velocity field v0, we

pass it through the scaling and squaring layers to obtain
the ground-truth integration, which is our expected diffeo-
morphic deformation ϕexpected:

ϕexpected = S S (v0), (12)

where SS denotes the scaling and squaring function.
3. In the last step, we compute the L2 error between the

R2Net predicted deformation and the true/expected one
given by the scaling and squaring algorithm:

Error(h) = ∥ϕ̂predicted − ϕexpected∥2. (13)

We use the OASIS 3D dataset to conduct our convergence test
since our biggest test sample of 100 images is available only
for this dataset. As expected, we obtain a score of 3.16e-5 as
the mean error and a standard deviation of 0.1e-5 on this. The
small standard deviation suggests that we almost get a constant
error on most of the predicted deformation fields as compared
to the expected ones. Therefore, our LC-ResNet blocks indeed
provide an integration of the velocity fields,

∫ 1
0 vt(ϕt)dt, as given

in Eq. 3 and the corollary shown in Eq. 7.

4. Discussion and Conclusion

In this paper, we have proposed an unsupervised deep diffeo-
morphic image registration framework, which has flexible pa-
rameterizations of deformations fields. Our architectures, SVF-
R2Net-nonProb and NSVF-R2Net-nonProb, are based on non-
probabilistic UNets for estimating the initial velocity fields,
but one for stationary velocity fields and the other for non-
stationary (time-varying) velocity fields. In both architec-
tures, we employ Lipschitz-continuous ResNets as numerical
schemes of differential equations. We have demonstrated the ef-
fectiveness of our approach on varied anatomies and modalities
of images for both inter and intra-subject registration tasks. We
have outperformed or shown comparable results to both classi-
cal and learning-based registration methods in terms of image
matching. We have also shown better deformation smoothness
and regularity than deep learning based algorithms, by show-
ing a consistently lower number of foldings, across all datasets,
which is necessary for the task of diffeomorphic image registra-
tion. We also perform a thorough study of the time and com-
putational costs of all R2Net variants. Our architectures have
been shown to perform image registration on evaluated datasets
in under a second while integrating velocity fields on the origi-
nal input size and taking the same amount of GPU memory.

We also extend our SVF-R2Net and NSVF-R2Net models
into multi-scale variants, namely, MS-SVF-R2Net and MS-
NSVF-R2Net. These architectures demonstrate the benefits of
fully utilizing the available resources without hampering the
resolution of the input images. Compared to traditional and
learning based methods, our approaches can offer diffeomor-
phic guarantees and model large deformations at the same time.
We have shown that we are able to fit a dataset of 224×224×224
entirely on a single TiTAN X GPU and the integration has
been performed on the original size, while other learning-based
methods like VoxelMorph can only handle integration on the
half-scale velocity fields.

Lastly, we also provide a convergence test in the form of
an algorithm to confirm that SVF-R2Net actually learns to in-
tegrate the velocity fields and generate diffeomorphic defor-
mations using our customized LC-ResNet blocks. Theoreti-
cally, this can also be shown for the NSVF-R2Net architecture.
However, we do not further investigate this aspect in the cur-
rent work, due to the lack of deep learning based registration
methods where the deformations are parameterized using time-
varying velocity fields.

Currently, we use a fixed number, i.e., seven, of integration
blocks to integrate the velocity fields in our architectures. This
setting works on all the datasets that we use in the evaluation,
and it also enables us a fair and direct comparison with Voxel-
Morph, which has seven steps for the scaling and squaring al-
gorithm Arsigny et al. (2006) in the integration layer. However,
in the future, we could learn this parameter during the training
process, so that we can have an adaptive number of time steps.

Our R2Net framework opens up possibilities for various ex-
tensions and applications. For example, in this work we only
consider uni-modal registration tasks; however, we can explore
the performance of our architectures with modifications in loss
functions to accommodate multi-modal image registration. We
could also include the label information of the various anatom-
ical regions using their segmentation masks within the training
phase as done by Hering et al. (2021); Hoffmann et al. (2021)
to improve the overall label-matching accuracy. In the future,
due to the similarity with the LDDMM architecture, this model
could also be applicable for other tasks such as metamorphic
image registration to model the deformation in the presence of
appearance changes, for example, to study brain development
or disease progression like tumor development.
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End-to-end unsupervised deformable image registration with a convolu-
tional neural network, in: Deep learning in medical image analysis and mul-
timodal learning for clinical decision support. Springer, pp. 204–212.

Weinan, E., 2017. A proposal on machine learning via dynamical systems.
Communications in Mathematics and Statistics 1, 1–11.

Wellek, S., 2002. Testing statistical hypotheses of equivalence. Chapman and
Hall/CRC.

Wu, Y., Jiahao, T.Z., Wang, J., Yushkevich, P.A., Hsieh, M.A., Gee, J.C., 2022.
Nodeo: A neural ordinary differential equation based optimization frame-
work for deformable image registration, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 20804–20813.

Xu, J., Chen, E.Z., Chen, X., Chen, T., Sun, S., 2021. Multi-scale neural odes
for 3d medical image registration, in: International Conference on Medical
Image Computing and Computer-Assisted Intervention, Springer. pp. 213–
223.

Yang, T., Tang, Q., Li, L., Bai, X., 2021. Non-rigid medical image registration
using multi-scale residual deep fully convolutional networks. Journal of
Instrumentation 16, P03005.

Yang, X., Kwitt, R., Styner, M., Niethammer, M., 2017. Quicksilver: Fast
predictive image registration–a deep learning approach. NeuroImage 158,
378–396.

Yeo, B.T., Sabuncu, M.R., Vercauteren, T., Holt, D.J., Amunts, K., Zilles,
K., Golland, P., Fischl, B., 2010. Learning task-optimal registration cost
functions for localizing cytoarchitecture and function in the cerebral cortex.
IEEE transactions on medical imaging 29, 1424–1441.

Yoshida, Y., Miyato, T., 2017. Spectral norm regularization for improving the
generalizability of deep learning. arXiv preprint arXiv:1705.10941 .

Younes, L., 2010. Shapes and diffeomorphisms. volume 171. Springer.
Zhang, M., Liao, R., Dalca, A.V., Turk, E.A., Luo, J., Grant, P.E., Golland, P.,

2017. Frequency diffeomorphisms for efficient image registration, in: Inter-
national conference on information processing in medical imaging, Springer.
pp. 559–570.


	Introduction
	Background
	Related Work
	Contribution

	Method
	ResNet Blocks with Lipschitz Continuity
	Basic Model: R2Net
	Loss functions
	Multi-Scale Variant: MS-R2Net

	Experiments and Results
	Datasets
	Evaluation Metrics and Settings
	Experimental Results

	Discussion and Conclusion

