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Abstract. Image segmentation using weak annotations like scribbles
has gained great attention, since such annotations are easier to ob-
tain compared to time-consuming and labor-intensive labeling at the
pixel/voxel level. However, scribbles lack structure information of the re-
gion of interest (ROI), thus existing scribble-based methods suffer from
poor boundary localization. Moreover, current methods are mostly de-
signed for 2D image segmentation, which do not fully leverage volumetric
information. In this paper, we propose a scribble-based volumetric image
segmentation, Scribble2D5, which tackles 3D anisotropic image segmen-
tation and improves boundary predictions. To achieve this, we augment
a 2.5D attention UNet with a proposed label propagation module to
extend semantic information from scribbles and a combination of static
and active boundary prediction to learn ROI’s boundaries and regularize
its shape. Extensive experiments on three public datasets demonstrate
Scribble2D5 significantly outperforms existing scribble-based methods
and approaches the performance of fully-supervised ones. Our code is
available at https://github.com/Qybc/Scribble2D5.

Keywords: Weakly-supervised Learning · Scribble Annotation · Volu-
metric Image Segmentation.

1 Introduction

Deep learning based methods have achieved impressive accuracy in many
medical segmentation tasks, especially in a fully-supervised manner [19,30]. How-
ever, such segmentation methods typically require a large amount of dense an-
notations for pixels or voxels to train a deep model. While dense annotations
sometimes are not easy to obtain in practice because annotating at the im-
age pixel-/voxel-level is time-consuming and needs medical expertise to provide
high-quality labels. On the other hand, fully-unsupervised segmentation meth-
ods [24,6] have shown promising results; however, their performance gap with
respect to fully-supervised approaches is too large to make them practical. There-
fore, weakly-supervised approaches by using weak annotations have gained great
attention to greatly reduce the workload of manual annotations while having
promising and comparable results compared to fully-supervised approaches.

Commonly-used weak annotations include image-level annotations [26,2],
bounding boxes [15,19], scribbles [11,20,7,21], and extreme points [13,17], etc.

https://github.com/Qybc/Scribble2D5
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Fig. 1. Our Scribble2D5 architecture for volumetric image segmentation: 1) pseudo
label propagation (gray box): generating pseudo 3D segmentation masks and pre-
computed boundaries; 2) static boundary prediction (green box): incorporating object
boundary information from the input image; 3) segmentation boosting (pink box):
further considering active boundaries via an active boundary loss. (Best view in color)

Compared to image-level and bounding box annotations, scribbles provide rough
positions of Region of Interests (ROIs) to allow a better location of ROI. Also,
scribbles are more flexible than bounding boxes and extreme points when an-
notating, especially for ROIs with irregular shapes. In addition, extreme point
annotations are more suitable for convex shapes and may not work well for
non-convex ones. Therefore, we choose scribbles as our weak annotations. How-
ever, scribbles are often sparse with no structure information of ROIs; as a
result, scribble-based methods have difficulty in accurately locating ROI bound-
aries [20]. Moreover, existing methods [11,23,28,21,12,29] are typically designed
for segmenting 2D image slices, which do not fully leverage the whole image
volume, with missing continuity between slices. Researchers attempt to alleviate
such issue by regularizing the volume size of segmentation outputs [10]. Another
solution [7] performs 3D segmentation with transfer learning, which learns with
dense annotations in the source domain and with scribbles in the target domain.

Inspired by two recent works [23,28], we propose a volumetric segmentation
network based on scribble annotations, called scribble2D5. As shown in Fig. 1,
we adopt a 2.5D attention UNet [19] to handle anisotropic medical volumes with
different voxel spacings, which is very common in practice like our datasets. To
amplify the influence of sparse scribbles and suit for volumetric segmentation,
we use a label propagation module based on supervoxels to generate 3D psuedo
masks from scribbles for supervision. To address the boundary localization issue,
we propose to learn both static and active boundaries via predicting edges in 3D
and optimizing an active boundary loss in 3D based on active contour model [5].
Different from existing solutions, our scribble2D5 tackles 3D anisotropic image
inputs directly, and needs scribbles only for training. At the inference stage,
segmentation operates automatically, with no need of scribble inputs.
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We evaluate our methods on three datasets, including ACDC dataset [4]
for cardiac segmentation, VS dataset [18] for tumor segmentation, and CHAOS
dataset [9] for abdominal organ segmentation. For both ACDC and CHAOS
datasets, our method outperforms the current state-of-the-art (SOTA) by large
margins on three different evaluation metrics; and on the VS dataset, our method
achieves better performance in Dice compared to SOTA. Our method reduces the
performance gap between weakly-supervised and fully-supervised approaches,
which makes it more practical to be used in the future.

Overall, our contributions in the paper are summarized as follows:
– We propose a scribble2D5 network for segmenting medical image volumes

with scribbles for training only. Our method is compared to five baselines
and significantly outperforms scribble-based methods on three datasets.

– We propose a label propagation module for 3D pseudo mask generation and
an active boundary loss to regularize 3D segmentation results. These modules
are general and could be used in other segmentation networks.

2 Scribble2D5: Scribbles-based Volumetric Segmentation

Figure 1 presents the framework of our Scribble2D5, a weakly-supervised
image segmentation network based on scribble annotations. Scribble2D5 has
a 2.5D attention UNet [19] as the backbone network, which is augmented by
three modules, i.e., a label propagation module for generating 3D pseudo masks
and boundaries, a static boundary prediction module for incorporating object
boundary information from images, and a segmentation boosting module for
further considering active boundaries via an active boundary loss.

2.1 3D Pseudo Label Generation via Label Propagation

Scribble annotations are often sparse, which cover a small amount of pixels
on each slice of an image volume. As a result, the supervision information from
scribbles is not strong enough to produce good guidance, like UNetPCE [20].
To address this issue, we propose to magnify the effects of scribble annotations
in 3D by leveraging supervoxels. That is, we adopt SLIC [1], which generates
supervoxels from images using an adaptive k-means clustering by considering
both image intensity and distance similarities. We collect the supervoxels that
scribbles pass through, resulting in 3D pseudo segmentation masks for ROIs.

Except for the pseudo mask we generate from the scribble annotations, we
generate the pseudo static boundary of ROI from an image volume by stacking
2D edges detected on each slice. This boundary is static since it is pre-computed
from the image and keeps unchanged during training, which is different from the
active boundary we will discuss later. To obtain 2D edges, we directly use an ex-
isting method, HED [25], which is pretrained on the generic edges of BSDS500 [3].
In this way, we have a Label Propagation Module (LPM) to generate 3D pseudo
labels from scribbles and images for ROI segmentation and pre-computed bound-
ary for static boundary prediction, respectively.
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2.2 Scribble2D5 Network

Backbone. The image volumes studied in the experiments have different voxel
spacings. Roughly, the in-plane resolution within a slice is about four times the
thickness of a slice. Since 2D CNNs ignore the important correlations among
slices and 3D CNNs typically handle isotropic image volumes, we choose a 2.5D
neural network that considers the anisotropic properties of an image volume. In
particular, we adopt an attention UNet2D5 [19] as our backbone network, which
augments UNet2D5 by adding a simple attention block at each deconvolutional
layer, as shown in Fig. 1. Specifically, at the top two layers of both encoder and
decoder branches, we have 2D convolutional operations; while at other layers, the
feature maps are isotropic, which are suitable for 3D convolutions. The attention
blocks are colored in purple in Fig. 1. Their attention maps are estimated via
two layers of convolutions, i.e., one with ReLU and the other with a Sigmoid
activation function. This 2.5D network suits for all images in our experiments.
Static Boundary Prediction Module (SBPM). This module encourages
the backbone network to extract image features with rich boundary structures
at different scales. Following [28], we collect feature maps from different layers
of the network decoder, and concatenate them at different resolutions right after
one convolutional layer with a filter of size 1× 1× 1. To fuse these features, we
feed them to a residual channel attention block (as shown by a green triangle
in Fig. 1) and a 1 × 1 × 1 convolutional layer to produce a boundary map b in
3D. Under the supervision of the previously generated 3D pseudo boundary B,
the network is trained with a cross-entropy loss: Lbry(b, B) = −

∑N
c=1 Bclog(bc).

Here, N is the total number of classes for segmenting in a dataset.
Segmentation Boosting Module (SBM). This module performs segmenta-
tion under the supervision of the pseudo mask generated with supervoxels and a
regularization on segmentation output. The module includes an initial segmen-
tation and a final one with further considering static and active boundaries. To
predict a preliminary mask, we employ a dense atrous spatial pyramid pooling
(DenseASPP) block [27] right after the bottom layer of the backbone network
in Fig. 1, which enlarges its receptive fields by utilizing different dilation rates.
In this block, the convolutional layers are connected in a dense way to cover a
larger scale range without significantly increase the model size.

To generate the initial segmentation mask M init, we adopt two additional 3D
convolutional layers followed by a 1× 1× 1 convolution, resulting in the initial
prediction supervised by the generated pseudo mask Mpseudo. Considering the
oversegment nature of supervoxels, one supervoxel may be selected by multiple
different classes. To avoid this confusion, we only consider those supervoxels
with a unique label, which are set as 1 in the mask Mvoxel with others being
zeros. We use the partial cross entropy to supervise the initial segmentation:
Lseg(M

init,Mpseudo,Mvoxel) = −
∑N

c=1 M
voxel
c · Mpseudo

c log(M init
c ). This loss

function allows early feedback to fasten the network convergence.
To refine the initial estimation and obtain a boundary-preserving mask for

a final prediction, we merge SBPM outputs with those from the initial mask
prediction for a refinement. These feature maps are fed to a residual channel
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Table 1. Quantitative comparison among baselines and our method for volumetric
segmentation on three datasets. Mean and standard deviation (subscript) are reported.
The upper bounds are colored in blue, and the best results by using scribbles are marked
in bold. †P is short for Point, indicating extreme points. such annotations are available
only in the VS dataset. ∗These numbers are taken from [8]. (Best viewed in color)

Approach

ACDC VS CHAOS

Dice
(%,↑)

HD95
(mm,↓)

Precision
(%,↑)

Dice
(%,↑)

HD95
(mm,↓)

Precision
(%,↑)

Dice
(%,↑)

HD95
(mm,↓)

Precision
(%,↑)

S
u
p
e
rv

is
io
n

T
y
p
e

S
c
ri
b
b
le

UNetPCE [20] 79.006 6.904 77.306 44.608 6.503 43.805 34.406 9.403 36.605

MAAG [21] 83.404 8.604 78.505 69.406 5.905 56.805 66.405 3.805 57.206

Ours w/o LPM 83.205 7.703 84.105 78.805 4.601 77.605 81.207 5.808 82.006

Ours w/o SBPM 85.605 4.604 85.504 80.605 7.103 81.604 84.605 5.505 83.105

Ours w/o ABL 88.704 5.108 86.005 81.003 4.801 80.105 85.604 4.805 81.302

Scribble2D5(ours) 90.603 2.305 84.705 82.607 4.704 81.506 86.004 2.902 88.203

P
†

InExtremeIS [8] - - - 81.9∗03 3.703
∗ 92.9∗02 - - -

M
a
sk 2D UNet [16] 93.005 3.515 90.207 80.403 7.304 81.203 82.304 3.301 81.705

2.5D UNet [19] 96.103 0.300 95.304 87.302 6.804 84.703 90.803 1.100 91.405

attention block, followed by a 1 × 1 × 1 convolutional layer to predict the final
mask Mfinal. Similarly, we use the partial cross-entropy loss to predict the final
mask under the supervision of the generated pseudo mask Mpseudo.
Active Boundary (AB) Loss. The pseudo masks are imperfect because super-
voxels are coarse segmentation masks of ROIs and have oversegment issues, re-
sulting in a potential of having many false positives. To mitigate this issue,
we propose regularizing the surface and volume of the 3D segmentation re-
gion by upgrading the active contour loss [5] to a 3D version. We apply an
AB loss as following: LAB = Surface + λ1 · VolumeIn + λ2 · VolumeOut, where
Surface =

∫
S
|∇u|ds and u is the prediction; VolumeIn =

∫
V
(c1 − v)

2
udx, c1

is the mean image intensity inside of interested regions V , and v is the input
image; VolumeOut =

∫
V̄
(c2 − v)

2
udx and c2 is the mean image intensity outside

of the region. These items are balanced by two hyper-parameters λ1 and λ2. In
the experiments, we set λ1 = 1 and λ2 = 0.1, to emphasis more on the inside
region of the volume. This new loss function considers the shape and intensity
of an image in 3D, which regularizes ROI’s shapes and reduces false positives.

The final loss function is Ltotal = β1Lbry(b, B)+Lseg(M
init,Mpseudo,Mvoxel)+

Lseg(M
final,Mpseudo,Mvoxel)+β2LAB . Here, β1 and β2 are weights for balanc-

ing loss terms, which are both set as 0.3.

3 Experiments

3.1 Datasets and Experimental Settings

ACDC Dataset [4]. This dataset consists of Cine MR images collected from
100 patients. Manual segmentation masks of the left and right ventricles and
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Image GT Scribbles OursUNet MAAGPCE 2D-UNet 2.5D-UNet

Fig. 2. Qualitative comparison among scribble-based (UNetPCE and MAAG), mask-
based (2D and 2.5D UNets), and our methods. (Best viewed in color)

myocardium are provided at the end-diastolic and end-systolic cardiac phases.
The slice size is 256× 208 with the pixel spacing varying from 1.37 to 1.68mm.
The number of slices is between 28 and 40, and the slice thickness is 5mm or
8mm. We subject-wisely divide the ACDC dataset into sets of 70%, 15% and
15% for training, validation, and test, respectively.

VS Dataset [18]. This dataset collects T2-weighted MRIs from 242 patients
with a single sporadic vestibular schwannoma (VS) tumor. The size of an image
slice is 384×384 or 448×448, with a pixel spacing of 0.5×0.5mm2. The number
of slices varies from 19 to 118, with a thickness of 1.5mm. The VS tumor masks
are manually annotated by neurosurgeons and physicists. The dataset is subject-
wisely split into 172 for training, 20 for validation, and 46 for test.

CHAOS Dataset [9]. This dataset has abdominal T1-weighted MR images
collected from 20 subjects and the corresponding segmentation masks for liver,
kidneys, and spleen. The image slice size is 256× 256 with a resolution of 1.36−
1.89mm (average 1.61mm). The number of slices is between 26 and 50 (average
36) with the slice thickness varying from 5.5 to 9mm (average 7.84 mm). We also
subject-wisely divide this dataset into sets of 70%, 15% and 15% for training,
validation, and test, respectively.

Scribble Generation and Other Settings. For the ACDC dataset, we use
the scribbles provided in [21], whch are manually drawn by experts at both
end-diastolic and end-systolic phases. For both VS and CHAOS datasets, fol-
lowing [14], we simulate scribbles by an iterative morphological erosion and clos-
ing of segmentation masks, which results in a one-pixel skeleton for each object.
Since the resulting background scribble is winding, we use ITK-Snap to annotate
background with 1-pixel width curves.

For all datasets, we randomly crop an image volume and obtain patches of
size 224×224×32 as the network inputs. An image volume is padded with zeros
if its size is smaller than the input size.
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We train all models for 200 epochs with early stopping. The weights of the
network are initialized by following a normal distribution with a mean of 0 and
variance of 0.01. We use Adam optimizer with a weight decay 10−7 and an initial
learning rate 1e-4. The whole training takes about 6 hours with a batch size of
4 on one NVIDIA GeForce RTX 3090 GPU.
Baselines and Evaluation Metrics. To demonstrate the effectiveness of our
methods, we select three groups of baselines, including fully-supervised meth-
ods (i.e., 2D UNet [16] and 2.5D UNet [19]), weakly-supervised methods using
scribbles (i.e., UNetPCE [20] and MAAG [21]) and a weakly-supervised method
using extreme points [8]. To evaluate the segmentation performance, we use the
Dice score to calculate the overlap between our segmentation and the ground
truth (GT), the 95th percentile of the Hausdorff Distance (HD95) to measure
the distance between our ROI boundary and GT, and the precision to check the
purity of the positively-segmented voxels.

3.2 Experimental Results

Table 1 presents our experimental results on three datasets with comparison
to five baselines. For all datasets, the upper bounds of the segmentation per-
formance are mainly provided by the 2.5D UNet, which are colored in blue in
Table 1. Compared to the scribble-based SOTA method on ACDC and CHAOS
datasets, i.e., MAAG [21], scribble2D5 improves the Dice score by 7% and 19.5%,
reduces the HD95 by 6.3mm and 1.8mm, and improves the precision by 6.2%
and 29.5%, respectively. In addition, our method outperforms the most recent
two methods, i.e., ScribbleSeg [12] and CycleMix [29], on ACDC Dataset, with
our 0.903 mean dice vs 0.872 in [12] (using the same 5-fold cross validation),
our 0.896 mean dice vs 0.848 in [29] (similarly, using 35 subjects for training).
Compared to the extreme-point-based SOTA method on the VS dataset, i.e.,
InExtremeIS [8], although our method has a lower precision and HD95 value,
it improves the Dice score by 0.7%. We do not report InExtremeIS’ results on
ACDC and CHAOS datasets because extreme points for these two datasets are
not available or easy to be generated.

Figure 2 demonstrates the sampled qualitative results of our method com-
pared to the baselines. Overall, we have fewer false positives compared to scribble-
based methods, i.e., UNetPCE and MAAG, and better boundary localization with
more accurate boundary prediction for each ROI. Regarding the comparison with
mask-based methods, our method sometimes generates even better masks than
2D UNet, while needs improvements at details compared to 2.5D UNet.
Ablation Study. To check the effectiveness of each module in our method,
we perform an ablation study with three variants: a) Ours w/o LPM: Scrib-
ble2D5 without the label propagation module (LPM); b) Ours w/o SBPM:
Scribble2D5 without the static boundary prediction model (SBPM), including
SBPM and active boundary loss; and c) Ours w/o ABL: Scribble2D5 with-
out the active boundary loss (ABL). Take the ACDC dataset as an example,
as shown in Table 1, without LPM but all others, the Dice score reduces from
90.4% to 80.6%. With LPM but without SBPM, the Dice score is 85.6%; then
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GT w/o LPM w/o SBPM w/o ABLBry. map Pred.

Fig. 3. Visualization of our intermediate and final results on image sampels from ACDC
dataset. The ground truth (GT) is colored in blue, like the blue region in the first
column and the blue contours in other images, while our predictions are colored in red.
Yellow arrows show the effect of the active boundary loss (ABL). (Best viewed in color)

the static boundary prediction module contributes an improvement of 3.1%, and
the active boundary loss contributes an additional improvement of 1.7% in Dice
score. Figure 3 visualizes two samples from the ACDC dataset with our interme-
diate and final prediction results. Without LPM, our method suffers from false
positives far away from the ROI; without SBPM, our method has oversegment
issues of the ROI; by adding the boundary map and active boundary regular-
ization, our method adjusts the prediction based on the image edge and texture
information, resulting the closest results compared to GT.

4 Conclusion and Discussion

In this paper, we proposed a weakly-supervised volumetric image segmen-
tation network, Scribble2D5, which significantly outperforms existing scribble-
based methods and reduces the performance gap between weakly-supervised and
full-supervised segmentation methods. One limitation of our method is that our
pseudo boundary labels are not purely 3D, which will be explored in the future.
Currently, we do not consider the case of missing scribble annotations on some
slices or further reducing the manual work via an adaptive annotation. One po-
tential solution for this is using the watershed techinque [22] in 3D. Also, We
observe that the shape and location of scribbles would affect the segmentation
accuracy, summarizing a way to make scribble annotations for different shapes
of ROIs will be useful in practice by providing some rules for users to make
annotations, which will benefit the segmentation and be left as the future work.

Acknowledgment. This work was supported by Shanghai Municipal Science
and Technology Major Project 2021SHZDZX0102.
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