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Abstract. In this paper we propose a new method for shape analysis
based on the depth-ordering of shapes. We use this depth-ordering to
non-parametrically define depth with respect to a normal control popu-
lation. This allows us to quantify differences with respect to “normality”.
We combine this approach with a permutation test allowing it to test for
localized shape differences. The method is evaluated on a synthetically
generated striatum dataset as well as on a real caudate dataset.

1 Introduction

Population-based shape analysis is of high importance to discriminate for ex-
ample normal subjects from subjects with a particular disease. Many methods
for shape analysis exist. They can be subdivided into global and local analysis
methods. Global analysis methods are designed to detect whether population
shape differences exist [5], but cannot generally locate where these shape dif-
ferences may be, which limits their ability to provide intuitive insights into the
underlying biological mechanism. The main attraction of such methods is that
they often avoid establishing dense correspondences between shapes through
registration. In contrast, while point-to-point correspondences between shapes
allow precise local shape analysis, establishing these correspondences is one of
the main sources of inaccuracy as any misregistration may create artifacts with
respect to the final shape analysis results. Nevertheless, a variety of methods
for local shape analysis have been proposed and successfully used [8,7,1]. In this
work, we explore an alternative method that allows for localized shape analysis,
but only needs very limited (e.g., rigid or affine) spatial alignment of shapes. Our
method uses a depth-ordering of shapes to allow to compare shape populations.

Our Main Contributions in This Paper Are:

1) We propose using depth-ordering on shapes for statistical shape analysis.
2) We develop an algorithm for the fast computation of band-depth for shapes

represented through binary indicator functions.
3) We define statistical tests to differentiate shape populations globally and

locally without an explicit computation of dense correspondences.
4) We demonstrate the method on synthetic and real datasets.

P. Golland et al. (Eds.): MICCAI 2014, Part III, LNCS 8675, pp. 17–24, 2014.
c© Springer International Publishing Switzerland 2014



18 Y. Hong et al.

Sec. 2 describes how to depth-order shapes and discusses how to compute such
a depth-ordering fast. Sec. 3 proposes statistical approaches using depth-ordering
for shape analysis. In Sec. 4, we present experimental results for synthetic and
real datasets. Sec. 5 concludes the paper with a summary.

2 Depth-Ordering of Shapes

A challenge in shape analysis is that there is no canonical ordering of shapes.
Here we leverage the work on ordering of functions from the statistics literature
and extend it to shapes [6]. Once defined the ordering can be used to generalize
traditional order statistics, such as the median or the inter-quartile range, to
shape ensembles. Recently, band-depth has been proposed as one possible way for
ordering functions [9]. Intuitively, the deeper a function is buried within a dataset
the more central it is. The deepest function corresponds to the within-sample
median function. Band-depth has been used to define a functional boxplot [9]. It
has also been extended to contour boxplots [11] defining band-depth on contours
for the visualization of ensemble data. What makes band-depth attractive for
shape-ordering is that shapes can be analyzed as functions if they are represented
by indicator functions, i.e., by binary functions that are 1 inside and 0 outside
of a shape [3]. Band-depth for binary shape representations relates to set unions
and intersections, and it is a natural functional representation of shape.

Given a set of shapes as binary functions, {y1, y2, ..., yn}, with dimension of
(sx, sy, sz), we vectorize them and obtain binary vectors yi ∈ {0, 1}p, where
p = sx × sy × sz. The band-depth for each shape y is defined as follows:

BD(j)
n (y) =

1

C

∑

1≤i1<i2<···<ij≤n

I{G(y) ⊆ B(yi1 , · · · , yij )}. (1)

Here, 1 ≤ j ≤ J , and J is the number of observations used for defining the band,
C is a normalization constant equal to the number of admissible permutations.
G(y) is the graph of the function, G(y) = {(x, y(x)) : x ∈ I}. B is the band
delimited by the observations given as its arguments. That is, B(yi1 , · · · , yij ) =
{(x, y(x)) : x ∈ I,minr=i1,··· ,ij yr(x) ≤ y(x) ≤ maxr=i1,··· ,ij yr(x)}. I{.} de-
notes the indicator function, which evaluates to 1 if the graph of the function is
within the band, or to 0, otherwise. Since the band depth on binary functions
may result in many ties for the resulting depth, it can be modified [9] to

MBD(j)
n (y) =

1

C

∑

1≤i1<i2<...<ij≤n

λm{A(y; yi1 , ..., yij )} (2)

where Aj(y) ≡ A(y; yi1 , ..., yij ) and Aj(y) ≡ {x ∈ I : minr=i1,...,ijyr(x) ≤
y(x) ≤ maxr=i1,...,ijyr(x)}, m is the observation’s dimension, λm(y) =
λ(Aj(y))/λ(I) and λ is the Lebesgue measure on R

m.
However, albeit its conceptual simplicity, one of the main limitations of the

band-depth computation is its computational complexity. Therefore, recently a
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fast method to compute band-depth has been proposed [10] which is based on
computing local curve ranks. However, the proposed algorithm is ill-suited for
binary shape representations as it does not consider ranking ties for the modified
band-depth (MBD) nor special cases where curves can change ordering without
affecting the rank of a specific curve. For binary representations ranking can be
avoided as at any point only two values are possible. The computation of MBD
can then be accomplished efficiently for J = 2. Our algorithm is as follows:

Step 0) Given n binary volumes, {yi}ni=1, vectorize them: yi ∈ {0, 1}p.
Step 1) At each location, k, for a given value v(k) ∈ {0, 1}, we count the number

of functions that have a value larger (na), smaller (nb) or equal (nt) to v:
• if v(k) = 0, then na =

∑n
i=1 yi(k), nb = 0, and nt = n− na − 1

• if v(k) = 1, then na = 0, nb =
∑n

i=1(1− yi(k)), and nt = n− nb − 1
Step 2) We then calculate the number of pairwise combinations containing v(k):

Ck(v(k)) = nanb + (na + nb)nt + nt(nt − 1)/2 + (na + nb + nt).

For binary functions na and nb cannot simultaneously be different from zero.
Furthermore, na + nb + nt = n− 1, which simplifies the expression to

Ck(v(k)) = (na + nb)nt + nt(nt − 1)/2 + n− 1.

Step 3) The modified band-depth for a curve yi is then

MBD(yi) =
1

p

(
n
2

)−1 p∑

k=1

Ck(yi(k)),

where the notation Ck(yi(k)) denotes computing Ck based on the coefficients
na, nb, nt given by the value of yi at location k.

In comparison to the original band-depth algorithm our computing complex-
ity is reduced from O(pn3) to O(pn). This makes the computation for large
populations and large multi-dimensional shapes (we will focus on 2D surfaces
in 3D here) possible. Furthermore, it enables us to perform permutation tests
based on band-depth computations as discussed in Sec. 3.

3 Statistics Using Depth-Ordering

Band-depth measures the relationship between a shape and a reference popula-
tion. A higher value indicates the shape is closer to the median, and a lower one
indicates the shape is a potential outlier with respect to the reference population.
Based on this property of band-depth we can perform global shape analysis as
described in Sec. 3.1 as well as local shape analysis as described in Sec. 3.2. For
all these analyses we assume that shapes have been pre-aligned as appropriate.
Typically this will either involve a rigid, similarity or affine alignment of shapes
to a template or some form of unbiased atlas-building method. The choice of
transform will depend on the objective of a given study. E.g., if size differences
should be included rigid alignment would be appropriate. The key ingredient
to performing statistics using depth-ordering is to compute depth-ordering with
respect to a reference population of shapes that are used as a non-parametric
model of shapes, with respect to which depth is measured.
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3.1 Global Shape Analysis
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(a) w.r.t. ref. (b) without ref.

Fig. 1. Global shape analysis using band-depth with
(a) and without (b) a reference population. A refer-
ence population allows detection of shape differences.

Given a dataset {Ri} con-
taining a reference popula-
tion of shapes, we compute
the band-depth for a given
datum D, from a set of input
test shapes {Dj}, by com-
puting the band-depth for all
the data in {Ri}

⋃
D and

assign the resulting band-
depth for D to D, denoted
as BD(D; {Ri}). This is sub-
stantially different from di-
rectly computing the band-depths for the dataset {Dj}. In the proposed method
the reference population forms a “yard-stick” by which to judge data-depth. In
the latter case data-depth is defined with respect to the dataset itself which
is problematic as band-depth does not have a sense of directionality, but only
a sense of how close a data-element is to the deepest data-element. For differ-
ent populations which should be discriminated this consequentially leads to a
data-mingling which no longer allows for a discrimination of the populations. To
illustrate this effect Fig.1 shows results for the two approaches for the synthetic
striatum data described in detail in Sec. 4.1. The proposed approach can clearly
differentiate the populations whereas a joint computation of the band-depth is
not successful.

3.2 Local Shape Analysis

The local analysis is based on the the central regions of the reference population.
By gradually adding the deepest shapes according to their band-depth, one can
assign α values, the proportion of the added reference shapes, describing the
“centrality” of a shape population at each point in the domain. A test shape can
be overlaid on this centrality map and the corresponding α values recorded on its
surface, thus providing a local measure of shape abnormality. Fig. 2 illustrates
this concept for a population of two-dimensional shapes. Given the reference
shapes shown in Fig. 2(a), we compute their α-central level sets based on the
band-depth. As shown in Fig. 2(b), the deepest shape has the lowest α value
(light blue) and the most outlying shape has the highest α value (dark blue).
A local measure of “belonging” to the population can then be computed for a
test shape by tracing the α-central region it traverses as shown in Fig. 2(c).
Note that some regions of the shape may not be covered by the reference shape
population, so we use a dilation procedure starting from the boundary of α = 1
central region, evolving at a constant speed until all voxels of the volume are
covered, e.g., the regions colored with the darkest blue in Fig. 2(c).
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(a) Reference and test shapes (b) α-central region levelsets (c) Local measure of shape

Fig. 2. (a) Reference shape population (blue contours) defines (b) α-central level sets
(light to dark blue corresponds to most to least central) that provides a local measure
(c) of how deeply a shape (red) is buried with respect to the reference population. The
dilated region is colored with the darkest blue and has a value greater than 1.

4 Experimental Results

4.1 Synthetic Data Experiments

Using synthetic data allows us to introduce a predefined shape change which we
wish to recover using our proposed approach. We used the technique described
in [2] to generate large data sets of realistic shapes with known deformations.
In short, a manifold learning technique is used to generate arbitrarily many
shapes from a small training sample. A joint clustering algorithm is then ap-
plied to parcellate each shape’s surface into small regions which are consistently
located across all shapes. Finally, a Log-Euclidean framework is used to introduce
smooth, invertible and anatomically realistic deformations to one or multiple re-
gions as defined by the clustering. For this application, we generated 160 shapes
based on 27 manually traced striatums. We then modified 80 of them by thick-
ening the putamen. We evenly divide 80 normal controls into two groups. One is
used for the reference group (NC-Train), and the other is for testing (NC-Test).
In the 80 abnormal subjects, we randomly pick 40 of them for testing.

Global Analysis. To test for group separability, we performed a permutation
test (10000 permutations) on the mean depth of the NC-Test versus the abnormal
group. When using the NC-Train to compute band depth, the resulting p-value
is 0, indicating the normal controls and the disease subjects are significantly
different. On the other hand, as shown in Fig. 1, when pooling all shapes together
to compute their band depths, no significant difference is detected.

Local Analysis. We used the NC-Train group to estimate the set of α central
regions of a “normal” population and tested the median shapes of the NC-
Test and abnormal population against it as shown in Fig. 3(a). In addition, to
displaying α values, we performed a non parametric statistical analysis, based on
a permutation test procedure. A template median shape is first computed, then
α regions are computed for each group and differences in α values are recorded at
each point of the template. 10000 permutations are performed and we count the
number of α values that are larger than the one computed with no permutation.
The p-values are shown in Fig. 3(b). Fig. 3(c) reveals the false discovery rate
(FDR) of p-values.
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4.2 Real Data Experiments

(a) Local measure with α value

(b) Raw p-values with 10000 permutations

(c) FDR of p-values

Fig. 3. Local analysis on synthetic striatum with α
values (a) on normal (left) and abnormal (right) me-
dian shapes, and corresponding p-values (b), as well
as the FDR of p-values (c)

Magnetic Resonance Images
(MRI) of the brains of 28
neuroleptic-näıve female sub-
jects diagnosed with Schizo-
typal Personality Disorder
(SPD) and of 25 female nor-
mal control subjects were ac-
quired on a 1.5-T General
Electric MR scanner. Spoiled-
gradient recalled acquisition
(SPGR) images (voxel dimen-
sions 0.9375 0.9375 1.5
mm) were obtained coro-
nally. The caudate nucleus
was delineated manually by
an expert. This data set
was used in previous vol-
umetric and shape analy-
sis studies [4]. All the cau-
date shapes are pre-aligned
using rigid transformation.

Global Analysis. Unlike our
synthetic data experiment, we
do not have enough controls
to have non overlapping train-
ing and testing data sets. We
thus use a leave-one-out method to compute the depth for normal controls, and
use the whole control group as the reference to compute the depth for the SPD
group. Fig. 4 demonstrates the global differences between normal controls and
SPDs, for both left and right caudate. We also use 10000 permutation tests to
measure the significant difference of depth for both normal controls and SPD
group, resulting in p-values, 0.48 for the left caudate and 0.21 for the right cau-
date. This indicates based on the global depth-based analysis, both left and right
caudates are not significantly different in the SPD and the NC populations.
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(a) Left caudate (b) Right caudate

Fig. 4. Band-depth for left and right caudate

Local Analysis. For the lo-
cal shape analysis, we com-
pute the local α values for
the median shape of the SPD
group, by using the normal
control group as the refer-
ence shape population. Sim-
ilar to the permutation test
for the synthetic data, the
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(a) left lateral, p-value (b) left medial, p-value

(c) right lateral, p-value (d) right medial, p-value

Fig. 5. Local p-values. Left caudate SPD median with respect to NC (top), right cau-
date SPD median with respect to NC (bottom).

p-values with 10000 permutations are shown in Fig. 5. Our method can cap-
ture the abnormal region, but based on the local p-values only relatively small
regions of the SPD group seem to be significantly different from normal controls.

5 Discussion and Conclusion

In this paper we presented a shape analysis framework that can provide both
global and local information, yet does not require complex processes to estab-
lish point-to-point correspondences. Instead we use the notion of band-depth of
functions to order shapes according to how well they “fit in” a shape ensemble.
This method allows for the definition of a median and α-central regions of a
population, which can then be used to compare different population of shapes.

Different from [3], which focuses on augmenting a population atlas with sta-
tistical information using weighted band depth, we proposed a fast algorithm
to compute the band-depth of shapes represented by binary maps, and most
importantly showed how band depth can be used to provide both global and
local statistical tests to differentiate between populations. In contrast to other
deformation based tools for shape analysis, our approach is non-parametric and
naturally captures the probability of a shape belonging to a population. Al-
though it does not provide physical measurements of displacement, these can be
computed by deformation or a distance transform to the population median.

Our method was successfully tested with synthetic data, where we were able
to clearly separate groups and localize an artificially induced shape change. In
addition, our real data experiment supports previous results on shape differences
in the caudate of females with SPD, namely, a right sided shape difference in
the body of the caudate.
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