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Abstract. Geodesic regression generalizes linear regression to general
Riemannian manifolds. Applied to images, it allows for a compact ap-
proximation of an image time-series through an initial image and an ini-
tial momentum. Geodesic regression requires the definition of a squared
residual (squared distance) between the regression geodesic and the mea-
surement images. In principle, this squared distance should also be de-
fined through a geodesic connecting an image on the regression geodesic
to its respective measurement. However, in practice only standard regis-
tration distances (such as sum of squared distances) are used, to reduce
computation time. This paper describes a simplified geodesic regression
method which approximates the registration-based distances with re-
spect to a fixed initial image. This results in dramatically simplified
computations. In particular, the method becomes straightforward to im-
plement using readily available large displacement diffeomorphic metric
mapping (LDDMM) shooting algorithms and decouples the problem into
pairwise image registrations allowing parallel computations. We evaluate
the approach using 2D synthetic images and real 3D brain images.
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1 Introduction

The increasing availability of longitudinal image time-series to study aging pro-
cesses, brain development, or disease progression requires image analysis meth-
ods, and in particular image registration methods, customized for longitudinal
data. A standard approach is to directly extend methods devised for pair-wise
image registration to image time-series. In the case of LDDMM registration [1]
a spatio-temporal velocity field is estimated over the full time-duration of the
available measurements, with image similarity terms at the measurement time-
points. This results in a piece-wise geodesic interpolation path [2,3] with jumps
of the velocity field caused by the measurements.

To avoid these jumps, two directions have been pursued: (i) spline(-like)
interpolations or general temporal smoothness terms (primarily for shapes) [4,5]
or methods based on kernel regression [6] and (ii) approximations of time-series
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through geodesic regression [7,8]. While the former models are more flexible,
geodesic regression directly yields a simple generative model which compactly
parameterizes a full spatio-temporal trajectory using only an initial image and
an initial momentum.

Geodesic regression seeks to minimize the sum of squared distances of the
measurements to the regression geodesic. Closed-form solutions are generally
not available. However, for some spaces analytical expressions for the “forces”
exerted by the measurements on the regression geodesic (the equivalent to the
model residuals for linear regression) can be computed [8]. Unfortunately, this
is not the case when working with diffeomorphisms for image-valued geodesic
regression [7]. Here, the squared distances can either be defined by registrations
themselves, which is computationally expensive, or by using standard similarity
measures for image registration (such as sum of squared intensity differences)
assuming that all measurements are close to the regression geodesic.

This paper proposes an approximation to image-valued geodesic regression [7]
with registration-based distances using a distance approximation for image-to-
image registration proposed in [9]. This approximation allows for the computa-
tion of the regression geodesic (for a fixed initial image) by a weighted average of
the initial momenta obtained by registering the initial image with the measure-
ment images pairwise. Hence, standard shooting-based LDDMM implementa-
tion methods can be used for the computation of the regression geodesic and its
computation decouples into pairwise registrations (see Fig. 1 for an illustration)
which can be solved in parallel.

We motivate the weighting of the initial momenta for the image-valued case
by illustrating the concept for linear regression in Sec. 2. Sec. 3 describes the
image-valued case. To demonstrate the effectiveness of our scheme, we apply it
to both synthetic and real image time-series in Sec. 4. We conclude and discuss
future work in Sec. 5.
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Fig. 1. Simple geodesic regression: the regression geodesic (bold) is determined by
pairwise registrations between the base image, I (o), and the measurement images, Y;.
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2 Linear Regression (w/ fixed base-point) Reformulated

Given a set of N measurements {y;} at time instants {¢;} we want to find the
slope, a, and the y-intercept, b, of the best fitting line y = at + b in a least
squares sense. We assume that one point on this line is known'. Without loss of
generality, we assume this point to be at the origin. Hence, we want to minimize

N
1 > i Vit
E(a)=§ E (ati —y:)? = a= 0
i=1 Zz i

Assume that instead of fitting one line to all the measurements, we fit lines
from the origin to all the measurement points individually. This amounts to
independently minimizing

(1)

1 Yi
El(al) = §(aiti — yi)2 = a; = t_ (2)

Since y; = a;t;, we obtain upon substitution in (1)

>t p 2t i

Hence, the slope of the regression line can be computed as a weighted average
of the slopes of the individual lines. What remains to be shown is that a similar
averaging procedure can be used for the image-valued case.

3 Simple Geodesic Regression

Geodesic regression for image time-series generalizes linear regression to the
space of images [7]. It uses a shooting formulation to LDDMM registration [11]
and is based on the minimization of

B(I(t0) 1)) = 5 (p(t0) VT(t0), K (p(t0) V1(10))) + 3 wid?(1(1), ), (4)
s.t. I +VITv =0, p; +div(pv) =0, v+ K(pVI) =0, (5)

where I(tg) and p(tg) are the unknown initial image and the unknown initial
Hamiltonian momentum respectively, K is a chosen smoothing kernel, w; > 0
scalar weights and Y; is the measured image at time t;; d?(A, B) denotes a
squared distance(-like) image similarity measure between the two images A and
B and can be one of the standard image similarity measures or can be based
on image registration itself to allow for large deviations between the geodesic
regression line and the Y; [7]. A numerical scheme using registration-based dis-
tances can be derived, but is impractical, because it would require frequent

! This is a simplifying assumption akin to formulating a growth model with respect
to an initial image.
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costly recomputations of the distances in an iterative solution scheme. Hence,
an approximation of the registration-based distance is desirable. We define the
squared distance [1] as

1 1
d? (A,B) = 5/0 |lv*||3 dt, where (6)

1! 1
v* = argmin 5/ [vl|7 dt+ ﬁ”l(l) — B3, st. I + VITv =0, I(0) = A.
v 0

This is an inexact matching formulation since an exact matching is typically im-
possible by a spatial transformation alone due to noise and appearance changes?.

To simplify the geodesic regression formulation (4) we use a first order ap-
proximation of pairwise distances [9]. In contrast to [9], the time-series aspect
of the images has to be considered. For all pairwise distances, I(tp) becomes the

A

base image. For two images A, B and given spatial transformations @,° and

B B A
@,° which map I(tp) to A and B in time ¢, the composition &; = ¢,° o (¥;° )~}
maps A to B. Since both transformations are parameterized by initial velocity
fields v and vl respectively, we approximate ®; to first order as

P, = Expld(tvgg) o Expld(—tv(;‘) ~ Expiq (t(vf — U(f)). (7)
Then the squared distance can be approximated as
1
dQ(AvB)Q‘ §t2<K71(U(]J3_U64)7U0B_U64> (8)
or in momentum form

P (A, B) ~ 51%((plto)” — plto))V1(10), K ((p(to) ~ plto) )V I(10).  (9)

Using this approximation to rewrite the geodesic regression formulation (4) yields

E(I(to), p(to)) = %@(to)vﬂto),K(p(to)VI(to)»
+ Zwi%(ti —t0)X((p(to) ™ = p(t0))VI(to), K ((p(to)"* — p(t0))VI(to)). (10)

We assume that I(tg) is on the geodesic®. All p(t)¥? are precomputed by pairwise
registrations with I(¢g). The approximated energy only depends on the initial
momentum p(tg). Taking the variation of (10) with respect to p(to) results in

SE(I(to), p(to); 6p) = (VI(to)" Kml(to), 5p)
+ ) wilts — to)*(VI(to) K (mi(te) — m(to)), —0p), (11)

2 A metamorphosis approach [10] could be used instead.

3 Otherwise registrations between I(to) and all other images would be required when
I(to) changes, providing no benefit over the original geodesic regression method.
This is a simplifying assumption, which transforms the model into a type of growth
model described by a geodesic.
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where K is assumed to be a symmetric kernel, m(to) = p(to)VI(to) and m;(to) =
p(to)¥iVI(to). Collecting terms yields

SE(I(to), p(to); 5p) = (VI(to)" K[m(to) + > _ wi(t: — to)*(m(te) — mi(to))], op)-
(12)
For a candidate minimizer § E' needs to vanish for any admissible dp. Hence,

m(to) + > wilt; — to)*(m(to) — mi(to)) =0 (13)
or in momentum space

plto) + Y wilti —to)*(p(to) — p(to)**) = 0. (14)
Solving for p(to) results in

wi(ti — to)*p(to)™
p(to) = %+%wiz) fiio))z . (15)

In practice most frequently, w; = w = const and w >> 1 simplifying (15) to

~ 2t —to)*p(to)™
p(to) = Z(tio— to)zo ’

(16)

2
which is a simple averaging of the initial momenta with weights g; = %

This formulation recovers the original image-to-image registration result for the
special case of two images. To obtain the initial momenta p(tg)¥? which are
needed to approximate the registration distance at time ¢; one could modify the
registration problem (6) by integrating between ¢y and ¢; and solve it with the
algorithm proposed in [1]. However, such an approach would suffer from two
short-comings: (i) it would not guarantee geodesic solutions and (ii) the relative
weighting of the image similarity measure would be influenced by the different
time-periods used to perform the deformations (since ||v||% is integrated over
time, the same deformation becomes cheaper for a longer time interval). We
therefore use (i) a shooting method [11] to compute the registrations and (ii)
compute P(tg)Y* by registering I(¢g) to Y; in unit time followed by a rescaling of
the momentum to account for the original time duration: p(tg)Y: = tiitoﬁ(to)yﬁ
Using the momenta computed for a unit time, the initial momentum for the
regression geodesic can be written as

2 (ti = to)p(to) ™

(17)

Given the base image I(tg) and p(tp), we can integrate Eq. (5) forward or back-
ward in time to obtain the regression geodesic. Our approximate geodesic regres-
sion results in a dramatic simplification of the optimization method for geodesic
regression. Pairwise registrations can be computed in parallel if desired.
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4 Experiments

Implementation In the following experiments, the smoothing kernel K is set
as the weighted sum of N Gaussian kernels K, [12]: K(x) = Zﬁ[:l cnKy, (),
en = ¢, /9(K,,, Is, IT). Usually we set ¢, = 1. We first compute c¢,, for image
pairs (following [12]) and then take the average of all the ¢, as the weights for
the kernels. All images are slightly blurred before registration.
Synthetic Images In the first experi-
ment, we synthesized the movement of a
bull’s eye using a series of 2D binary images
(32 x 32 pixels, spacing 0.04) as shown in
Fig. (2). The white circle inside of the eye
grows at a constant speed while the outside
white loop shrinks. We used four images
at time instants 0, 10, 20, 30s, I(0) as the
base image, and 7 Gaussian kernels for K,
{K0.57 Ko.4, K0.37K0.27K0.157K0.17K0.05}; Fig. 2. Synthetic bull’s eye experi-
02 = 0.01. The simple geodesic regression ment (top row) and results for sim-
result (2nd row of Fig. (2)) shows that ple geodesic regression (bottom row).
changes are captured well. The movement is well captured.

To quantify the regression accuracy we
compute the overlay error between mea-
surement images and the images on the geodesic:

Eovertay(I(ti), Yi) = |_;2|||5(I(ti)a Yller, e, J)(x) = [I(x) — J(x)]. (18)

Tab. 1 shows the overlay

errors between the initial

FEovertay (I(t;),Y:) image and all other mea-
Measurement Images Yol 11 Y, Y, surements, the results of
Image pairs(I(t;) = Yo, Y;) | 00.0820[0.1914[0.3242 the original geodesic re-
OGR (fixed initial image: Yp)| 0 |0.0247[0.0306]0.0311 gression (OGR) and of
0

SGR (base image: ) 0.0274]0.0329]0.0261 the simple geodesic re-
gression (SGR) regression

Table 1. Comparison of overlay errors among image respectively. The regres-

pairs, the original geodesic regression, and our simple sion models are compara-

geodesic regression. ble in accuracy indicating
that SGR works correctly
in this experiment.

To illustrate the necessity of using a registration-based distance rather than
the squared L2 distance of two images, two test cases in Fig. 3 are employed for
comparing the results of the original geodesic regression and our method. In the
cases, five binary images (64 x 64 pixels, spacing 0.02) are generated to describe a
square moving from left to right at uniform speed without oscillation (subfigure
(a)) and with strong vertical oscillation by a constant amplitude (subfigure (b)).
Here, K is {K1, Ko.75, Ko.5, Ko.4, Ko.3, Ko.2, Ko.15, Ko.1}-




Fig. 3. Square moving from left to right without oscillation (a) and with vertical oscil-
lation (b). Top: original images. Middle: the results of the original geodesic regression.
Bottom: the results of our method.

When there is no oscillation in the movement
(Fig. 3(a)), the original geodesic regression has +Regression e
comparable performance to our method. In case 3 . .
(b), similar to the regression lines for the scalar Sr e
case (Fig. 4), the square is expected to move to €2
the right while moving down slightly, which is o T 1
consistent with the SGR result (bottom row of
subfigure (b)). However, the square in the orig-
inal geodesic regression (using the L? distance) Fig. 4. Scalar experiment.
leads to a stronger shape deformation and devia-
tion from the horizontal line.

Fig. 5 compares the proposed weighting of initial momenta for SGR (Eq. (16))
to a direct arithmetic average for a set of 3 images (64 x 64 pixels; spacing 0.02)
at time points 0, 10, 40s respectively. The images at 10s and 40s are displaced by
an equal distance vertically with respect to the image at Os, but the horizontal

displacements differ by a factor of 3. We chose the same multi-Gaussian kernel
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(a)
Fig. 5. Scalar and image-valued cases comparing arithmetic averaging and the pro-
posed weighting approach for initial momenta. (a) Scalar case. (b) Image case: image
time-series (0, 10, 40s) (top), the initial momentum and the images generated by simply
averaging the initial momenta (middle) and by our weighting method (bottom).
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as in the first experiment. The SGR, weighting is clearly more appropriate.
Real Images We also evaluated SGR on two sets of longitudinal magnetic
resonance images: 2D slices of a longitudinal dataset from the OASIS database
and a 3D longitudinal dataset from a macaque monkey. One K, {K3,, K1 5,
Kos, Ko, Ko3, Ko.2, Ko.1, Ko.os}, was applied to all the real images*.

(b) ()

Fig.6. OASIS data: (a): Original images (top, left to right: 67, 68, 71, 73 [years]),
geodesic I with youngest slice as base image (middle), and geodesic 1T with oldest slice
as base image (bottom). (b): Difference images of measurement images (up to down:
68, 71, 73 [years]) with youngest image (left) and images on geodesic I (right). (c):
Difference images of measurement images (up to down: 71, 68, 67 [years]) with oldest
image (left) and images on the geodesic II (right).

The four images in the first row of Fig. 6(a) are slices from an OASIS data set
(161 x 128 pixels, spacing 0.5) for a subject scanned at age 67, 68, 71, and 73. We
applied SGR with the youngest slice as the base image. The changes between the
base image and other measurements are subtle, as illustrated by the difference
images in the left column of Fig. 6(b) and the overlay errors in the first row of
Tab. 2. However, our method successfully captures the variations in the brain
images, especially the ventricle expansion, which is supported by the generated
images (Fig. 6(a), 2nd row) and the difference images (right column Fig. 6(b)).
We also took the oldest slice as the base image to verify the efficiency of our
model. As shown by the generated trajectory (Fig. 6(a), 3rd row), the difference
images (Fig. 6(c)), and overlay errors in Tab. 2, our method works well.

The images (150 x 125 x 100 pixels with spacing 0.5468) in Fig. 7 are from a
longitudinal data-set of a macaque monkey at the age of 3, 6, 12 and 18 months
respectively®. We set the image at 3 months as the base image and applied

4 Slightly better results may be achievable by data-set-dependent tuning of the kernel.

5 Note that this is a time-range of active brain myelination for the macaque. Hence
image intensities for the white matter are not constant over time and therefore a
perfect image match is not expected.
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our approach to capture the changes of the ventricle marked by the magenta
windows. As the monkey’s age increases, the ventricle gradually approaches the
edges of the windows, which is well captured by SGR.

Eoverlay I(tz)a Y;)
Measurement Images [Years] |Yy = 67|Y; = 68|Yy = 71|Y5 = 73
Image pairs (I(t;) = Yo, Ys) 0 0.0468 | 0.0342 | 0.0472
OGR (fixed initial image: Yp)| 0 0.0452 | 0.0298 | 0.0313
SGR (base image: Yp) 0 0.0449 | 0.0304 | 0.0286
Measurement Images [Years] |Yy = 73|Y; = 71|Y; = 68|Y; = 67
Image pairs (I(t;) = Yo, Y:) 0 0.0536 | 0.0631 | 0.0472
OGR (fixed initial image: Yp)| 0 0.0448 | 0.0457 | 0.0284
SGR (base image: Yp) 0 0.0438 | 0.0432 | 0.0258

Table 2. Overlay error among image pairs, the original geodesic regression (OGR),
and our simple geodesic regression (SGR) for longitudinal subject data shown in Fig. 6.

Fig. 7. Results for the macaque monkey data (up to down: 3, 6, 12, 18 [months], the
youngest one as base image). (a-c): axial, coronal and sagittal slices of the original
images (left) and images on the geodesic (right). (d-f): difference images of the oldest
image with the youngest one (left) and with the images on the geodesic (right).
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5 Discussion and Conclusions

We developed a simplified geodesic regression model by approximating the squared
distances between the regression geodesic and the measurement images. In con-
trast to the original geodesic regression formulation for images, SGR can be
efficiently computed. In fact, it only requires pair-wise registrations of the mea-
surement images with respect to a chosen base-image (typically either the first
or the last image of a time-series). The regression geodesic is then determined
by the base image and the initial momentum obtained by appropriate averaging
of the initial momenta of the pairwise registrations. Future work will focus on
using this regression model for longitudinal image-based population-studies and
on extending it to capture spatial and appearance changes simultaneously.
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