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Abstract

Atlas-building from population data is widely used in medical imaging. However, the emphasis of atlas-building approaches is
typically to estimate a spatial alignment to compute a mean / median shape or image based on population data. In this work,
we focus on the statistical characterization of the population data, once spatial alignment has been achieved. We introduce and
propose the use of the weighted functional boxplot. This allows the generalization of concepts such as the median, percentiles,
or outliers to spaces where the data objects are functions, shapes, or images, and allows spatio-temporal atlas-building based on
kernel regression. In our experiments, we demonstrate the utility of the approach to construct statistical atlases for pediatric upper
airways and corpora callosa revealing their growth patterns. We also define a score system based on the pediatric airway atlas
to quantitatively measure the severity of subglottic stenosis (SGS) in the airway. This scoring allows the classification of pre- and
post-surgery SGS subjects and radiographically normal controls. Experimental results show the utility of atlas information to assess
the effect of airway surgery in children.

Keywords: Statistical atlas-building, weighted functional boxplots, kernel regression, pediatric upper airways.

1. Introduction

Atlas-building from population data has become an impor-
tant task in medical imaging to provide templates for data anal-
ysis. Numerous methods for atlas-building exist, ranging from
methods designed for cross-sectional, longitudinal, and random
design data. These approaches typically estimate a representa-
tive data object (Wang and Marron, 2007) (e.g., shape, surface,
image) for the population; e.g., a population mean (Joshi et al.,
2004) or median (Fletcher et al., 2009) with respect to spatial
deformations and appearance.

A limitation of all these methods is that they result in a sin-
gle summary representer and discard much of the population for
subsequent analysis. For instance, a single point is used to sum-
marize the entire population on the manifold, when one sum-
marizes it using an atlas or a median. For regression, a single
curve summarizes the population without carrying forward any
information from the local distribution of data around the curve.
These are restrictive representations that limit the capability of
the model to present confidence bounds, quantile measurements
or to identify outliers. In the literature, the limitation of the
single summary representers has also been acknowledged. For
instance, Aljabar et al. (2009) suggest a multi-atlas approach
to estimate multiple representers of the population. In another
study, Gerber et al. (2010) propose to learn a low-dimensional
representation driven entirely by the population of images.

Another strategy to retain population variation information
is to represent additional aspects of the full data distribution,
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Figure 1: Illustration of boxplots for points, functions, shapes and im-
ages. Median (middle black line), confidence region (magenta) and the
maximum non-outlying envelope (two outward blue lines). The gray
dashed lines are the outliers.

such as percentiles, the minimum and maximum, variance, con-
fidence regions and outliers as captured by a boxplot for scalar-
valued data. The functional boxplot (Sun and Genton, 2011) is
an effective tool to represent such statistics for functions. The
main goal in this paper is to generalize the notion of functional
boxplots to summarize variabilities within population of entities
such as shapes and images (see Fig. 1). This can provide a sim-
ple and generic method to augment atlases with additional pop-
ulation information while avoiding restrictive point-wise anal-
yses of data-objects. Note that we focus in this paper on aug-
menting atlases with statistical information, and assume a given
spatial alignment of data objects. The method can also be ex-
tended to build order statistics from low-dimensional manifold
embeddings where point-wise analysis becomes meaningful as
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each point then represents a full data object.
Another goal of this work is to generalize the notion of con-

fidence bounds to the estimates of regression using functional
boxplots. As subject data typically has associated individual
characteristics (e.g., age, weight, gender) we want to be able
to compute the statistical information parameterized by these
characteristics. For example, given a subject at a particular age
we want to compute subject age-specific confidence regions to
assess similarity with respect to the full data population.

We make the following contributions in this paper:

• We develop a weighted variant of the functional boxplot
in Section 2. This enables for example the use of kernel-
regression to build spatio-temporal atlases.

• We show the effectiveness of the method in comparison to
point-wise analysis in Section 4 highlighting the impor-
tance of object-oriented data analysis.

• We show applicability of the method to functions, shapes,
and images in Section 6 and demonstrate how an atlas can
robustly be augmented with statistical data for two appli-
cations: capturing changes in pediatric airway develop-
ment and changes of the corpus callosum over time. We
also briefly sketch how our method could be used to build
order-statistics on manifolds.

• We show the use of our method for quantitative assess-
ment in pediatric airways in Section 8, where an age-
adapted atlas can be used to score the severity of a child
suffering from airway obstruction before and after surgery.
This quantitative assessment shows significant differences
among normal controls, pre- and post-surgery SGS sub-
jects.

The method described in this paper is an extension of the pre-
liminary ideas we presented in a recent conference paper (Hong
et al., 2013a). This paper offers more details of our pro-
posed method, additional experiments for quantitative assess-
ment, and more validation on synthetic and real data.

2. Weighted functional boxplots and atlas-building

This section introduces a weighted variant of the functional
boxplot and extends it for use with kernel regression of func-
tional data. We first cover the preliminaries on kernel regression
and later present the concept of weighted band-depth essen-
tial to defining the weighted functional boxplot. The proposed
method is applicable to the analysis of function, shape, and
image populations to create non-parametric regression models
with associated subject characteristics. As an example, we con-
sider subject age and demonstrate the effectiveness of weighted
functional boxplots and kernel smoothing (Wand and Jones,
1994) to build a spatio-temporal atlas.

2.1. Atlas building with kernel regression

Given spatially aligned data objects we want to capture pop-
ulation changes, e.g., with respect to age. Spatial alignment

refers to a pre-processing step that transforms all data objects
to common coordinates for further analysis. The type of align-
ment depends on the objectives of a particular study. For in-
stance, this alignment may be a rigid transformations when
the statistical analysis needs to be performed modulo trans-
lations and rotations only. An atlas with population changes
can be built through kernel regression which assigns weights
to data-objects with respect to the regressor (say a desired age
ā). For example, we can use a Gaussian weighting function
wi(ai;σ, ā) = ce−(ai−ā)2/2σ2

, where ai is the age of the observa-
tion i, σ is the Gaussian standard deviation and c a normaliza-
tion constant to assure that the weights sum up to one.

2.1.1. Boundary bias
Kernel-based methods exhibit a bias near the boundary of the

available data. This is usually attributed to the asymmetric aver-
aging of limited information at the boundaries. Many solutions
have been proposed to address this issue (Schuster, 1985; Jones,
1993; Marron and Ruppert, 1994). If the target age for the atlas
is located within the interior part of the observed population,
no boundary effects exist. However, for studies involving mod-
els for growth, aging or memory decline, we often build atlases
for very young or very old subjects. This usually requires aver-
aging kernel weights with respect to an age near the boundary.
In such models, to mitigate the boundary bias, we adjust the
weights around the boundaries based on the approach proposed
in Schuster (1985), which relies on adjustment through bound-
ary reflection.

We assume observations are given in the age range [bl, bh].
We adjust weights for observations at the boundaries in kernel
regression by folding using reflection. In particular, given the
kernel bandwidth, σ, and the location for each observation, ai,
with respect to the regression location, ā, the adjusted weights
over the complete range are given as

wi(ai;σ, ā) =


c(g(ai) + g(2bl − ai)), ai ∈ [bl, bl + σ)
cg(ai), ai ∈ [bl + σ, bh − σ]
c(g(ai) + g(2bh − ai)), ai ∈ (bh − σ, bh].

(1)
Here g(·) denotes the Gaussian function, g(·;σ, ā), with the
mean, ā, and the variance, σ2, as mentioned above.

2.1.2. Bandwidth for kernel
An appropriate choice of the bandwidth, σ, for kernel regres-

sion depends upon the application. In general, the bandwidth
should be chosen based on the expected variation in the data.
A small bandwidth is able to express fast changes at the po-
tential cost of becoming noise-sensitive, whereas a bandwidth
that is too large gives overly smooth kernel regression results.
A compromise can be achieved by selecting the bandwidth
through cross-validation based model selection procedures (Ko-
havi, 1995). We will cover more details on how to choose σ in
the experiment sections.

Note that for scalar-valued data, the weights presented in
Section 2.1.1 can be used to define a weighted mean. For kernel
regression on deformations, these weights can be incorporated
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during the atlas-building procedure, e.g., in atlas construction
using images (Davis et al., 2010). Our main goal is to aug-
ment the atlas with statistical information about observations
and hence develop a weighted functional boxplot. This will al-
low us to obtain a regressed median. The median will be one
of the data-objects from the population which represents the
center at the target age. We will further define the α central
region and compute the interquartile-range, the maximum non-
outlying envelope, and detect outliers.

2.2. Weighted functional boxplots
The challenge in defining a functional boxplot is to develop

a notion of ordering for the space of functions. Once this order-
ing has been defined order statistics can be computed. Hence,
the equivalent to a scalar-valued boxplot which makes use of
the median and percentiles of the data can be defined. Sun et
al. (Sun and Genton, 2011) proposed an ordering of functions
based on the concept of band-depth. Essentially, band-depth
measures how deeply a particular function is buried within all
the other functions of the data population. The deepest one is
then declared the median curve. The band-depth itself is used
to define the ordering among functions.

To define a weighted functional boxplot consistent with the
functional boxplot introduced by Sun et al. (Sun and Genton,
2011) requires the definition of a consistent weighted band
depth for functional data.

2.2.1. Weighted band-depth
The functional boxplot is defined through the concept of

band-depth (López-Pintado and Romo, 2009; Sun and Gen-
ton, 2011). Since in our case, each observation has a different
weight, we first need to define a weighted band-depth. Such a
definition would naturally generalize the functional boxplot to
the weighted functional boxplot.

To motivate our choice, assume we want to compute a stan-
dard weighted median of scalar values. This is given by

µ∗ = argmin
µ

n∑
i=1

wi|xi − µ|, (2)

where µ is the sought-for median, n is the number of measure-
ments, {xi} are the measurements, and wi > 0 are weights for
the individual measurements. Assume that all weights are nat-
ural numbers, i.e., wi ∈ N+. This can be realized exactly for
arbitrary rational, wi, and in general by multiplying the energy
with a suitable constant, which does not change the minimizer.
Hence, we replace the weighted problem with the equivalent
unweighted minimization problem

µ∗ = argmin
µ

n∑
i=1

mi∑
j=1

|xi − µ|, (3)

where the individual measurements are simply repeated based
on their multiplicities, mi = wi.

Using a similar strategy, we can derive the weighted band-
depth. The band-depth introduced in (López-Pintado and
Romo, 2009; Sun and Genton, 2011) is defined for a population

of n functions, yi (for i = 1 . . . n), defined on a domain I, where
I is an interval in R. It is a graph-based approach that computes
the fraction of bands delimited by the subset of the population
containing the curve, y(x). In particular, it is defined as

BD( j)
n (y) =

1
C

∑
1≤i1<i2<···<i j≤n

I{G(y) ⊆ B(yi1 , · · · , yi j )}. (4)

Here j is the number of observations used for defining the
band, C is a normalization constant equal to the number of
admissible permutations. G(y) is the graph of the function,
G(y) = {(x, y(x)) : x ∈ I}. B is the band delimited by the
observations given as its arguments. That is, B(yi1 , · · · , yi j ) =

{(x, y(x)) : x ∈ I,minr=i1,··· ,i j yr(x) ≤ y(x) ≤ maxr=i1,··· ,i j yr(x)}.
I{.} denotes the indicator function, which evaluates to 1 if the
graph of the function is within the band or to 0 otherwise.

Now we want to define a weighted variant of the above defi-
nition of band-depth. For the weighted variant, say, we are now
given a population of functions, yi, for i = 1 . . . n, each with its
associated weight, wi. Before we present the actual expression
for weighted band-depth, we first write its repeated version. We
notice that, similar to the scalar case, we could write the band-
depth for this population of functions by repeating each obser-
vation as per its given weight. The band-depth with repeats is
then given as

BD( j)
n (y) =

1
C′

∑
1≤i1<i2<···<i j≤n

I{G(y) ⊆ B(yi1 , · · · , yi j
)},

s.t. {yi1 , · · · , yi j
} contains unique observations, (5)

where C′ is the normalization constant representing admissi-
ble permutations adjusted for repeats and n is the number of
observations including the repeats. The {yi} contain the orig-
inal observations {yi}, but with repeats, according to their re-
spective multiplicity given by their weights. The band with re-
peated observations is given as B(yi1 , · · · , yi j

) = {(x, y(x)) : x ∈
I,minr=i1,··· ,i j yr(x) ≤ y(x) ≤ maxr=i1,··· ,i j yr(x)}. We made use
of the fact that, according to our definition, we only want to
consider unique observations for the depth measure.

Finally, we define the weighted band-depth by rewriting the
sampled band-depth as

WBD( j)
n (y) =

1∑
1≤i1<i2<···<i j≤n wi1 wi2 · · ·wi j

·∑
1≤i1<i2<···<i j≤n

wi1 wi2 · · ·wi j I{G(y) ⊆ B(yi1 , · · · , yi j )},
(6)

which generalizes to non-natural-numbered weights wi ∈ R+.
This is a natural way to define a weighted band-depth and, in
further consequence, a weighted functional boxplot. Comput-
ing the weighted band-depth in this way is intuitive, as only
bands with large weights for all its individual observations have
a large impact. Furthermore, this weighted version can also be
adapted to the modified band-depth proposed in Sun and Gen-
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ton (2011), i.e.,

WMBD( j)
n (y) =

1∑
1≤i1<i2<...<i j≤n wi1 wi2 · · ·wi j

·∑
1≤i1<i2<...<i j≤n

wi1 wi2 · · ·wi jλm{A(y; yi1 , ..., yi j )}
(7)

where A j(y) ≡ A(y; yi1 , ..., yi j ) ≡ {x ∈ I : minr=i1,...,i j yr(x) ≤
y(x) ≤ maxr=i1,...,i j yr(x)}, m is the observation’s dimension,
λm(y) = λ(A j(y))/λ(I) and λ is the Lebesgue measure on Rm.

With the above definitions, the band depths of all the sampled
observations can be calculated and ranked in descending order,
y[1](x) ≥ ... ≥ y[n](x). y[1](x) is the deepest observation and
regarded as a notion of the median of the population, whereas
y[n](x) is the “most outlying” observation which is a potential
outlier.

2.2.2. α central region
The concept of central region was introduced in Liu et al.

(1999). We define the α central region for the weighted func-
tional boxplot based on the weights of observations. The band
of the α central region is delimited by the α proportion of all
weights, i.e., the accumulated weights of the first p̂ deepest ob-
servations.

We first compute the value of p̂ based on the weights by

p̂ = {p ∈ N+ :
∑

r=1,...,p−1

w[r] < α,
∑

r=1,...,p

w[r] ≥ α, and p ≤ n},

(8)
where w[r] corresponds to the weight for the r-th deepest obser-
vation and 0 ≤ α ≤ 1. Here, we assume that the weights are
normalized so they sum up to one. Then the α central region
can be generated using these first p̂ observations through

WCRα = {(x, y(x)) : min
r=1,...,p̂

y[r](x) ≤ y(x) ≤ max
r=1,...,p̂

y[r](x)}. (9)

When α = 0.5, Eq. (9) corresponds to the 50% central region
WCR0.5. In practice, the 50% central region is commonly cho-
sen as the confidence region for analysis because it 1) is a robust
range for interpretation and 2) enables visualization of the data
spread which is less affected by outliers or extreme-values.

2.2.3. Outlier detection
In classical boxplots, the outliers can be detected by the

1.5 IQR (interquartile range) (Frigge et al., 1989). This is com-
parable to 1.5 times the height of the 50% central region for
the weighted functional boxplot. The weights of the observa-
tions also need to be taken into consideration during the outlier
detection. For a Gaussian distribution, the IQR encompasses
the most central 50% of the distribution and the fence defined
by 1.5 IQR covers 99.3% of the distribution. Therefore, we use
this threshold, 0.993, to find the first q̂ deepest observations that
would be within the fences by

q̂ = {q ∈ N+ :
∑

r=1,...,q−1

w[r] < β,
∑

r=1,...,q

w[r] ≥ β, and q ≤ n},

(10)

where β = 0.993. The next step is to narrow the fences with the
1.5 IQR, so that the fences defined in weighted functional box-
plots are the combination of the fence defined by the 1.5 IQR
with the accumulated weights consistent with the 1.5 IQR of
the normal distribution:

C f ences = {(x, y(x)) :
max(minr=1,...,q̂y[r](x),min(WCR0.5) − 1.5 ∗ IQR)∪
min(maxr=1,...,q̂y[r](x),max(WCR0.5) + 1.5 ∗ IQR)}.

(11)

Any objects outside the fences defined by C f ences are flagged
as outliers.

3. Implementation and algorithm complexity

In this section, we discuss how to implement our statistical
atlas-building method based on the weighted functional box-
plots (see Algorithm 1), as well as the time complexity of the
algorithm. From the observations and their associated indepen-
dent values, e.g., ages, the algorithm generates a statistical atlas
at a target age, which consists of the median, the confidence
region, the maximal non-outlying region, and the outliers. De-
tails about converting between the functional representation of
the boxplot and shapes and images are covered in Section 6.2.

Algorithm 1: Statistical atlas-building based on weighted
functional boxplots

Data: {ai, yi}
N
i=1 (N observations with ages), ā (the target

age), J (the number of observations for a band)
Result: y[1] (the median), WCRα (the α center region),

C f ences (the fences of the atlas)
Choose the bandwidth σ and compute the weight wi for
each yi with Gaussian function centered at ā (Section 2.1).
for i := 1:N do

for j := 2:J do
Loop through all combinations, choosing j from N
observations, and compute the weighted band
depth for yi using Eq. 6 or 7.

end
end
Sort {yi}

N
i=1 based on the weighted band-depth in the

decreasing order, y[1] ≥ · · · ≥ y[N].
Compute WCRα and C f ences according to Section 2.2.2 and
Section 2.2.3 respectively.

Since in practice J � n, the complexity of this algorithm is
O(MN J+1) where M is the dimension of each observation and
N is the number of the observations. We usually choose J = 2
resulting in a time complexity of O(MN3).

For our experiments we use the weighted version of the mod-
ified band-depth, Eq. 7, because it results in fewer depth ties
compared to the unmodified band-depth. Note that as we are
dealing with a generalization of the median, continuity with
respect to the regression variable (here, age) cannot be guar-
anteed. Assuming that the underlying data is continuous, a
“more continuous” behavior may be achieved using more and
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Figure 2: (a) 20 observations generated based on Eq. (12) and colored by age.
(b) The age histogram of the observations.
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Figure 3: Comparisons of the atlases built by the weighted point-wise boxplot
(top) and the weighted functional boxplot (bottom) on the synthetic data. The
atlases are adapted to the age of 85 months. The median computed by the
weighted point-wise boxplot is a point-wise median, and the median computed
by the weighted functional boxplots corresponds to an existing observation at
85 months.

sufficiently dense sampled data. In particular, we would expect
that additional samples in sparsely sampled regions of a dataset
would result in solutions with less severe discontinuities.

4. Comparisons of boxplots for analysis

4.1. Synthetic data

We compare the atlases built by weighted functional boxplots
and those built by 1) weighted point-wise boxplots and 2) func-
tional boxplots, using synthetic observations defined by

yi(x) = 500 ∗ (1 + sin(2πx + 0.1πi)) + 2 ∗ agei, (12)

where x ∈ [0, 1], i ranges from 1 to 20 (i.e., we generate 20
observations for analysis, shown in Fig. 2(a)), and agei is the
simulated age corresponding to the ith spike in Fig. 2(b). The
age varies from 0 to 200 months, that is, bl = 0 and bh = 200.

4.2. Comparison with weighted point-wise boxplots

The top image of Fig. 3 shows an atlas built with the
weighted point-wise boxplot including four typical percentiles
and the point-wise median. The weights are computed based
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Figure 4: Comparisons of atlases built by the functional boxplot (top) and the
weighted functional boxplot (bottom) on the synthetic data. The atlases are
built at age 165 months and for both methods the observation at 148 months is
selected as the median curve.

on the Gaussian function in Section 2.1 with σ = 30 months.
While the median curve follows the overall population trend,
it is not “close” to any of the observations because weighted
boxplots, applied in a point-wise manner to a population of
functions, disregard the spatial aspect of the functional data.
In contrast, our method shown in the bottom image of Fig. 3
1) provides a median curve which corresponds to a curve in the
data set, i.e., the one at the age of 85 months, and 2) allows for
the computation of functional outliers (gray dashed lines) which
results in a more robust statistical description for the atlas.

4.3. Comparison with functional boxplots

To construct an atlas at a particular age using standard func-
tional boxplots, we use a uniform window to pick curves cen-
tered around the age of interest. As shown in Fig. 4, only two
curves are available in the uniform window for atlas-building
with functional boxplots, and one of them is flagged as an out-
lier. This atlas includes little information about the population.
However, the atlas built using the weighted functional boxplot
(with a Gaussian window size comparable to that of the uni-
form window used in the standard functional boxplots accord-
ing to Marron and Nolan (1988)) captures the population data
much better as it suffers less from the local data sparsity.

For further illustration, we build a set of atlases from the syn-
thetic curves at the age associated to each curve using func-
tional boxplots and weighted functional boxplots. Each age-
matched atlas has a median curve, and ideally the age of the
atlas matches with the age of the median when the age of the
population is evenly distributed, indicated by the cyan dots in
Fig. 5. For this synthetic dataset, we want to determine which
one provides a better approximation of the median age to the at-
las age, the functional boxplot or the weighted functional box-
plot. As shown in Fig. 5, the magenta line estimated by the
weighted functional boxplot (WFB) is much smoother than the
blue line estimated by the functional boxplot (FB), and the ma-
genta line is closest to most of the cyan dots, indicating that the
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Figure 5: Comparison of the atlas age and the median age between the func-
tional boxplot (FB, the blue dashed line) and the weighted functional boxplot
(WFB, the magenta dashed line). The cyan dots show the ideal case, that is, a
method has a better performance if it passes through more cyan dots. The right
image is a close-up view of the left one.

Table 1: Comparison of the median ages estimated by
functional boxplots (FB) and weighted functional boxplots
(WFB) on synthetic data.

FB WFB
Mean of relative errors 15.25% 13.99%

Equal to atlas ages 35% 50%
Closer to atlas ages∗ 5% 20%

∗This measure counts the frequency with which the es-
timated median ages are closer to the true age for func-
tional and weighted functional boxplots respectively. In
75% of the cases the median ages from these two meth-
ods are identical.

weighted functional boxplot has a better performance than the
functional boxplot for spatio-temporal atlas construction.

Table 1 provides quantitative measurements on the median
ages computed by the functional boxplot and weighted func-
tional boxplots with respect to the atlas ages. In particular, we
evaluate the relative age error, how frequently the methods re-
turn a median curve of exactly the correct age and with what
frequency the estimated median curve’s age is closer to the
real age for the functional versus the weighted functional box-
plot. The weighted functional boxplot outperforms the standard
functional boxplot for all these measures.

5. Comparison with the point distribution model

The point distribution model (PDM) (Cootes et al., 2004)
is a powerful method to statistically describe shape variations.
Shape variation is captured by computing a mean shape and
the principal shape variations around this mean through prin-
cipal component analysis. It is important to note that the ob-
jective of a PDM is different from that of the functional box-
plot. Whereas PDM is used to capture the major modes of
shape variation through a multi-variate Gaussian distribution,
the functional boxplot is free of distributional assumptions as it
is a form of order statistics. The functional boxplot is therefore
robust to outliers and readily allows for the computation of α-
central regions, such as the interquartile range, to quantify data
variation.

To demonstrate the difference in behavior between the PDM
and the functional boxplot Fig. 6 shows the shape variation
of 18 2D hand outlines from Cootes et al. (1995) as captured
through a PDM and the functional boxplot. The PDM readily
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Figure 6: Comparison between the point distribution model (left) and the func-
tional boxplot (right) applied to 18 2D hand contours. Left: mean shape in
red and shape variation along the first mode for −3 standard deviations (blue)
and for +3 standard deviations (green). Right: median shape in red and 50%
confidence region in gray.

Figure 7: CT scans for a control subject (left, CRL04) and a subglottic stenosis
patient (right, SGS03). The zoomed-in part in the red circle shows the location
of subglottic stenosis, the narrowing of the airway.

allows for the visualization of principal modes of shape varia-
tion, whereas the functional boxplot provides an intuitive way
of looking at the spatial differences observable within for ex-
ample the 50% confidence region (see Section 6.2 for details
on how to compute the confidence region). Hence, both meth-
ods provide useful, but complementary information.

6. Applications

6.1. Real data

In this section we show example applications using the
weighted functional boxplot. The examples involve functions,
shapes, and images.

Functions. Our first application is the construction of a
pediatric airway atlas from normal subjects to assess airway
obstruction (i.e. subglottic stenosis, SGS) (Daniel, 2006), as
shown in the computed tomography (CT) images in Fig. 7. The
observations are a population of 1D functions describing air-
way cross-sectional areas parameterized along the centerline of
the airway as shown in Fig. 9. These functions are generated
from 3D CT data for 68 normal subjects using a simplified air-
way model (Hong et al., 2013b), shown in Fig. 8, followed by
a landmark-based spatial alignment (Ramsay and Silverman,
2005). The spatial alignment is based on five key anatomic
landmarks: nasal spine, choana, epiglottis tip, true vocal cord
and tracheal carina. For each landmark, there is a physical posi-
tion on the centerline and a mean position of that landmark for
all subjects. We estimate a warping function parameterized as
a spline smoothly passing through pairs of physical and mean
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a 1D curve. Left: the geometry segmented from a CT image, CRL04; middle:
the centerline of the airway with cross sections along the centerline; right: the
curve of the cross-sectional area with the depth along the centerline.
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 Curves from TVC to tracheal carina 

Figure 9: Normal curves for pediatric airway atlas construction, which are reg-
istered based on the following five landmarks: nasal spine, choana, epiglottis
tip, true vocal cord (TVC) and tracheal carina (from left to right). Zoomed-in:
the sub-region from TVC to tracheal carina where the subglottis is located.

position for all landmarks for the registration of the functions.
We focus the analysis on the region between the true vocal cord
(TVC) and the tracheal carina where the subglottis is located, as
shown in the right image of Fig. 9. The 68 normal functions are
used to build a normal control pediatric airway atlas to assess
19 SGS subjects pre- or/and post-surgery.

Shapes. The second application is to build a corpus callosum
atlas and to explore its shape changes with age. The observa-
tions are a collection of 32 corpus callosum shapes of varying
ages from Fletcher (2011). Each shape is represented by 64
2D boundary points as shown in the left image of Fig. 10. We
perform affine alignment before atlas constructions.

Images. The third application is to understand age-related
changes of the corpus callosum using binary images of the cor-
pus callosum segmentations. The images are converted from
the aligned corpus callosum shapes, and one example is shown
in the right image of Fig. 10.

6.2. Functional representation of shapes and images

In our experiments, we treat shapes and images as functions
by vectorizing the data. After analysis, we convert the func-
tional form back to the original representation of the data ob-
jects. It is instructive to look at the effect of this vectorizing step
in the context of binary images which we use as an image-based
method to represent shapes (contours). In this case, images rep-
resent shapes through indicator functions. Note that we discuss
curves in 2D in this paper, but the principle extends to the rep-
resentation of any closed co-dimension one object, e.g., closed
surfaces in 3D. Assume the shapes are represented by images
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Figure 10: Examples of the corpus callosum shape (left) and the binary image
of the corresponding segmentation (right).
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(b) Functional (left) and image (right) band.

Figure 11: The functional bands, delimited by three corpus callosum shapes
(the blue contours), and their corresponding shape band and image band.

through indicator functions 1Ii , where Ii is the set which indi-
cates the interior of the shape S i, i.e., Ii = {x : x inside S i}

and 1Ii (x) := 1 if x ∈ Ii and 0 otherwise. We can then write
intersections and unions of sets through the indicator functions
as

1S i∩S j = min{1S i ,1S j } and 1S i∪S j = max{1S i ,1S j }. (13)

The band-depth defined in Section 2.2.1 is based on evaluating
I{G(y) ⊆ B(y1, · · · , yi)}. Applied to indicator functions this
expression is equivalent to

I

⋂
i

S yi ⊆ S y ⊆
⋃

i

S yi

 (14)

as the band B is constructed by taking the minima and maxima
over all functions. For the indicator functions the minimum
and maximum operators correspond to the set intersections and
unions respectively (due to the associativity of set union and
intersection). Applying the functional boxplot to vectorized in-
dicator functions of images representing shapes (Hong et al.,
2013a) is therefore equivalent to the definition of contour box-
plots proposed independently by Whitaker et al. (2013), unify-
ing the two methods. Whitaker et al. (Whitaker et al., 2013)
introduces contour boxplots to quantify uncertainty in feature
sets from simulation ensembles such as for example obtained
from fluid simulations. Our weighted functional boxplot can
therefore also be interpreted as an extension of the method of
Whitaker et al. (Whitaker et al., 2013) to weighted contour box-
plots. This shows that the vectorization approach is quite natu-
ral in the context of indicator-function-based shape representa-
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Figure 12: Comparison between point-wise (top) and functional (bottom) boxplots on functions, shapes and images. The black curve is the median and for the
point-wise boxplots it is the point-wise median. The magenta region is the 50% confidence region.
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(a) Atlas at 20 months and the median airway geometry (b) Atlas at 180 months and the median airway geometry

Figure 13: Age-adapted atlases for functions: pediatric airway atlases at 20 and 180 months respectively. The two airway geometries correspond to the median
subjects selected by the age-matched atlases. The older atlas has a larger airway size compared to the younger atlas, indicating the importance of building age-
matched atlases.

tion. The relation for the contour-based representations is the-
oretically less clear. However, our experiments indicate that in
practice this method achieves similar results to the indicator-
function-based shape representation while being computation-
ally more efficient as the shape representation is more compact.

Specifically, we compute bands for shapes and images as fol-
lows:

Shape band. To compute the band for aligned shapes, taking
the three blue curves in Fig. 11(a) as an example, we first vec-
torize them to compute the functional band, shown on the left
in Fig. 11(a). Then, for a 2D point on the shape, (p, q), its vari-
ation is within the rectangular region with the diagonal given
by the two points on the band’s boundary, (min(p),min(q)) and
(max(p),max(q)). For a 3D point, its variation is within a
rectangular solid. The union of these rectangular regions then
forms the shape band. With a sufficiently dense sampling of the
functions, we obtain a smooth shape band as illustrated on the
right of Fig. 11(a). This shape band contains all three curves.

Image band. Compared with the shape band, the image band
is much easier to construct. As discussed above for binary im-
ages, the standard functional boxplot theory can be directly ap-
plied. Converting the obtained bands back to the image do-
main immediately results in the desired image band. The image
band can in the same way be constructed for non-binary im-
ages. Fig. 11 shows the functional band for three binary images
of corpora callosa on the left, and the corresponding image band
on the right.

Fig. 11 also shows that both shape and image bands are sim-
ilar and correctly capture the range of the observations.

6.3. Comparison with point-wise boxplots
We compare the functional boxplot to the point-wise ap-

proach on real datasets to demonstrate the advantages of our
method. Fig. 12 shows the median (the black curve) and the
confidence region (the 50% central region, magenta) for both
point-wise and functional boxplots. We count the number of
data objects inside the confidence region shown in Table 2: for
the point-wise boxplots only 12 (of 68) functions and none of
the shapes or images are fully within the confidence region.
However, the functional boxplot, by construction, provides a
confidence region containing 50% of the data objects. We con-
sider this a more intuitive representation of true data-object
variation. To construct the point-wise confidence regions for
shapes we locally compute distances with respect to the me-
dian point which establishes an (unsigned) ordering. The confi-
dence region is then the convex hull of the closest half of the
points. This strategy would extend to constructing approxi-
mate confidence regions with respect to manifold embedding
coordinates. Specifically, in the coordinate system after mani-
fold embedding, each observation is represented as a point and
the median is defined as the point with the minimal sum of the
squared geodesic distances to other points on the manifold. The
confidence region can then be defined as the convex hull on the
manifold formed by half of the points with the closest geodesic
distances to the median point. This is conceptually similar to
the way we construct shape bands.

6.4. Atlas Construction with weighted functional boxplots
The weighted functional boxplot is used to build a pediatric

airway atlas with variance σ = 24 months for the weighting
function, and the corpus callosum shape/image atlases with σ =
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(a) Shapes of corpus callosum (b) Images of corpus callosum

Figure 14: Age-adapted atlases for shapes and images: corpus callosum atlases at 37 (top) and 79 (bottom) years respectively. Zoomed-in: the anterior (the splenium,
on the right of the atlas) and posterior (the genu, on the left of the atlas) portions of corpus callosum atlases. The atlases at different ages, especially the zoomed-in
parts, clearly show the thinning of the corpus callosum with age.

Table 2: The number of data objects inside the 50% central region for
functions, shapes and images in Fig. 12.

Functions Shapes Images
Point-wise boxplots 12/68 0/32 0/32
Functional boxplots 34/68 16/32 16/32

The first number is the sum of the data objects inside the central region,
and the second number is the total number of observations.

Table 3: Comparison of the median ages estimated from the
functional boxplot (FB) and the weighted functional boxplot
(WFB) on the pediatric airway dataset.

FB WFB
Mean of relative errors 19.75% 15.05%

Equal to atlas ages 11.76% 7.35%
Closer to atlas ages∗ 20.59% 26.47%

∗This counts the number of the median ages that are
closer to the atlas ages between functional boxplots and
weighted functional boxplots; 52.94% of the median
ages from these two methods are equal.

10 years. For the pediatric airway application, the age range
varies from 0 to 200 months, that is, bl = 0 and bh = 200. For
the corpus callosum application, we set the age within (0, 100
years), that is, bl = 0 and bh = 100.

6.4.1. Pediatric airway atlas
Fig. 13 shows two pediatric airway atlases at different ages,

20 months and 180 months respectively. The pediatric airway
atlases capture increases in cross-sectional airway area with age
which is consistent with the growth pattern for pediatric airways
and indicates the necessity of building an age-adapted atlas as
a reference. Furthermore, in Table 3 we measure the difference
of median ages estimated by functional boxplots and weighted
functional boxplots. Similar to Section 4.3, we build an age-
matched atlas for each control subject and use the age of the se-
lected median subject for comparison. The weighted functional
boxplot leads to a smaller mean relative error and more median
ages are closer to the atlas ages. However, fewer median ages
agree exactly with the atlas ages. This is acceptable because the
cross-sectional area of pediatric airways increases with age in
general while small variations may be caused, e.g., by measure-
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Median shape at 37 years old

Median shape at 79 years old

Figure 15: The median shapes of two corpus callosum atlases at different ages
and the direction of change of the corresponding points on the boundaries.

ment errors and difference in true developmental age. Overall,
the weighted functional boxplot performs well at building the
pediatric airway atlas.

6.4.2. Corpus callosum atlas
In Fig. 14, we select atlases at age 37 and 79 years for

both the shape and the segmentation of corpus callosum to
demonstrate atlas changes with respect to age. The two cor-
pus callosum atlases reveal the thinning in the shape and the
decreasing volume in the image with age, especially at the ante-
rior (the splenium) and posterior (the genu) portions consistent
with (Driesen and Raz, 1995; Fletcher, 2011). To further visu-
alize these changes, we overlap the median shapes of the corpus
callosum atlases in Fig. 14, and display the directions of change
for all corresponding points on the boundary in Fig. 15. Most
parts of the median shape, especially the anterior and posterior
regions, show the thinning of the corpus callosum with age.

7. Computational cost for building a statistical atlas

The algorithm is implemented in Matlab. All the experi-
ments were run on an Intel R© Xeon(R) CPU E5645 system with
2.4GHz. Table 4 shows the computation times for building at-
lases from populations of observations with different numbers
of datasets and different numbers of 1D/2D points and pixels.
Most experiments required less than one second of runtime.
The image-based approach, while still reasonably fast, is as ex-
pected the slowest as the dataset size is largest.
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SGS03 Pre−Surgery
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SGS03 Post−Surgery

(a) Pre-surgery: the age-matched atlas and the airway geometry (b) Post-surgery: the age-matched atlas and the airway geometry

Figure 16: Airway changes for a subject, SGS03, pre- and post-surgery (green dashed lines) compared to the age-matched atlas. The stenosis of the airway is
marked by the zoomed-in circle on the pre-surgery geometry and no visible stenosis exists in the post-surgery geometry (the arrow on the right image corresponding
to the subglottic area).
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SGS07 Pre−Surgery
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SGS07 Post−Surgery

(a) Pre-surgery: the age-matched atlas and the airway geometry (b) Post-surgery: the age-matched atlas and the airway geometry

Figure 17: Airway changes for a subject, SGS07, pre- and post-surgery (cyan dashed lines) compared to the age-matched atlas. The stenosis of the airway is marked
by the zoomed-in circle on the pre-surgery geometry and no visible stenosis exists in the post-surgery geometry (the arrow on the right image corresponding to the
subglottic area).
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SGS01 Post−Surgery

(a) Pre-surgery CT scan and airway geometry (b) Post-surgery CT scan and airway geometry (c) Age-matched atlas for post-surgery

Figure 18: Airway changes for SGS01 pre- and post-surgery. Before surgery there is a tracheostomy tube in the airway. After surgery the subglottic stenosis is
resolved. Compared with the age-matched atlas most of the corresponding curve is within the maximal non-outlying envelope, indicating a successful surgery.
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SGS04 Post−Surgery

(a) Pre-surgery CT scan and airway geometry (b) Post-surgery CT scan and airway geometry (c) Age-matched atlas for post-surgery

Figure 19: Airway changes for SGS04 pre- and post-surgery. Before surgery there is a tracheostomy tube in the airway. After surgery the subglottic stenosis is
resolved. Compared with the age-matched atlas all of the corresponding curve is within the maximal non-outlying envelope, indicating a successful surgery.
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Table 4: The computational cost of building an atlas based on the weighted func-
tional boxplot.

Observations Computational
Size Number Cost (s)

Synthetic functions 101 1D points 20 0.024
Pediatric airway 169 1D points 68 0.50

Corpus callosum (shape) 64 2D points 32 0.34
Corpus callosum (image) 157 × 456 pixels 32 29.56

8. Assessment with statistical atlas

8.1. Comparison pre- and post-surgery

To test the utility of the statistical atlas built by weighted
functional boxplots we show the airway changes of two SGS
subjects before and after surgery compared to the age-matched
normal control airway atlases. The subject shown in Fig. 16
is SGS03, a male who had two CT scans, one before surgery
at 9 months and the other after surgery at 20 months. Fig. 17
shows another male (SGS07) who had a CT scan before surgery
at 6 months and another one after surgery at 15 months. Before
treatment, there was a constricted region outside the atlas for
both children, corresponding to the dip in the cross-sectional
area curve and the zoomed-in circle of the geometry in both
Fig. 16(a) and Fig. 17(a). After treatment, the airway size in-
creased and the corresponding curve is almost entirely within
the maximal non-outlying envelope of the atlas. Also there is
no visible stenosis in the geometry as shown in both Fig. 16(b)
and Fig. 17(b), indicating that the surgeries for these children
were successful.

Fig. 18 and Fig. 19 show two additional children with sub-
glottic stenosis. We can see the tracheostomy tubes in the
CT scans and the airway geometries. We do not compute the
cross-sectional areas for such cases, because their airways ap-
pear disconnected before surgery and breathing is accomplished
through the tracheostomy tubes. Minimal cross-sectional areas
are set to zero. After surgery, the airway cross-sectional ar-
eas greatly increase. For SGS01 only a small part of the cor-
responding curve is slightly outside the maximal non-outlying
envelope of the atlas, and for SGS04 its whole corresponding
curve is totally inside the maximal non-outlying envelope, indi-
cating successful surgeries also for these two cases.

8.2. Quantitative measurements

8.2.1. Definition of the scoring system
The Myer-Cotton grading system (Myer et al., 1994) is com-

monly used in clinical diagnosis for estimating the severity of
subglottic stenosis in the pediatric upper airway. It describes
the stenosis by the relative percentage reduction of the cross-
sectional area at the subglottis. In practice, this is determined
by using different sizes of endotracheal tubes. Similar to the
Myer-Cotton system, we define a scoring system based on the
age-matched atlas to quantitatively measure the severity of sub-
glottic stenosis for the pediatric upper airway. Compared with
the Myer-Cotton system, our measurement is non-invasive and
not limited by the size of the endotracheal tubes.

For each individual curve y, from TVC to tracheal carina, we
build an atlas that is adapted to the age of the corresponding
subject, and compare it with the minimal curve of the atlas,
Clower f ence, because this minimal curve can be considered the
minimal cross-sectional area of a normal airway at that age.
With the minimal curve as the reference of the airway’s cross-
sectional area, our scoring system is defined as:

S core(y) = min
x

((y(x) −Clower f ence(x))/Clower f ence(x)). (15)

If the whole curve y is above the minimal curve, the score
will be non-negative; otherwise it will be negative. Since all
y(x) ≥ 0, the lower bound for the score is −1. While there
is no theoretical upper bound to this definition, the score will
be upper-bounded in practice by the largest observable cross-
sectional areas for a given age. That is, the score of the
cross-sectional area curve for a pediatric upper airway is within
[−1,∞), where −1 indicates a fully closed airway with a zero
cross-sectional area somewhere. A negative score indicates a
potential stenosis and a normal control subject usually has a
non-negative score. Overall, the higher the score, the more nor-
mal the corresponding subject will be. Note that our measure-
ment is not directly comparable to the Myer-Cotton system, as
the Myer-Cotton system computes within-subject scores by es-
timating the cross-sectional area of what should be considered
a non-constricted airway. Our score on the other hand makes
use of population data contained in the normal control atlas to
define what a minimum normal cross-sectional area should be.
Nevertheless, the two scoring systems can be made “roughly
comparable” by setting all positive atlas-derived scores to zero
(indicating a healthy airway) and negating all negative scores.

8.2.2. Scores for all subjects
Based on our scoring system, we score the pediatric upper

airways not only for SGS patients but also for the normal con-
trols. The scores shown in Fig. 20 are estimated based on the
atlases built by weighted point-wise boxplots, functional box-
plots, and weighted functional boxplots. The subjects shown
in the plots include 68 normal controls and 17 SGS patients
(6 pre-surgery, 11 post-surgery). Among the total 19 SGS pa-
tients two subjects that have completely obstructed airways are
directly scored as −1 and are not shown in Fig. 20. Within the
11 post-surgery subjects, some of them have no stenoses after
surgery, others show improvement in the airway but still exhibit
slight stenoses.

To verify whether there is a statistically significant score dif-
ference among groups, we use two types of hypothesis tests, the
two sample t-test (Snedecor and Cochran, 1989) with the nor-
mal distribution assumption for samples, and the Wilcoxon rank
sum test (Siegel, 1956), a non-parametric statistical hypothesis
test for populations that cannot be assumed to be normally dis-
tributed. Table 5 shows the testing results among the following
three groups: SGS pre-surgery, SGS post-surgery, and control
subjects. We use three different analysis approaches: weighted
point-wise boxplots, functional boxplots, and weighted func-
tional boxplots. In each test between two groups the smallest
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Figure 20: The scores for all subjects, including three groups, SGS pre-surgery, SGS post-surgery and control subjects, based on the atlases built by weighted point-
wise boxplots, functional boxplots, and weighted functional boxplots (from left to right). The curves in different colors represent the kernel density estimations for
different groups. Note: the y-axis in the plots is a random height to visualize the scores clearly.

Table 5: P-values of two types of tests on the scores for pediatric upper airways estimated based on weighted point-wise boxplots, functional boxplots and
weighted functional boxplots.

Two sample t-test Wilcoxon rank sum test
Weighted Functional Weighted Weighted Functional Weighted

point-wise boxplots boxplots functional boxplots point-wise boxplots boxplots functional boxplots

Pre v.s. CRL 2.1e-07 1.4e-11 2.6e-11 7.2e-05 6.0e-05 5.6e-05
Pre v.s. Post 1.7e-03 1.4e-03 5.2e-04 1.9e-03 1.1e-03 6.5e-04

Pre v.s. Post&CRL 7.7e-07 1.7e-09 1.4e-09 8.2e-05 6.7e-05 5.7e-05
Post v.s. CRL 9.6e-03 4.4e-05 9.7e-05 1.6e-03 9.9e-05 3.9e-04

Notes: Pre represents the SGS pre-surgery group, Post represents the SGS post-surgery group, CRL represents the normal control group, and Post&CRL
represents the union of the SGS post-surgery and normal control groups.

p-value is in highlighted boldface in Table 5. Overall, the re-
sults suggest that the weighted functional boxplot is superior
to the standard functional boxplot and the weighted pointwise-
boxplot in separating the SGS pre-surgery subjects from the
SGS post-surgery subjects or/and the normal controls, though
all results are highly statistically significant. Note that it is not
obvious that post-surgery and normal control subjects should
be well distinguishable as a successful surgery should result in
a post-surgery airway which should be close to normal.

A closer look at the scores resulting from the three differ-
ent analysis methods reveals that the scores for the weighted
point-wise boxplot (shown in Fig. 20(left)) mix the SGS post-
surgery subjects with the normal controls. While this could
be desired, as a successful surgery should result in a more
“normal-looking” airway, more importantly the weighted point-
wise boxplot assigns negative weights to some of the normal
controls. This suggests potential stenoses in the control airways
and conflicts with the definition of our scoring system. This
negative score effect for normal controls is not present for the
weighted functional analysis approach, but also appears when
using the un-weighted functional analysis (see details below).
This suggests that the weighted functional analysis is more ap-
propriate for this application.

Considering the scores of the functional boxplot (Fig. 20
(middle)), there are two normal control subjects scored with
negative values: CRL32 and CRL102, whose curves and age-
matched atlases are shown in Fig. 21. For these two subjects,
parts of their curves are below the atlases built by the func-
tional boxplot. The age of CRL32 is 8 months which is near the
lower age boundary with limited information for atlas-building,
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Figure 21: Two control subjects, represented by colored dashed curves and
their age-matched atlases. The curves obtain negative scores when using the
functional boxplot and non-negative scores when using the weighted functional
boxplot.

and CRL102 is at the age of 182 months and therefore suffer-
ing from local data sparsity in our current dataset. Compared
with the functional boxplot, the weighted functional boxplot
shows better performance given the limited data information
and the local data sparsity as also shown in Section 4. The
curves for these two subjects are fully within the atlases built
by weighted functional boxplots and scored with non-negative
values, as shown in the right column of Fig. 21.
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Table 6: Comparison of the scores for SGS subjects using three different meth-
ods with the clinical diagnosis based on the Myer-Cotton grading system.

Patient Id Surgery Myer-Cotton WPB FB WFB
SGS03 Pre 80-90% 86.0% 85.6% 85.6%
SGS07 Pre 85% 77.4% 74.5% 74.5%
SGS11 Pre 50% 59.2% 54.8% 54.8%
SGS12 Pre 70% 70% 70% 68.7%
SGS13 Pre 60-70% 9.9% 37.8% 34.0%
SGS18 Pre 60-70% 69.2% 69.2% 68.8%

SGS03 V3 Post 0% 0.3% 1.1% 0%
SGS05 Post 0% 0% 0% 0%
SGS06 Post 40-50% 0% 35.1% 13.9%
SGS08 Post 0% 0% 0% 0%
SGS09 Post 50% 19.6% 59.1% 57.8%
SGS10 Post grade I 0% 39.9% 27.6%
SGS14 Post 50% 0% 26.1% 0%
SGS17 Post 0% 16.3% 0% 0%

SGS07 V3 Post 30% 14.5% 9.3% 9.3%
SGS04 V3 Post grade I: 10% 0% 5.6% 0%
SGS01 V3 Post 15-20% 31.4% 30.2% 29.6%

Notes: Weighted point-wise boxplots (WPB), functional boxplots (FB),
weighted functional boxplots (WFB). The scores are converted based on the
correspondence between our scoring system and the Myer-Cotton system
in Section 8.2.1. Grade I represents an obstruction within (0% - 50%].

8.2.3. Score comparison of pre- and/or post-surgery
Table 6 shows the scores for SGS subjects using weighted

point-wise boxplots, functional boxplots, and weighted func-
tional boxplots, and compares them with the clinical diagnosis
based on the Myer-Cotton grading system. The scores com-
puted using our scoring system are converted to be roughly
comparable to the corresponding Myer-Cotton values as de-
scribed in Section 8.2.1. Scores that are outside of the ±20%
deviation of the clinical diagnosis and that are zero for sub-
jects with stenoses or non-zero for subjects without stenoses
are shown in boldface. Table 6 shows that the weighted point-
wise boxplot frequently gives results which are not what would
be expected from the Myer-Cotton scores. The scores based on
the functional boxplot and the weighted functional boxplot both
give results which are more comparable to the Myer-Cotton
scoring.

To further reveal the differences between functional boxplots
and weighted functional boxplots, we quantitatively compare
the four SGS subjects pre- and post-surgery shown before in
Section 8.1. In general, as shown in Fig. 22 the scores of these
four subjects increase after surgery for both methods, which
indicates that all subjects’ airways improved from the surgeries.

8.2.4. Classification of Control and SGS subjects
To demonstrate the classification accuracy for separating

SGS pre-surgery subjects from SGS post-surgery and/or con-
trol subjects we compute the confusion matrices (Provost and
Kohavi, 1998) based on the scores estimated from weighted
point-wise boxplots, functional boxplots and weighted func-
tional boxplots, as shown in Table 7. We label the SGS pre-
surgery subjects as positive (P), and both SGS post-surgery and
control subjects as negative (N). We repeatedly take one sub-
ject out for testing (i.e., leave-one-patient-out) and trained a
Support Vector Machine (SVM) (Cortes and Vapnik, 1995) on
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Figure 22: Quantitative comparison of the scores for four SGS subjects before
and after surgery using functional boxplots and weighted functional boxplots
for atlas-building.

the data from the remaining subjects. We use a linear SVM
for our experiments. For the confusion matrices, we calcu-
late the numbers of true positive (TP), true negative (TN), false
positive (FP), false negative (FN) instances. Besides, we use
the true positive rate (TPR = TP/(TP+FN)), the false positive
rate (FPR = FP/(FP+TN)), the positive predictive value (PPV
= TP/(TP+FP)), and the accuracy (ACC = (TP + TN)/(P+N))
to further assess the performance of the classification between
SGS pre-surgery subjects and others.

In the classification between SGS pre-surgery and control
subjects, for weighted point-wise boxplots one SGS pre-surgery
subject is regarded as a normal control and one control sub-
ject is regarded as pre-surgery; for functional boxplots there are
two false positive subjects, which means two children test pos-
itive but actually do not have subglottic stenoses. In contrast,
the weighted functional boxplot result shows no false positives
or false negatives and yields 100% classification accuracy. In
the classification between SGS pre- and post-surgery subjects,
the weighted point-wise boxplot has one misclassified subject,
and both functional boxplots and weighted functional boxplots
have one false positive and one false negative. The misclassi-
fied cases will be discussed in detail in the next section. The
accuracy of classifying the pre- and post-surgery subjects using
the weighted functional boxplot is about 88%. If we combine
the SGS post-surgery subjects with the normal controls, the ac-
curacy of the weighted functional boxplot increases to about
96%, which is higher than that of the functional boxplot.

It is important to note that no fully conclusive statements can
be made based on the presented classification results. While
Table 7 indicates better prediction performance when using
WFBs, further tests with larger sample sizes are needed to sub-
stantiate our claims.

8.2.5. Discussion of SGS outliers
Based on the above discussion, the scores computed from

weighted functional boxplots can be used to roughly divide the
pediatric upper airways into three different groups: the SGS
pre-surgery group (score in [-1, -0.5)), the SGS post-surgery
group (score in [-0.5, 0)), and the normal control group with
a score larger or equal to zero. In this classification, three
representative subjects should be discussed. Namely, SGS09,
SGS13 and SGS08, which are shown in Fig. 23 together with
their cross-sectional area curves in the age-matched atlases and

13



Table 7: The confusion matrices among groups: SGS pre-surgery (Pre), SGS post-surgery (Post), and control (CRL).

Pre (P) v.s. CRL (N) Pre (P) v.s. Post (N) Pre (P) v.s. Post&CRL (N)
TP = 5 FP = 1 TP = 5 FP = 0 TP = 5 FP = 2

Weighted FN = 1 TN = 67 FN = 1 TN = 11 FN = 1 TN = 77
point-wise boxplots TPR = 0.83, FPR = 0.01 TPR = 0.83, FPR = 0.0 TPR = 0.83, FPR = 0.03

PPV= 0.83, ACC = 0.97 PPV = 1.0, ACC = 0.94 PPV = 0.71, ACC = 0.96

TP = 6 FP = 2 TP = 5 FP = 1 TP = 5 FP = 8
Functional FN = 0 TN = 66 FN = 1 TN = 10 FN = 1 TN = 71

boxplots TPR = 1.0, FPR = 0.03 TPR = 0.83, FPR = 0.09 TPR = 0.83, FPR = 0.10
PPV= 0.75, ACC = 0.97 PPV = 0.83, ACC = 0.88 PPV = 0.38, ACC = 0.89

TP = 6 FP = 0 TP = 5 FP = 1 TP = 6 FP = 3
Weighted FN = 0 TN = 68 FN = 1 TN = 10 FN = 0 TN = 76

functional boxplots TPR = 1.0, FPR = 0.0 TPR = 0.83, FPR = 0.09 TPR = 1.0, FPR = 0.04
PPV=1.0, ACC = 1.0 PPV = 0.83, ACC = 0.88 PPV = 0.67, ACC = 0.96

Notes: P (positive), N (negative), TP (true positive), FP (false positive), FN (false negative), TN (true negative),
TPR (true positive rate), FPR (false positive rate), PPV (positive predictive value), ACC (accuracy).
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SGS08

(a) Atlas for SGS09 and its airway geometry (b) Atlas for SGS13 and its airway geometry (c) Atlas for SGS08 and its airway geometry

Figure 23: Three outliers in Fig. 20 for both functional boxplots and weighted functional boxplots. (a) SGS09 is post-surgery while having a low score more
consistent with a pre-surgery subject; (b) SGS13 is pre-surgery while mixed into the post-surgery group; (c) SGS08 is post-surgery appearing as a normal control
subject consistent with near normal post-operative airway.

their airway geometries.
SGS09 shown in Fig. 23(a) corresponds to the false posi-

tive subject in the confusion matrix of the weighted functional
boxplot in Table 7. This subject is post-surgery with a 50%
airway obstruction based on the clinical diagnosis. From the
cross-sectional area curve and the zoomed-in part of the geom-
etry we can clearly see the subglottic stenosis with a score of
−57.8%, thus resulting in being classified as a SGS pre-surgery
case, which is sensible.

SGS13 is a pre-surgery subject and according to the clini-
cal diagnosis has a 60 − 70% obstruction in the airway. From
Fig. 23(b), we see two stenoses in the airway, as confirmed by
the surgeon. However, because of its score, −34.0%, it is the
false negative subject in the confusion matrix of the weighted
functional boxplot in Table 7 and it is classified as belonging to
the SGS post-surgery group.

The last case, SGS08, is post-surgery and has a very high
score of 60.5%, indicating a normal subject. As shown in
Fig. 23(c), it has a comparable airway size to the atlas and its
airway geometry also indicates no stenosis existing in the air-
way. This subject is confirmed by the surgeon as near normal
caliber airway and hence could also be sensibly classified as
normal. This case shows that our scoring system can reliably
be used to assess abnormalities in pediatric upper airways.

9. Conclusion

We proposed a general method to compute weighted func-
tional boxplots and used it for spatio-temporal atlas building.

We applied it to construct a pediatric airway atlas to assess chil-
dren with subglottic stenosis and a corpus callosum atlas cap-
turing the impact of aging. We also defined a scoring system for
pediatric airways based on the statistical atlas to quantitatively
measure the severity of subglottic stenosis in children. The pro-
posed method is general, easy to compute, and allows robust
statistical description of functional, shape, and image data.

Future work will focus on accounting for the multi-
dimensional nature of shapes and images which is currently not
considered in our method.
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