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Abstract. Atlas-building from population data is widely used in medi-
cal imaging. However, the emphasis of atlas-building approaches is typ-
ically to compute a mean / median shape or image based on population
data. In this work, we focus on the statistical characterization of the
population data, once spatial alignment has been achieved. We introduce
and propose the use of the weighted functional boxplot. This allows the
generalization of concepts such as the median, percentiles, or outliers
to spaces where the data objects are functions, shapes, or images, and
allows spatio-temporal atlas-building based on kernel regression. In our
experiments, we demonstrate the utility of the approach to construct sta-
tistical atlases for pediatric upper airways and corpora callosa revealing
their growth patterns. Furthermore, we show how such atlas information
can be used to assess the effect of airway surgery in children.

1 Introduction

Fig. 1: Illustration of boxplots for points, func-
tions, shapes and images. Median (middle black
line), confidence region (magenta) and the max-
imum non-outlying envelope (two outward blue
lines). The gray dash lines are the outliers.

Atlas-building from population
data has become an important
task in medical imaging to provide
templates for data analysis. Nu-
merous methods for atlas-building
exist, ranging from methods de-
signed for cross-sectional, longitu-
dinal, and random design data.
These approaches typically esti-
mate a representative data object
(e.g., shape, surface, image) for
the population; e.g., a population
mean [7] or median [3] with re-
spect to spatial deformations and appearance. This is a restrictive represen-
tation, as much of the population data is discarded. In the literature, this has
been acknowledged, e.g., by multi-atlas approaches [1] or manifold learning ap-
proaches [5] which retain population information by using sets of representative
objects or by identifying a low-dimensional data representation.



An alternative strategy to retain population information is to represent ad-
ditional aspects of the full data distribution, such as percentiles, the robust
minimum and maximum, variance, confidence regions and outliers as captured
by a boxplot for scalar-valued data. The functional boxplot [12] allows just this
for functions. Similarly, we can use it to treat shapes and images (see Fig. 1)
and therefore as a simple method to augment atlases with additional population
information while avoiding restrictive point-wise analyses of data-objects. Note
that we focus in this paper on augmenting atlases with statistical information
and assume a given spatial alignment of data objects. However, the method could
be extended to build order statistics from low-dimensional manifold embeddings
where point-wise analysis becomes meaningful as each point then represent a
full data object.

As subject data typically has associated individual characteristics (e.g., age,
weight, gender) we want to be able to compute the statistical information con-
tinuously parameterized by these characteristics. For example, given a subject
at a particular age we want to compute subject age-specific confidence regions
to assess similarity with respect to the full data population.

We make the following contributions in this paper:

– We develop a weighted variant of the functional boxplot in Sec. 2. This allows
us for example to use kernel-regression to build spatio-temporal atlases.

– We show the effectiveness of the method in comparison to point-wise analysis
in Sec. 3 highlighting the importance of object-oriented data analysis.

– We show applicability of the method to functions, shapes, and images in Sec. 4
and demonstrate how an atlas can robustly be augmented with statistical
data for two applications: capturing changes in pediatric airway development
and changes of the corpus callosum over time. We also briefly sketch how
our method could be used to build order-statistics on manifolds.

– We show the use of our method for airway surgery assessment in children in
Sec. 5, where an age-adapted atlas can be used to quantify how “normal” a
child suffering from airway obstruction is before and after surgery.

2 Weighted functional boxplots and atlas-building

The population of data-objects for atlas building could be functions, shapes, and
images with associated to subjects characteristics. As an example, we consider
subject age and demonstrate spatio-temporal atlas-building as a combination of
weighted functional boxplots and kernel smoothing.

2.1 Atlas building with kernel regression

Given spatially aligned data objects we want to capture population changes for
example with respect to age. This can be achieved through kernel regression
which essentially assigns weights to data-objects with respect to the regressor
(say a desired age ā). We can use for example a Gaussian weighting function



wi(ai;σ, ā) = ce(ai−ā)2/2σ2

, where ai is the age for the observation i, σ is the
standard deviation for the Gaussian distribution and c a normalization constant
to assure that the weights sum up to one. For scalar-valued data the weights can
simply be used to define a weighted mean. When deformations are of concern
they can be used as weights in an atlas-building procedure for images [2]. Here,
we are interested in augmenting an atlas with functional statistical information
and hence need to develop a weighted functional boxplot to obtain a regressed
median (which is an actual data-object from the population), α central region,
maximum non-outlying envelop, and outliers.

2.2 Weighted functional boxplots

To define a weighted functional boxplot consistent with the functional boxplot
introduced by Sun et. al. [12] requires the definition of a consistent weighted band
depth for functional data. This imposes an ordering of the weighted observations
(data-objects) with respect to the (to be determined) central data-object.

Weighted band-depth The functional boxplot is defined through the con-
cept of band-depth [9, 12]. Since each observation has a different weight, we
need to define a weighted band-depth. Such a definition immediately defines
the weighted functional boxplot. To motivate our choice, assume we want
to compute a standard weighted median of scalar values, which is given by
µ∗ = argmin

µ

∑n
i=1 wi|xi − µ|, where µ is the sought-for median, {xi} are the

measurements, and wi > 0 are weights for the individual measurements. As-
sume that all weights are natural numbers, i.e., wi ∈ N+. This can be achieved
exactly for arbitrary rational wi and approximately in general by multiplying
the energy with a suitable constant and does not change the minimizer. Hence,
we replace the weighted problem with the equivalent unweighted minimization
problem µ∗ = argmin

µ

∑n
i=1

∑mi

j=1 |xi − µ|, where the individual measurements

are simply repeated based on their multiplicities, mi = wi. Similarly, repeating
observations (according to weight), the sampled band-depth can be written as

BD
(j)
n (y) = 1

C

∑
1≤i1<i2<···<ij≤n I{G(y) ⊆ B(yi1 , · · · , yij )}, (1)

s.t. {yi1 , · · · , yij} contains unique observations. (2)

where C is a normalization constant (i.e., contains the number of admissible
permutations), I denotes the indicator function, G(y) is the graph of the function
y(x), and B is the band delimited by the observations given as its arguments.
We made use of the fact that, according to our definition, we only want to
consider unique observations for the depth measure; the {yi} contain the original
observations {yi}, but according to their respective multiplicity given by the
weights. Rewriting the sampled band-depth as

WBD(j)
n (y) =

∑
1≤i1<i2<···<ij≤n wi1wi2 · · ·wijI{G(y) ⊆ B(yi1 , · · · , yij )}∑

1≤i1<i2<···<ij≤n wi1wi2 · · ·wij
(3)



defines the weighted band-depth and generalizes to non-natural-numbered
weights wi ∈ R+. In fact, this is a “natural” way to define a weighted band-
depth and, in further consequence, a weighted functional boxplot. Computing
the weighted band-depth in this way is intuitive, as only bands with large weights
for all its individual observations have a large impact. Furthermore, this weighted
version can be also adapted to the modified band-depth proposed in [12], i.e.,

WMBD(j)
n (y) =

∑
1≤i1<i2<...<ij≤n wi1wi2 · · ·wijλm{A(y; yi1 , ..., yij )}∑

1≤i1<i2<...<ij≤n wi1wi2 · · ·wij
(4)

where Aj(y) ≡ A(y; yi1 , ..., yij ) ≡ {x ∈ Rm : minr=i1,...,ijyr(x) ≤ y(x) ≤
maxr=i1,...,ijyr(x)}, m is the observation’s dimension, λm(y) = λ(Aj(y))/λ(Rm)
and λ is the Lebesgue measure on Rm.

With the above definitions, the band depths of all the sampled observations
can be calculated and ranked in descending order, y[1](x) ≥ ... ≥ y[n](x). y[1](x)
is the deepest observation and regarded as the median of the population, whereas
y[n](x) is the most outlying observation which is a potential outlier.

α central region The concept of central region was introduced in [8]. We define
the α central region for the weighted functional boxplot based on the weights of
observations. The band of the α central region is delimited by the α proportion
of all weights, i.e., the accumulated weights of the first p deepest observations

WCRα = {(x, y(x)) : min
r=1,...,p

y[r](x) ≤ y(x) ≤ max
r=1,...,p

y[r](x),

(
∑

r=1,...,p−1

w[r] < α) ∩ (
∑

r=1,...,p

w[r] ≥ α), 0 ≤ α ≤ 1}, (5)

where w[r] corresponds to the weight for the r-th deepest observation. When
α = 0.5, (5) corresponds to the 50% central region WCR0.5. In practice, the
50% central region is commonly chosen as the confidence region for analysis
because it 1) is a robust range for interpretation and 2) enables visualization of
the data spread which is less affected by outliers or extreme-values.

Outlier detection In classical boxplots, the outliers can be detected by the
1.5 IQR (interquartile range). This is comparable to 1.5 times the height of the
50% central region for the weighted functional boxplot. Besides, the weights of
the observations also need to be taken into consideration during outlier detection.
According to the probability density function for a boxplot based on a normal
distribution, the IQR is equal to the 50% distribution and the 1.5 IQR covers
the 99.3% distribution. Hence, we define fences by combining the one of the
1.5 IQR with the accumulated weights consistent with the 1.5 IQR of the normal
distribution, and any objects outside the fences will be flagged as outliers:

Cfences = {(x, y(x)) :max(minr=1,...,qy[r](x),min(WCRα)− 1.5 ∗ IQR)∪
min(maxr=1,...,qy[r](x),max(WCRα) + 1.5 ∗ IQR),

(
∑

r=1,...,q−1

w[r] < β) ∩ (
∑

r=1,...,q

w[r] ≥ β), β = 0.993}
(6)



3 Comparisons of boxplots for analysis

Fig. 2: Observations.

We compare atlases built by 1) weighted point-wise
boxplots and 2) functional boxplots, using synthetic
observations defined by

yi(x) = 500 ∗ (1 + sin(2πx+ 0.1πi)) + 2 ∗ agei,

where x ∈ [0, 1], i is the curve index and agei its age.
Fig. 2 shows the curves colored by age.

Fig. 3(a) shows an atlas built with the weighted
point-wise boxplot including four typical percentiles and the point-wise median.
While the median curve follows the overall population trend, it is not close to any
of the observations because weighted boxplots applied in a point-wise manner to
a population of functions disregard the spatial aspect of the functional data. In
contrast, our method 1) provides a median curve which corresponds to a curve
in the data set, and 2) allows for the computation of functional outliers (gray
dashed lines) which results in a more robust statistical description for the atlas.

(a) Atlases built by the weighted pointwise boxplot and the weighted functional boxplot.

(b) Atlases built by the functional boxplot and the weighted functional boxplot.

Fig. 3: Comparisons of boxplots on the synthetic data.

To construct an atlas at a particular age using standard functional boxplots,
we use a uniform window to pick curves centered around the age of interest. As
shown in Fig. 3(b), only two curves are available in the uniform window for atlas-
building with functional boxplots, and one of them is flagged as an outlier. This
atlas includes little information about the population. The atlas built using the
weighted functional boxplot (with a Gaussian window size that is comparable to
the uniform one according to [10]) captures the population data much better as
it does not suffer from the local data sparsity and makes use of all the data.



4 Applications

4.1 Data

The data objects for the weighted functional boxplot can for example be func-
tions, shapes and images (with shapes and images converted to long vectors).

Functions: Our first application is the construction of a pediatric airway
atlas for normal subjects to assess airway malformations (subglottic stenosis
(SGS)). The observations are a population of 1D functions describing airway
cross-sectional areas parameterized along the centerline of the airway. Functions
are generated from 3D CT data for 44 normal subjects using the approach in [6]
followed by landmark based spatial alignment [11]. We focus the analysis on the
region between the true vocal cord and the trachea carina, where SGS locates.

Shapes: The second application is to build a corpus callosum atlas and to
explore shape changes with age. The observations are a collection of 32 corpus
callosum shapes of varying ages from [4]. Each shape is represented by 64 2D
boundary points. We perform affine alignment before atlas constructions.

Images: The third application is to understand age-related changes of the
corpus callosum using binary images of the corpus callosum segmentations. The
images are converted from the aligned corpus callosum shapes.

4.2 Comparison with point-wise boxplots

We compare the functional boxplot to the point-wise approach on above real
datasets to further demonstrate the advantages of our method. Fig. 4 shows the
median (the black curve) and the confidence region (the 50% central region, ma-
genta) for both point-wise and functional boxplots. We count the number of data
objects inside the confidence region: for the point-wise boxplots only 5 (of 44)
functions and none of the shapes or images are fully within the confidence region.
However, the functional boxplots by construction achieves a confidence region
containing 50% of the data objects. Hence it is a more intuitive representation
of true data-object variation. To construct the point-wise confidence regions for
shapes we locally compute distances with respect to the median point which
establishes an (unsigned) ordering. The confidence region is then the convex
hull of the closest half of the points. This strategy would extend to constructing
approximate confidence regions with respect to manifold embedding coordinates.

4.3 Atlas Construction with weighted functional boxplots

The weighted functional boxplot is used to build a pediatric airway atlas with
variance σ = 30 months for the weighting function, Fig. 5(a), and the corpus
callosum shape/image atlases with σ = 10 years, Fig. 5(b). The pediatric airway
atlases capture increases in cross-sectional airway area with age which is consis-
tent with the growth pattern for pediatric airways and indicates the necessity of
building an age-adapted atlas as a reference. The corpus callosum atlases reveal
the thinning trend in the shape and the decreasing volume in the image with
age, especially at the anterior and posterior parts consistent with [4].



Fig. 4: Comparison between point-wise (top) and functional (bottom) boxplots
on functions, shapes and images (from left to right).

(a) Functions: pediatric airway atlases at 34 (left) and 160 (right) months respectively.

(b) Shapes (left) and images (middle) : corpus callosum atlases at 37 and 79 years.

Fig. 5: Age-adapted atlases for functions, shapes, and images.

5 Assessment with Statistical Atlas

To test the utility of the statistical atlas built by weighted functional boxplots we
show (Fig. 6) airway changes of a SGS subject before (at 9 months) and after (at
20 months) surgery compared to the age-matched normal control airway atlas.
Before treatment, there is a constricted region outside the atlas; after treatment,
the airway size increases and the corresponding curve is almost entirely within
the maximal non-outlying envelope, indicating a successful surgery.

6 Discussion and Conclusions



Fig. 6: Airway changes for a subject pre- and post-
surgery (green lines) compared to the age-matched
atlas. The stenosis of the airway is marked by the red
ellipse on the pre-surgery geometry and no stenosis
exists in the post-surgery geometry.

We proposed a method to
compute weighted functional
boxplots and use it for spatio-
temporal atlas building. We
applied it to construct a pe-
diatric airway atlas to as-
sess children with subglottic
stenosis and a corpus callo-
sum atlas capturing aging.
The proposed method is gen-
eral, easy to compute, and
allows robust statistical de-
scription of functional, shape,
and image data.
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