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Abstract—Compilers are essential in daily development, but
their bugs can introduce hidden bugs to many software projects.
As compiler bugs are important, researchers have conducted
various empirical studies to understand their characteristics.
Most of the prior studies analyze only the bug reports and patches
of compilers. From such sources, they analyze the root causes,
locations, and repairs of compiler bugs. Their findings are useful
for understanding compiler bugs themselves, but to the best of
our knowledge, the impact of compiler bugs is rarely explored.
For example, before compiler bugs are fixed, programmers would
bypass such bugs, but no prior study analyzes the workarounds
for compiler bugs.

To complement the prior studies, in this paper, we analyze
how the bugs of two mainstream compilers, gcc and llvm,
affect real development. Besides the bug reports and patches
of compilers, in this study, from 603 GitHub projects, we collect
806 commits whose messages mention compiler bugs. From the
dataset, we analyze how compiler bugs affect real projects.
Furthermore, we manually analyze 219 commits whose messages
explicitly mention compiler bugs. Our results lead to eight useful
findings for programmers, compiler developers, and researchers.
For instance, based on our findings, we suggest that it is critical to
analyze the long-term impact of compiler bugs. Our story about a
gcc bug confirms that compiler bugs can affect the compilations
of projects even after these compiler bugs have already been fixed.

I. INTRODUCTION

Each time when programmers modify source files, they need
to compile their files. The compilation process can introduce
serious hidden bugs, since compilers can have bugs like
other software artifacts [35], [40]. For example, compilers can
compile valid programs to wrong machine code. Meanwhile,
compilers can fail to identify invalid programs and generate
machine code whose behaviors are undefined. As these bugs
are difficult to detect, compiler bugs can introduce significant
risks to the maintenance of software projects. As compiler
bugs are critical, researchers [31], [33], [37], [43], [47] have
conducted various empirical studies to understand compiler
bugs. These studies have derived interesting findings about
the buggy locations [37], repair patterns [37], [43], [47], and
causes [33], [37] of compiler bugs. In the above studies,
researchers analyze the bug reports and their patches to
understand compiler bugs.

When programmers maintain a software project, if they
encounter compiler bugs, they can implement workarounds
to bypass compiler bugs. These workarounds provide a new
angle for understanding compiler bugs. First, as compiler bug

reports do not report the projects that encounter compiler
bugs, it is difficult to know which projects (e.g., Linux) can
encounter compiler bugs. Second, compiler bug reports can be
polluted by the reports submitted by researchers. Researchers
either use random programs [24], [42] or mutated programs to
test compilers, which may not appear in real development. In
contrast, the compiler bugs in workarounds are all real bugs
in the wild. Finally, compiler bug reports rarely introduce how
to bypass them. To resolve the above limitations, Zhong [45]
conduct an pioneer study and explore how compiler bugs affect
real development. As the first work on this topic, he explored
affected (end) users, modified lines of workarounds, and buggy
compiler components when compiler bugs are encountered in
real development. Although his findings are insightful, his
study does not cover all perspectives about the influence of
compiler bugs. Many questions are still open. For example,
what workarounds would programmers use to bypass compiler
bugs with specific symptoms?

To meet the timely need, we conducted an empirical study
on two mainstream compilers such as gcc and llvm. Besides
bug reports and their patches, in this study, we collect 2,989
commits whose messages mention the bugs or workarounds
of two mainstream compilers. We analyze the characteristics
of projects that encounter compiler bugs in real development.
Among them, we manually inspected 219 commits whose
messages explicitly mention the URLs of compiler bug reports.
As our commits are collected from real development, we can
analyze the impact of compiler bugs in real development.
Compared with the prior studies, our study has multiple
advancements. First, the prior studies do not analyze the
outreaching impact of bugs, but we explored their impact, e.g.,
the workarounds of compiler bugs. Second, the distribution of
compiler bugs can be distorted since researchers and compiler
developers themselves have filed many compiler bugs, but our
study reveals the distribution from real development. In this
study, we explore the following research questions:

• RQ1. Which types of projects are affected?
Motivation. The distribution of compiler bugs in real-
world projects may illustrate their potential impact.
Protocol. To answer this question, we extract the code
lines, issue reports, stars, and contributor numbers of the
projects to learn their characteristic.
Answers. Most compiler bugs occur in projects whose



code lines are above 106 (Finding 1). Although most
affected projects have only ten stars, most compiler bugs
can affect around 100 programmers (Finding 3). As most
projects have no issue reports, most compiler bugs are
identified by programmers themselves (Finding 2).

• RQ2. What are the symptoms in the wild?
Motivation. Compiler bugs have various behaviors and
can result in different degrees of impact on programs.
Protocol. To answer this question, we build a taxonomy
based on the taxonomies of gcc and llvm.
Answers. In real development, Finding 4 shows that the
symptoms of most compiler bugs are displaying wrong
diagnostic messages (29.22%), rejecting valid programs
(28.77%), and generating wrong code (23.29%). Com-
piler bugs that are triggered by valid programs are more
frequently mentioned than those that are triggered by
invalid programs (Finding 5).

• RQ3. How do programmers bypass compiler bugs?
Motivation. The results are useful for understanding how
programmers live with unfixed compiler bugs.
Protocol. To answer this question, we construct a taxon-
omy for workarounds.
Answers. Finding 6 shows that workarounds for compiler
bugs either modify programs that trigger bugs (60.73%)
or build files to suppress warning messages (33.33%).

• RQ4. What are the associations between symptoms
and workarounds of compiler bugs?
Motivation. If programmers can understand the relation
between symptoms and workarounds, they can choose the
most feasible workarounds.
Protocol. To answer this question, we count the types of
workarounds for each symptom.
Answers. Finding 7 shows that modifying programs is
used to bypass all types of symptoms while modifying
build files is often used to bypass wrong warnings and
optimization bugs.

II. COMPILER BUG IN REAL DEVELOPMENT

Most prior studies [31] analyze the bug reports and patches
of only compilers. From such sources, it is feasible to learn
the symptoms and causes of compiler bugs, but these sources
do not provide the context of compiler bugs. As a result, the
prior empirical studies can derive only partial findings. For
example, a gcc bug [1] complains that gcc does not imple-
ment some intrinsics. From its description, it is straightforward
for researchers like Shen et al. [33] to collect its symptom
and root cause. As these intrinsics are unimplemented, its
symptom could be rejecting valid programs if they call these
intrinsics. However, from only the bug report and its patch, it is
infeasible to understand its impact on real-world development.
For example, which missing intrinsics are more frequently
called by real projects? Which one should be implemented
first? Can it be bypassed, and if so, how? Due to the limitation,
the prior studies do not answer the above questions.

To complement the prior studies, we analyze commits that
mention compiler bugs. If programmers encounter compiler

bugs in real development, they can leave traces in such
commits. For example, Oblas is a blas-like routine to solve
systems in finite fields. Its commit [877a4b] mentions the same
bug and presents a workaround:
1 #if defined(__GNUC__) && !defined(__clang__) \
2 && !defined(__ICC)
3 static inline __m256i __attribute__((__always_inline__))
4 _mm256_loadu2_m128i(const __m128i *const hiaddr, const

__m128i *const loaddr) {
5 ...
6 }
7 #endif

Among the missing intrinsics, the above commit shows that
_mm256_loadu2_m128i() is truly called by a real project.
To bypass this bug, Oblas programmers implement their own
version of this intrinsic. The developers of gcc can put more
effort into implementing this intrinsic, and they can learn
the existing implementation from Oblas programmers. Other
programmers can also learn how to bypass compiler bugs from
this commit. As our data source provides more information,
we can derive findings that do not appear in prior studies.

Despite the benefits, it is more difficult to analyze commits
than compiler bug reports. In this example, this workaround
involves modifying two source files, resulting in 63 additions
and 46 deletions. Among them, 8 lines of code are critical
to understand the workaround. Unlike reading bug reports,
commits often have only short messages. We have to manually
read code changes to fully understand how workarounds work.
Although it is more difficult to analyze commits than to read
bug reports, we have analyzed 219 commits, and the size of
the subjects is comparable with the prior studies. For example,
Romano et al. [31] and Wu et al. [38] analyze 146 and 347
compiler bug reports, respectively.

III. METHODOLOGY

In this section, we introduce our analysis methodology.

A. Dataset

In this study, we analyze the bugs of two popular compilers,
gcc [15] and llvm [14]. These compiler bugs are mentioned in
commit messages. Based on GitHub API [5], we implement
a tool to search for such commits. In 2022, with our tool,
we queried GitHub for the workarounds or bugs of gcc and
clang. When building the keywords, we concatenate “bug”
with compiler names, since it is used to describe abnormal
behaviors, and we concatenate “workaround”, since it can be
used when bypassing compiler bugs. Table I shows the results.
Column “Compiler” lists compilers. Column “commit” lists all
retrieved unique commits. GitHub’s search function can only
retrieve up to one thousand search results. From them, we
remove duplicated commits from forked projects.

Some retrieved commits are irrelevant to compiler bugs. For
example, the message of a retrieved commit [2] is “Fixed bugs
in flash boiling model, ran clang formatting”. In this commit,
a programmer fixed an irrelevant bug and used clang to
format source files. Therefore, we consider this commit to be
unrelated to compiler bugs and remove it from our dataset. The
filtered data is used as the input of our automatic analysis in

https://github.com/sleepybishop/oblas/commit/877a4bffae1bcb18d74015889a11ae0b2d6cbb12


TABLE I: Our dataset

Keyword commit RQ1 Other RQs
filtered project commit project

gcc 1,471 417 329 96+106 182
clang 1,518 389 303 17 17
total 2,989 806 603 219 188

Commits mention compiler bugs

GitHub API

Commits mention 
bug trace website

RQ4: Association

Code modification RQ3: Workaround

RQ1: ProjectProject features

Related bug report RQ2: Symptom

Fig. 1: Workflow of our research

RQ1. Subcolumn “filtered” of column “RQ1” lists the commits
after we remove the irrelevant commits. Subcolumn “project”
lists the number of projects. As some projects overlap, the
totals are less than the sums.

With his support tool, Zhong [45] analyze more compiler
bugs, but a tool cannot implement complicated and accurate
analysis, e.g., classifying the workarounds of compiler bugs.
To complement his study, we introduce manual analysis in
RQs 2, 3, and 4. In particular, we manually select the commits
whose messages explicitly mention the URLs of compiler bug
reports from the commits in RQ1. In total, we select 113 such
commits. To collect more commits, we search Gitbhub with
“gcc.gnu.org/bugzilla”. The urls of all gcc bug reports have
the above keyword. In this way, we retrieved 106 additional
commits. As reported by Zhong [45], about half of mentioned
compiler bugs are fixed.

In total, we analyzed 219 commits in RQs 2, 3, and 4. The
number is comparable with some prior studies [31], [38].

B. General Protocol

Figure 1 shows the overall workflow of our study.
In RQ1, from the projects these commits belong to, we

extract their features like the number of code lines, issue
reports, stars, and programmers. We explore which types of
projects can encounter compiler bugs in real development. We
implement a tool based on GitHub API [5]. The tool can
calculate the metrics of projects (e.g., lines of code).

The other RQs analyze the symptoms and workarounds of
compiler bugs. We cannot implement a tool for these RQs
since it is even difficult to manually determine and classify the
symptoms and workarounds of compiler bugs. For example,
the commit [3] has only a simple message, “Workaround for
old GCC 4/8 bug”. From only this message, it is infeasible
to determine its symptom. Although it is feasible to check
out the commit and compile it locally, it is challenging to
identify the symptoms of this bug. First, many commits do not
compile after they are checked out [36]. For example, if some
API libraries are missing, compilers will report the errors but
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Fig. 2: The characteristics of projects.

the symptoms of compilers are hidden. Second, the symptoms
of some compiler bugs are difficult to identify. For example,
compilers can compile source files into wrong code. Thus, it
is hard to distinguish whether a symptom is caused by source
files or compilers. As introduced in Section II, some commit
messages explicitly mention the URLs of compiler bug reports.
From such bug reports, it is feasible to learn the symptoms of
compiler bugs. Both gcc and llvm have their own categories
of symptoms. During our manual inspection, we merge the
commits of each compiler from two keywords, and we analyze
only those commits whose symptoms are explicitly described.
We build our category based on their categories. For the
workarounds, we inspect whether they modify source files
or build files. If they modify source files, we further analyze
which types of source files are modified. If they modify build
files, we further analyze which options are disabled.

IV. EMPIRICAL RESULT

This section presents our analysis results. More details are
listed on our project website:
https://github.com/Chandlerooo/CompilerWorkaround

We also provide a table on the website to easily access the
links to commits and bug reports mentioned in this section.

A. RQ1. Characteristic of Project

1) Protocol: In this research question, we explore which
types of projects can encounter compiler bugs. We select all
the projects in Table I as the input of this study. For each
project, our tool extracts its lines of code, the number of
issues, the number of programmers, and the number of stars.
We group each type of data and draw a box plot to analyze
its distribution.

2) Result: Figure 2a shows the total code lines per
project. We present the results on a logarithmic scale as
the code lines vary significantly among keywords. The key-
words’ medians are around 107 lines of code and 72.0% of
projects have more than one billion lines. Several projects
are quite large. For example, when the keywords are “bug
+ gcc” and “bug + clang”, the largest retrieved project is
sourceruckus/linux-mdl [6]. As a forked Linux kernel,
this project has over a hundred billion lines of code. A commit
of this project [6] mentions a gcc bug [7]. This bug report
complains that gcc wrongly calculates the length of a union

struct, and produces false warnings. To bypass the compiler
bug, programmers modify a struct in this commit. gcc stops
producing false warnings after the modification. This compiler

https://github.com/Chandlerooo/CompilerWorkaround


TABLE II: The taxonomy of our observed bug symptoms

our taxonomy gcc taxonomy llvm taxonmy
wrong-code wrong-code miscompilation
rejects-valid rejects-valid compile-fail
diagnostic diagnostic

optimization
missed-optimization performance
ra quality-of-implementation
lto slow-compile

crash ice-on-valid-code

c++ feature c++-lambda
C++-coroutines

link-failure link-failure
environment build build-problem

bug affects Linux, a project with billions of lines of code. The
above observations lead to a finding:

Finding 1. Most projects whose commit messages
mention compiler bugs have around 106 lines of code.

The prior studies [39], [43], [47] report no similar findings.
This finding can warn programmers about the importance of
compiler bugs if the sizes of their projects reach a bar.

In GitHub, issues serve as an important method for users to
report compiler bugs they encounter. For example, golang/go
is an emerging programming language popular in implement-
ing web servers and storage clusters. Until now, its issue
tracker has more than 7,980 issue reports. Among them,
we find a bug reported by a go programmer [53528]. This
programmer implements several projects in go but is not a core
member of the go project. This programmer complains that go
builds cannot be reproducible due to the gcc bug. This gcc

bug report complains that a gcc source file passes the source
directory directly to the compiled code. This compiler bug can
lead to unreproducible builds of go projects. Although the go

and the gcc bug reports are still open, this example shows
that users can encounter and even bypass compiler bugs.

Figure 2b presents the number of issues per project. Nearly
half of the projects have no issue report. As a result, many
projects will not receive bug reports involving compilers, and
many programmers must identify compiler bugs by them-
selves. In particular, 45.6% of projects that count gcc bugs
and 46.9% of projects that count llvm bugs have no issue
report. An issue tracker is the official channel for users to
report bugs. In the absence of issue reports, programmers
must identify compiler bugs on their own. Based on the above
observations, we conclude a finding as follows:

Finding 2. Although compiler bugs can affect users,
most compiler bugs are identified by programmers
themselves since many projects have few or even no
issue reports.

The prior studies on compiler bugs [39], [43], [47] do
not report similar findings, but this finding is consistent with
other studies on open-source projects. For instance, Zhong
et al. [46] analyze 11,684 open-source projects and find that
80% of projects have fewer than 10 bug reports. Most such

0 10 20 30 40 50 60
bug symptom number

environment
link-failure

c++-feature
optimization

crash
wrong-code
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diagnostic

gcc
clang

Fig. 3: The overview of bug symptoms

projects are not toy programs, but the distribution highlights
the challenges of implementing attractive open source projects.
As most projects have no issue reports, programmers must
identify the impact of compiler bugs in most projects, but it
is challenging even for experienced programmers to identify
some compiler bugs. For instance, compilers can accept invalid
programs without any warnings and thus silently introduce
bugs. According to this finding, there is a strong need for a
tool that can notify programmers whether their source code
will be affected by compiler bugs.

GitHub users can star projects and keep track of their
interested projects. The stars of a project construct an indicator
of popularity. Figure 2c shows the distribution of stars. Around
30% of projects have no stars, and the medians for both com-
pilers are under 30. The contributor of a project contributes
to at least a commit of the project. Figure 2d shows the
distribution of contributors. Around one-quarter of the projects
have more than 270 contributors. The above observations lead
to a finding:

Finding 3. Most affected projects have only ten stars
but can have more than 100 programmers.

The prior studies on compiler bugs [39], [47] do not
report similar findings. This finding implies that compiler bugs
can affect many small projects and programmers. In small
projects, many programmers are not as experienced as those
in large projects. They can have more difficulties in identifying
whether their code triggers compiler bugs. It is desirable if an
approach can actively notify compiler bugs.

B. RQ2. Symptom

1) Protocol: In this research question, we analyze the
symptoms of compiler bugs. Here, a symptom of a bug refers
to the observable behaviors or outcomes caused by the bug.
The messages of commits are often concise. In addition, such
messages often mention the symptoms of their own bugs but
seldom mention the symptoms of compiler bugs. As a result,
it is quite difficult to understand the symptoms of compiler
bugs relying only on commit messages. It is also difficult to
reproduce such bugs. First, many commits are not compilable
after they are checked out [36]. For example, a checked-out
project can lose some libraries and a compiler bug may not
be triggered before the proper versions of such libraries are

https://github.com/golang/go/pull/53528


located. Second, a compiler bug can be triggered by specific
versions of compilers, but such versions are not recorded.

Instead of identifying symptoms by ourselves, we refer to
bug reports to learn their symptoms. As shown in Section II,
commits can explicitly mention the URLs of compiler bugs.
These bug reports explicitly describe the symptoms of com-
piler bugs. For example, gcc developers explicitly classify
their bug reports with keywords [8], and some keywords
describe the symptoms of bugs. In this study, we analyze all
commits that explicitly mention compiler bug reports, which
are mostly the URLs of compiler bug tracer websites.

Table II presents our taxonomy. Both gcc [8] and llvm

[9] and keywords to describe the symptoms of bugs. Columns
“gcc taxonomy” and “llvm taxonomy” respectively list the
keywords defined by gcc and llvm . We merge their key-
words to build our taxonomy. Column “our taxonomy” shows
the result. For instance, we merge “missed-optimization” and
“ra” to our optimization. This table does not show all keywords
of gcc and llvm since they do not appear in our dataset.

Among the keywords of a bug report, we consider only
the symptom keywords. For example, a bug report [10] has
three keywords: diagnostic, patch and wrong-code. The
patch keyword denotes that a patch is implemented to fix this
bug. We ignore this keyword but consider the diagnostic

and wrong-code keywords since they are listed in Table II.
This bug report has two symptoms, and we count it for both
diagnostic and wrong-code. As a result, the sum can be
more than the total of commits with bug reports.

2) Result: Figure 3 shows the overview of symptoms. The
specific types are as follows:

S1 Diagnostic (64/219, 29.22%). This category includes
compiler bugs that produce wrong messages. For example, in
a commit [bace34] of the project DXX-Rebirth, programmers
meet the situation that gcc wrongly emits warnings. For
example, the bug-trigger code is as follows:

1 void prepare_error_string(..., const void *t)

When an uninitialized array is passed by const T * to a
function, gcc 11 assumes the array is an input to the function
and issues a warning accordingly. However, in this particular
code, the pointer is passed with a write-only purpose – record-
ing the memory address of the affected array of the eventual
exception. The called function does not dereference the pointer
and thus cannot be affected by any uninitialized values in
the underlying array. The developers of gcc recognized that
this warning message was incorrect and classified it as a
diagnostic bug. As a result, we put this bug into the
diagnostic category.

S2 Wrong code (51/219, 23.29%). If a program is compiled
to wrong code, we determine it as a wrong-code bug. QUICK
SILVER is a project of flight controller firmware. A commit
of QUICK SILVER [cd821b] complains that gcc can fail to
read unaligned structs. For instance, consider the following
struct:

1 struct foo {
2 char c;

3 int x;
4 } __attribute__((packed));
5 struct foo arr[2] = { { ’a’, 10 }, {’b’, 20 } };
6 int *p0 = &arr[0].x;
7 int *p1 = &arr[1].x;

A compiler will lay out the members of a struct in their
declared order, and insert padding bytes between members to
ensure each member is aligned. The packed attribute asks
gcc not to add padding bytes. The compiled code works well
on Ubuntu but fails to retrieve the values by referencing the
pointers (*p0 and *p1) on Solaris. The gcc developers
determine that this is a wrong-code bug and agree that gcc
should warn the unaligned members. As a result, we count it
in both wrong-code and diagnostic categories.

S3 Rejects-valid (63/219, 28.77%). If a program conforms
to the language specifications of C/C++, it is considered
valid. If a compiler rejects a valid program, we classify the
bug in this category. For example, INET is an open-source
communication networks simulation package designed for the
OMNEST/OMNeT++ simulation system. An INET programmer
submitted a commit [96b05e] to bypass a gcc bug that rejects
valid programs. An example is as follows:
1 struct A {
2 template<class T> struct B;
3 template <> struct B<int*> { };
4 };

In the above program, Structure A contains a template
structure B and a full specialization for the template where
T is explicitly defined as int*. In other words, it provides a
specific implementation for the case when T is *int. Accord-
ing to CWG 727 [11], a full specialization can be declared
inside a class definition. Nevertheless, during the compilation
process of GCC, an error occurred with the message “error:
explicit specialization in non-namespace scope” on the third
line of the above program. The gcc developers confirm that
gcc wrongly rejects the valid program. The above observations
lead to a finding:

Finding 4. In real development, the symptoms of most
compiler bugs are displaying wrong diagnostic mes-
sages (29.22%), rejecting valid programs (28.77%),
and generating wrong code (23.29%).

When analyzing tool-chain compiler bugs, Xie et al. [39]
report that the most frequent symptoms are compilation fail-
ures, e.g., crashes. Their finding is consistent with the gcc

issue tracker [8], where the top three symptoms are crashes
(33.6%), generating wrong code (16.5%), and optimization
issues (16.5%). Research tools mainly detect crashes (see
Section VII). Still, we find that programmers tend to discuss
more interesting compiler bugs, which are less studied.

Although invalid programs violate language specifications,
compilers can fail to identify them due to accepts-invalid

bugs. When this happens, invalid programs are silently com-
piled to machine code, but their behaviors are unpredictable.
According to the gcc issue tracker [8], rejects-valid

bugs and accepts-invalid bugs account for 9.8% and

https://github.com/dxx-rebirth/dxx-rebirth/commit/bace34343789cbab2995d0c22aa6822b9e5b67ce
https://github.com/BossHobby/QUICKSILVER/commit/cd821b919d0ca514b6ea3c6ff3dd39e6be63d1c4
https://github.com/inet-framework/inet/commit/96b05e617a8e3506fc5a7460a14dd04d377b3c2f


4.4% of all bugs, respectively. However, in this study, despite
the presence of many rejects-valid bugs, we did not
find any accepts-invalid bugs. Programmers typically do
not intentionally write invalid programs during real devel-
opment. As they believe that all their written programs are
valid, if compilers do not identify invalid programs, pro-
grammers may not notice accepts-invalid bugs. Similarly,
we find many iceonvalidcode bugs, but we do not find
ice-on-invalid-code bugs, although it accounts for 7.6%
of all bugs in the gcc issue tracker. The observations lead to
the following finding:

Finding 5. Compiler bugs triggered by valid programs
leave more traces in commits than those triggered by
invalid programs.

The prior studies on compiler bugs [39], [43], [47] do not re-
port similar findings. This finding indicates that compiler bugs
stemming from valid programs tend to be more noticeable. As
a result, these bugs leave more traces of such bugs in commits.
In contrast, compiler bugs involving invalid programs are often
overlooked, as programmers may not realize that their code is
invalid. As a result, these bugs leave fewer traces and are more
challenging to detect.

S4 Crash (23/219, 10.50%). If compilers crash during
the compilation process, we put the corresponding bugs into
this category. Compiler developers often call them internal
compiler errors (ICEs). For example, a commit [482ac5]
complains about a crash caused by a compiler bug. The gcc

compiler crashes at the following code line:

1 util::Variant<decltype(NULLPTR), std::shared_ptr<
Scalar>, ...> value;

When compiling with an optimization level that is greater
than 2, gcc encounters an internal compiler error and crashes
with an error message “internal compiler error: Segmentation
fault”. Therefore, we classified this bug into the crash category.

S5 Optimization (14/219, 6.39%). This category includes
compiler bugs that are related to optimizations. A commit from
Xenia [10ff77], an experimental emulator for the Xbox 360,
mentions a compiler bug. The reduced program is as follows:

1 static void foo(int *x, long n){
2 long i = 0;
3 for (; i + 4 <= n; i += 4) {} // main loop
4 for (; i < n; i++) { // residual loop
5 x[i]++;
6 }
7 }
8 void bar(int *x){
9 foo(x, 128);

10 }

In the above program, when the n parameter of foo is set to
128, after executing the “main loop”, i would be equal to n,
and the line in the “residual loop” would not be executed.
Therefore, the loop optimization of gcc skips the residual
loop in the compilation stage. When the compiler flags are
set to -O1 -ftree-vrp, gcc still evaluates the loop control
expression of the residual loop during execution, even if it is
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Fig. 4: The distribution of workarounds

always false. In addition, it reports a false warning on Line
5: “warning: iteration 4611686018427387903 invokes unde-
fined behavior [-Waggressive-loop-optimizations]”, although
the loop does not iterate so many times. The gcc developers
confirm that the loop optimization is missing and this warning
message is wrong. As a result, we count this bug in both our
optimization and diagnostic categories.

S6 C++ feature (10/219, 4.57%). If the bug is related to a
C++ feature, we determine its symptom as C++ feature. For
example, in a commit of freeciv21 [0df9a4] the programmer
mentions a gcc bug. This gcc bug report complains of a
crash when utilizing sizeof() in a C++’s lambda expression.
An example program is as follows:

1 unsigned count = 5;
2 bool array[count];
3 [&array] () {
4 array[0] = sizeof(array) > 5;
5 }();

gcc fails to resolve the lambda expression of the above
program and crashes with an error message “internal compiler
error: in expand expr real 1”. As lambda expressions are a
C++ feature, we put it into the C++ feature category, and
we put it into the crash category since it crashes.

S7 Link-failure (5/219, 2.28%). The compiler bugs in this
category fail to link due to various reasons, e.g., missing
symbols, or undefined references. For example, libjxl is a
library for manipulating JPEG images. In a commit [87fe7c],
a programmer complains that gcc fails to automatically link
the atomic library and requires explicit linking in the CMake

module. Thus, we classify this bug as a link-failure bug.
S8 Environment (3/219, 1.37%). A compiler bug in this

category is not triggered by programs but by the environment,
such as platforms. Spack [12] is a multi-platform package
manager project. A commit of this project [6e36c7] mentions
a compiler bug. This bug occurs in the bootstrap comparison.
The bootstrap builds the target version of gcc with the existing
C compiler and builds the target version of gcc with the newly
built gcc. If the two target versions are identical, it determines
that the compiler is correct. According to this commit, the
bootstrap fails when gcc 8 is checked on macOS bigsur
apple with an error message “Bootstrap comparison failure!
gcc/tree-ssa-operands.o differs ...”. The developer confirms and
later fixes this bug. As this bug occurs in compiler-building
environments, we classify it into this category.

https://github.com/apache/arrow/commit/482ac5fa763f48efca8f83560da51fff1084df49
https://github.com/xenia-project/xenia/commit/10ff77a24f25827021a900b730e8868b878b1f14
https://github.com/longturn/freeciv21/commit/0df9a42647cb904d51ab2b225539edb81982382d
https://github.com/libjxl/libjxl/commit/87fe7c16e1fb2e21b6a1dca26782950ae1559d99
https://github.com/spack/spack/commit/6e36c71d6873d5b2feb9494f670b0277a9e68649


In summary, compared with compiler bugs triggered by
invalid programs, those triggered by valid programs leave more
traces in commits. From our collected commits, in total, we
identify 8 symptoms of compiler bugs.

C. RQ3. Workaround

1) Protocol: In this research question, we analyze the cat-
egory of workarounds for compiler bugs. Here, workarounds
refers to the modifications of bypassing bugs. From Table I, we
select the commits that implement workarounds for compiler
bugs. As the first step, we classify workarounds by the
types of their modified targets. We find that workarounds can
modify source files, build files, and restrict compiler versions.
Among them, if a workaround modifies source files or build
files, we further refine it into subcategories. In particular,
if a workaround modifies source files, we analyze whether
modified code lines trigger compiler bugs. We then compare
the code before and after the modifications to learn why
a modification can bypass compiler bugs. If a workaround
modifies build files, we analyze the functionalities of modified
compilation flags.

2) Result: Figure 4 shows the distribution of workarounds.
T1 Repairing programs (133/219, 60.73%). In this cate-

gory, programmers modify source files.
T1.1 Refactoring (107/219, 48.86%). These compiler bugs

are triggered by specific programs, and programmers refactor
code to avoid the symptoms. For example, the bug mentioned
in S3 shows a reject-valid bug from INET [96b05e]. The
following program triggers this compiler bug:
1 class INET_API{ ...
2 template <typename T>
3 const Ptr<T> peek(...) const {
4 ... // general template code
5 }
6 template <>
7 const Ptr<Chunk> peek(...) const {
8 ... // full specification code
9 }}

Due to the compiler bug, gcc produces an error on the
full specification of a template at Line 8. To bypass this bug,
programmers modify the above program as follows:
1 class INET_API{ ...
2 template <typename T>
3 const Ptr<T> peek(...) const {
4 if (std::is_same<T, Chunk>::value){
5 ... // full specification code
6 }
7 else{
8 ... // general template code
9 }}}

The workaround abandons the full specialization method
that triggers the compiler bug, opting instead to accomplish the
desired functionality by implementing a conditional branch.
This new program avoids triggering the compiler bug. Thus,
we put this workaround into the refactoring category.

T1.2 Modifying related programs (12/219, 5.48%). In
this category, programmers do not directly modify source code
lines that trigger compiler bugs, but modify related source code
lines to handle or avoid bugs. The commit [10ff77] mentions
a gcc optimization bug. The program is as follows:

1 for (i = 0; i + 8 <= count; i += 8) {
2 // main loop
3 }
4 for (; i < count; ++i) {
5 // residual loop
6 }

When count is set as a constant that is divisible by 8, the
residual loop will never be executed. Although the residual
loop could be optimized, gcc does not optimize it but produces
a wrong warning. To solve this problem, programmers modify
the above program as follows:

1 for (i = 0; i + 8 <= count; i += 8) {
2 // main loop
3 }
4 for (; i < count; ++i) {
5 + if ((count % 8) == 0) __builtin_unreachable();
6 // residual loop
7 }

The __builtin_unreachable() method is a built-in
method of gcc [13]. It tells the compiler that the fol-
lowing program is unreachable. After programmers add
__builtin_unreachable() in the residual loop, gcc does
not produce any warnings for this loop. In this case, the
structure of the program is not modified. The bug is bypassed
by calling the built-in methods of gcc. As a result, we put
this workaround into this category.

T1.3 Switching libraries (7/219, 3.20%). In this category,
compiler bugs are triggered by libraries, and programmers
replace the buggy libraries with alternative libraries. For exam-
ple, Wesnoth is an open-source, turn-based tactical strategy
game project. The programmer encounters an optimization

bug [6b52e1]. The program is as follows:

1 #include <regex>
2 static const std::regex valid_id("[a-zA-Z0-9_]+");
3 if(std::regex_match(newid, valid_id)) {...}

When the above program is compiled by gcc 10.2.0 on
mingw64, the compilation becomes quite slow due to an issue
in regex. To address this issue, programmers switch from the
built-in regex library to the alternative library implemented
by boost:

1 #include <boost/regex.hpp>
2 static const boost::regex valid_id("[a-zA-Z0-9_]+");
3 if(boost::regex_match(newid, valid_id)) {...}

The alternative library does not suffer from this issue, and
the slow compilation is resolved.

T1.4 Implementing methods (7/219, 3.20%). In this
category, compiler bugs are triggered by the intrin-
sic and other low-level methods of compilers. Program-
mers override the problematic methods. For example, a
commit [642dc5] complains that the intrinsic method,
__sync_fetch_and_nand(), is implemented by gcc but not
by clang. To bypass this issue, a programmer implements this
method and calls this method when compiling with clang:

1 #define CAS_NAND(x, val){ \
2 __typeof__ (*(x)) tmp = *(x); \
3 while (!__sync_bool_compare_and_swap( \
4 x, tmp, ˜(tmp & (val)))) { \
5 tmp = *(x); \

https://github.com/inet-framework/inet/commit/96b05e617a8e3506fc5a7460a14dd04d377b3c2f
https://github.com/xenia-project/xenia/commit/10ff77a24f25827021a900b730e8868b878b1f14
https://github.com/wesnoth/wesnoth/commit/6b52e1f76a8aa00976d22b7a05e33d4f26a8101b?diff=unified
https://github.com/strake/ghc/commit/642dc5ee134250aaf7ab3c5c2b4ceb532625608d


6 } \
7 return tmp; \
8 }
9 ...

10 #ifdef __clang__
11 CAS_NAND(x, (StgWord8) val)
12 #else
13 return __sync_fetch_and_nand(x, (StgWord8) val);
14 #endif

T2 Repairing build files (73/219, 33.33%). This category
includes workarounds that modify the build files of compilers.

T2.1 Suppressing warning messages (33/219, 15.07%).
These bugs produce false warning messages. To bypass such
messages, programmers explicitly disable corresponding com-
piler flags [4]. For example, RIOT is a real-time multi-
threading operating system for internet devices. In a com-
mit [6588db] of RIOT programmers encounter a false warning
message. To bypass it, they modify the Makefile as follows:

1 CFLAGS += -Wno-maybe-uninitialized

In the above flag, -Wno asks a compiler to ignore the
following warning option. Here, disabling a flag can miss true
warning messages.

T2.2 Disabling optimizations (10/219, 4.57%). To bypass
optimization bugs, programmers can disable corresponding
flags. For example, MuJS is an embeddable Javascript inter-
preter in C. In this project, a commit [90a634] complains a
gcc bug. When compiling with -O1, gcc can produce wrong
code when a program has pure looping and calls a nonreturn
method. This commit adds the following code:

1 #ifdef __GNUC__
2 #if (__GNUC__ >= 6)
3 #pragma GCC optimize ("no-ipa-pure-const")
4 #endif
5 #endif

If the version of gcc is above 6, the above code adds the
no-ipa-pure-const flag. This flag asks gcc not to discover
which methods are pure or constant. After that, the wrong
code disappears. Although the symptom is removed, disabling
optimizations can lead to a loss in efficiency.

T2.3 Disabling components (11/219, 5.02%). Program-
mers can disable some compiler components to bypass com-
piler bugs. For example, a commit [6e36c7] complains of a
bootstrapping failure. To bypass this bug, programmers add a
new conflict:

1 #Bootstrap comparison failure: see: ...
2 #gcc.gnu.org/bugzilla/show_bug.cgi?id=100340
3 on XCode 12.5 conflicts(’+bootstrap’, when=’@:11.1 %apple-

clang@12.0.5’)

In Line 3, conflicts() defines that a component has a
conflict and should be ignored in the compilation.

T2.4 Others (19/219, 8.68%). This category includes the
other unidentified types of modifications. For example, to
bypass the previous libjxl bugs in S7, programmers add
the following lines to the bug file [87fe7c]:

1 check_cxx_source_compiles("${atomic_code}"
ATOMICS_IN_LIBRARY)

2 set(CMAKE_REQUIRED_LIBRARIES)
3 if(ATOMICS_IN_LIBRARY)

4 set(ATOMICS_LIBRARY atomic)
5 include(FindPackageHandleStandardArgs)
6 find_package_handle_standard_args(Atomics DEFAULT_MSG

ATOMICS_LIBRARY)
7 set(ATOMICS_LIBRARIES ${ATOMICS_LIBRARY})...

The compiler bug fails to locate the atomic library, and the
above lines find replacements for this library.

Finding 6. A significant portion of the workarounds
are implemented by modifying build files (33.33%).

The prior studies on compiler bugs [39], [43], [47] do
not report similar findings. Instead of compiler bugs, Yan
et al. [41] analyze workarounds for general bugs and report
that 11% of the workarounds modify configuration files like
build files. Compared with their finding, our finding shows that
modifying configurations bypasses more compiler bugs since
they have many flags to disable functionalities.

T3 Restricting compiler versions (13/219, 5.94%). If com-
piler bugs appear in specific compiler versions, a programmer
can take version limitation workaround that explicitly
restricts the use of these compiler versions. For example, a
commit [844b4d] mentions a gcc bug. Due to this bug, when
__builtin_add_overflow() is called with uint32_t val-
ues, gcc can incorrectly report overflows. To resolve this issue,
the commit report errors for specific compilers:
1 #if !defined __GNUC__ || __GNUC__ < 7 || (__GNUC__ == 7 &&

__GNUC_MINOR__ < 1)
2 #error insufficient compiler for building on s390x
3 #endif

The above code lines print an error message for specific
compiler versions.

The above observations lead to a finding:

Finding 7. Refactoring programs (48.86%) and sup-
pressing warning messages (15.07%) are the two most
frequent workarounds for compiler bugs.

The prior studies on compiler bugs [39], [43], [47] do not
report similar findings. As for the workarounds of general
bugs, Yan et al. [41] report that the most such workarounds are
the modifications of API calls. When programmers compile
code, they seldom call the APIs of compilers. As a result,
when bypassing compiler bugs, programmers often modify
the configuration files of compilers. As most modifications
only disable compilation options, workarounds can introduce
technical debt. For instance, suppressing warning messages
may disable true warning messages. As a result, programmers
can ignore bugs even if the compiler can detect them.

In summary, unlike bypassing other bugs, bypassing com-
piler bugs requires modifying the configuration files of com-
pilers and the source files that trigger compiler bugs.

D. RQ4. Association

1) Protocol: In this RQ, we analyze the relationship be-
tween symptoms and workarounds of compiler bugs. For the
compiler bugs of each symptom, we analyze their workarounds

https://github.com/albertolaros/RIOT-security/commit/6588db65805c01c8ceb8d6c7cddb41602b30d1f7
https://github.com/ArtifexSoftware/mujs/commit/90a63426ee93d9079a032740e519988e26d1949c
https://github.com/spack/spack/commit/6e36c71d6873d5b2feb9494f670b0277a9e68649
https://github.com/libjxl/libjxl/commit/87fe7c16e1fb2e21b6a1dca26782950ae1559d99
https://github.com/MIPS/glibc/commit/844b4d8b4b937fe6943d2c0c80ce7d871cdb1eb5
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Fig. 5: The associations between symptoms and workarounds

and classify them by the types of workarounds. In this way, we
build the matrix between symptoms and their corresponding
workarounds.

2) Result: Figure 5 presents the relationship. A cell denotes
the proportion of compiler bugs that are bypassed by the
corresponding types of workarounds. For instance, 24 compiler
bugs have diagnostic symptom and are bypassed with
refactor workarounds (T1.1). As shown in the top left cell,
they account for 10.96% of total bugs (24/219), and its color
is light blue. Based on Figure 5, we find that when compiler
bugs produce wrong warnings (diagnostic), more than half
of the commits directly disable corresponding compiler flags,
and the other half of commits refactor programs. When the
symptoms are wrong-code, rejects-valid, and crash,
most commits modify programs to bypass compiler bugs.
For example, to bypass wrong-code bugs, some commits
disable buggy components. For optimization bugs, only
one bug directly modifies programs that trigger compiler bugs.
Instead, to bypass optimization bugs, most commits modify
related programs, switch libraries, and disable optimization
flags. An interesting observation is that while only 5 commits
restrict compiler versions, they are all applied to bypass serious
symptoms (4 crashes and 1 rejects-valid bug).

The above observations lead to a finding:

Finding 8. Modifying programs bypasses most symp-
toms, and modifying build files often bypasses wrong
warnings and optimization bugs.

The prior studies on compiler bugs [39], [43], [47] do not
report similar findings. As for the workarounds of general
bugs, Yan et al. [41] report that many associations between
causes and repairs are straightforward. However, as shown in
Figure 5, these associations are more complicated in compiler
bugs. As a result, it may be worth exploring strategies to
bypass compiler bugs.
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E. Threat to Validity

An internal threat to validity is the underlying GitHub API
and our keywords. The retrieved results can be incomplete,
irrelevant, and duplicated. To reduce this threat, we manually
checked whether retrieved commits truly mentioned compiler
bugs. Still, we can wrongly identify commits. To eliminate
this threat, we released our results on our website. Other
researchers can recheck our results. The external threat of our
study includes the fact that it is a bit of the time. All empirical
studies share this threat. Our study needs to be replicated as
time goes by. For example, when we start to write the paper,
we rerun our tool, and it retrieves new commits that do not
appear in our dataset. The new commits can illustrate new
patterns for bypassing compiler bugs. As another example,
future compilers can have better channels to collect bugs and
large teams to repair bugs. They can leave fewer unfixed bugs
and fix compiler bugs faster. The external threat also includes
our limited inspected instances. This thread could be reduced if
more experienced programmers are invited to inspect commits
that do not explicitly mention the URLs of compiler bugs.

V. INTERPRETATION OF OUR FINDINGS

In this section, we interpret our findings:
Researching compiler bugs in real development. As

introduced in Section IV-B1, gcc uses a set of keywords
to classify the symptoms of compiler bugs. Based on the
keywords and the criteria in Table II, we build the distribution
of symptoms. Figure 6 shows the results. Finding 2 shows
that programmers need to identify and bypass many compiler
bugs, but Figure 6 shows that most compiler bugs may
not cause noticeable symptoms. For instance, compilers can
silently accept invalid programs. It is worth exploring how to
actively warn programmers of compiler bugs. In addition, our
study reports how to bypass compiler bugs. Researchers can
work on approaches to generate such workarounds. Finding
4 shows wrong code, rejects-valid, and diagnostic are the
top frequent symptoms in real development. The distribution
is different from the distribution calculated from the total
bug reports of compilers. For example, Figure 6 shows the
distribution of symptoms calculated from all bug reports of
gcc. Compared with our distribution in Figure 3, the ranks
differ. A possible explanation is that crashes can be fixed
quickly, and programmers do not need to bypass them.

Understanding the long-term impact of compiler bugs
and their workarounds. Although workarounds bypass com-



piler bugs, they can introduce technical debts in software [40],
[41]. In addition, programmers often have to live with com-
pilers with bugs. Even if their bugs are fixed, compilers with
bugs can affect many projects, and their workarounds are
useful in the long run. Finding 6 shows that a significant
portion of the workaround may introduce technical debts.
This raises the cost of software maintenance. For example,
in T2.2, optimization flags are disabled, and in T2.1, warning
messages are suppressed. Although these workarounds hide
symptoms, they produce less-optimized code and can intro-
duce vulnerabilities to the code. After compiler bugs are fixed,
removing workarounds is necessary to resolve such issues.
Although programmers write the URLs of bug reports in their
commit messages, they will not be notified if compiler bugs
are fixed. For the example in Section II, after gcc developers
implement the missing intrinsic, Oblas programmers did not
notice this fix, and this workaround had not been removed for
a whole year. This year, Oblas called their own implemented
intrinsic, and the behavioral difference can cause hidden bugs
and performance issues. Both gcc and llvm allow subscribing
to the fixing process of compiler bugs. Based on this interface,
it is feasible to implement a tool to track and notify the status
of compiler bug reports.

Learning how to bypass compiler bugs. As shown in
Section IV-D, there are associations between symptoms and
workarounds, and the associations can offer guidance on how
to bypass compiler bugs. For example, Finding 8 shows that
modifying build files is often used to bypass wrong warnings
and optimization bugs. Programmers can use the guidance to
bypass compiler bugs. Finding 4 shows that reject-valid and
wrong-code bugs are among the top three compiler bugs in
real development environments. As compilers do not produce
errors for these bugs, it is difficult for programmers to identify
them, especially when they are unfamiliar with compiler bugs.
It can be useful if a tool can actively identify whether source
files can trigger such bugs.

VI. LONG-TERM IMPACT OF COMPILER BUG

Our interpretations in Section V are actionable. For instance,
according to our findings, we advocate that researchers and
programmers should understand the long-term impact of com-
piler bugs and their workarounds. In this section, we explain
the long-term impact with an example. In particular, to fulfill
our vision, we notify the programmers of a workaround that
the corresponding compiler bug is already fixed. This bug is
a gcc bug [90538] bug, and it rejects the following code:
1 template <class... T>
2 void a(const T&...) {}
3 template <class... T>
4 void b(const T&... t) {
5 [&]() { a(t...); a(t...);};
6 }
7 void c() {
8 b(1);
9 }

The above code defines two template functions, a and b,
and b invokes a inside a lambda that captures variables by
reference. Although this code snippet is valid, gcc rejects this

code snippet since it has bugs in handling re-declaration of pa-
rameters and uninitialized references. As programmers can use
gcc to compile llvm source code, this gcc bug can affect
the compilation of llvm . To bypass the gcc bug, program-
mers of llvm implement the following workaround [6cd232].

1 - auto printComplexValue = [&](auto complexValues, auto
printFn, raw_ostream &os, auto &&... params) {...

2 - printComplexValue(attr.getComplexFloatValues(),
printFloatValue, os);...

3 + // This lambda was hitting a bug in gcc 9.1,9.2
4 + // and hence was replaced.
5 + if (complexElementType.isa<IntegerType>()) {...
6 + printDenseElementsAttrImpl(attr.isSplat(), type, os,

[&](unsigned index) {...

To bypass the gcc bug, programmers replace the lambda
expression with a method invocation in the above workaround.
This gcc bug appears in gcc 9.1, and its patch is applied to
9.3. As the bug is fixed and the latest llvm uses a more recent
gcc to compile source code, researchers can believe that this
gcc bug no longer affects llvm and the workaround should
be removed. We thus submit a bug report [68407] to notify
llvm programmers that the bug is fixed and ask them whether
the workaround could be removed. However, llvm developers
reject our suggestion since they still support the buggy versions
of gcc. After the workaround is removed, programmers will
not compile llvm if their gcc is a buggy version. Although
the gcc bug was fixed five years ago, it still affects the latest
llvm and other projects. The knowledge from its workaround
can still apply to the compilation of many projects.

In summary, compiler bugs can significantly affect software
development. Even if they are fixed, compiler bugs can affect
many projects, and their workarounds can still be useful.

VII. RELATED WORK

Empirical studies on compiler bugs. Romano et al. [31]
investigate the challenges and characteristics of WebAssembly
compiler bugs. Shen et al. [33] analyze the characteristics
of deep learning compiler bugs and provide suggestions for
detection and debugging such bugs. Wang et al. [37] analyze
the distribution and root causes of Python interpreter bugs.
Zhang et al. [43] analyze common types, fixes, and patterns
of compiler errors in CI builds. Zhou et al. [47] analyze
the prevalence and characteristics of optimization bugs in
GCC and LLVM compilers. The above studies analyze bugs
that are reported to compilers, but we analyze compiler bugs
mentioned in commit messages. Zhong [45] conducted the
first study about the workarounds of compiler bugs. Our study
has no overlapped research questions with his study, but we
refine some of his findings. For instance, Zhong [45] report
the modified lines of workarounds, and we further manually
classify such workarounds into categories.

Empirical studies on workarounds. Researchers have
analyzed workarounds to promote the maintenance of soft-
ware. Lamothe et al. [27] analyze API workarounds, but the
workarounds for compiler bugs are unrelated to APIs. Ding et
al. [22] analyze workarounds across projects. Yan et al. [41]
analyze workarounds in general, and they mention compiler

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90538
https://github.com/llvm/llvm-project/commit/6cd232056c3cdaf5e9eb85ede8e42d0db97f0f71#diff-7e43770186249840f0ec7904e2d5562c796ff993f67250c275a6d7918a95130cL1560
https://github.com/llvm/llvm-project/issues/68407


bugs. Our study includes the analysis of bug reports, but we
focus on the workarounds of compiler bugs.

Compiler testing. Generating test cases is an important
topic in compiler testing [18], [24]. One approach is generating
from scratch, which has been continuously studied since the
1970s by Hanford [24] and Seaman [32]. CSmith proposed
by Yang et al. [42] can generate random C testing programs
from scratch. Following CSmith there are various “smiths”
expanding this method to other compiler languages, such
as CLSmith [30] for OpenCL, Verismith [25] for Verilog.
Recently, Chen et al. [20], [21] improve CSmith’s performance
with configuration tuning. Another approach is mutating ex-
isting programs to generate equivalent testing programs and
then comparing the compiler’s results on equivalent programs
to detect bugs. There have been various static methods. Sun
et al. [35] generate equivalent programs by mutating variable
and function names. Holler et al. [26] mutate programs by
traversing their syntax trees. And there are also dynamic
approaches like the EMI, proposed by Le et al. [28]. EMI,
at first, compiles and runs the program and then removes the
unexecuted lines from existing programs to generate equivalent
programs. This idea is further instantiated and improved by
several researches [23], [29], [34]. Besides generating test
programs, there are several empirical studies analyzing ranks
of test programs [16] and bug-trigger code location of test
programs [17]–[19]. The generation method is not the only
way to obtain test programmers. Zhong et al. [44] retrieve real-
world test programs from bug reports and perform differential
experiments on compilers to detect bugs. Our study derives
findings that can be useful for compiler testing.

VIII. CONCLUSION AND FUTURE WORK

Although researchers have conducted various studies on
compiler bugs, these studies analyze only bug reports and their
patches. From such sources, it is feasible to analyze the causes,
locations, and repair of compiler bugs, but it is infeasible
to analyze other important angles (e.g., workarounds). To
enhance the understanding of compiler bugs, in this paper,
we conduct an empirical study from compiler bugs mentioned
in real development. From the commits from GitHub, we
collected more than one thousand commits whose messages
mention compiler bugs. From these commits, we analyze the
characteristics of projects that encounter compiler bugs in real
development. Furthermore, we manually inspected symptoms,
workarounds, and their associations. We summarize our results
into eight findings and interpret their significance.

There is sufficient space for follow-up research. First, it
is worth exploring which types of projects are more likely
to encounter compiler bugs. Second, some components of a
project can be particularly susceptible to compiler bugs. Third,
it is worth exploring the correlations between compiler bugs
and specific code features. Finally, it is worth exploring how
compiler bugs cause symptoms in their compiled code. We
open a new line of studies, and such studies would offer
valuable guidance to software developers and mitigate the risks
associated with compiler bugs.
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