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Abstract—In recent years, automatic program repair has been
a hot research topic in the software engineering community,
and many approaches have been proposed. Although these
approaches produce promising results, some researchers criticize
that existing approaches are still limited in their repair capability,
due to their limited repair templates. Indeed, it is quite difficult
to design effective repair templates. An award-wining paper
analyzes thousands of manual bug fixes, but summarizes only ten
repair templates. Although more bugs are thus repaired, recent
studies show such repair templates are still insufficient.

We notice that programmers often refer to Stack Overflow,
when they repair bugs. With years of accumulation, Stack
Overflow has millions of posts that are potentially useful to
repair many bugs. The observation motives our work towards
mining repair templates from Stack Overflow. In this paper,
we propose a novel approach, called SOFIX, that extracts code
samples from Stack Overflow, and mines repair patterns from
extracted code samples. Based on our mined repair patterns, we
derived 13 repair templates. We implemented these repair tem-
plates in SOFIX, and conducted evaluations on the widely used
benchmark, Defects4]J. Our results show that SOFIX repaired 23
bugs, which are more than existing approaches. After comparing
repaired bugs and templates, we find that SOFIX repaired more
bugs, since it has more repair templates. In addition, our results
also reveal the urgent need for better fault localization techniques.

Index Terms—program repair, Stack Overflow, repair template

I. INTRODUCTION

Although the research on automatic program repair (e.g.,
[42]) draws much attention from both academia and industry,
recent studies [36]], [26] show that existing automatic-program-
repair approaches are still limited in their repair capability.
Zhong and Su [57] complain that it is infeasible to repair
many bugs, since existing approaches provide limited repair
templates. For example, the well-known tool, GenProg [42],
supports only three types of coarse-grained repair templates
such as inserting statements, swapping statements, and deleting
statements. To handle the limitation, Kim et al. [17] summarize
ten additional repair templates from thousands of human-written
patches. However, their repair templates are still limited, both in
number and granularity. It is desirable to infer repair templates
from more sources.

Liu et al. [21] show that it is useful to link Stack Overflow
threads with reported bugs. Gao et al. [10] show that reusing
code samples in Stack Overflow is able to repair some bugs,
although they did not mine any new repair templates. Recently,
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Stack Overflow released its posts as online archive Motivated
by the above positive results and due to the availability of new
sources, in this paper, we present the first attempt to mine
fine-grained repair templates from Stack Overflow. To realize
our vision, we have to overcome the following challenges:
Challenge 1. It is challenging to effectively extract information
from Stack Overflow, since the data set contains more than 30
million posts. It is even challenging to determine which thread
is worth mining for repair templates.

Challenge 2. It is challenging to mine fine-grained repair
templates. Although such templates are useful, it requires
accurate analysis in mining. However, code samples in Stack
Overflow are typically partial programs, and only several tools
provide limited analysis support.

To handle the first challenge, we consider only threads with
both buggy and correct code samples, since such threads are
more informative. From such threads, our tool links buggy code
samples with fixed code samples. Each pair corresponds to a
set of feasible repair actions, and our tool further mines repair
templates from such actions. To handle the second challenge,
we build Abstract Syntax Trees (ASTs) from each pair of
code samples, and mine repair patterns from sequences of
AST modifications. From such patterns, we derive our repair
templates. This paper makes the following contributions:

o The first approach, called SOF1X, that mines repair pat-
terns from Stack Overflow, and leverages repair templates
that are derived from mined patterns to repair new bugs.
SOFIX compares code samples in questions and answers
for fine-grained modifications, and mines repair patterns
from such modifications.

e From 31,017,891 Stack Overflow posts, SOFIX mined
136 patterns. From these patterns, we manually derived
13 repair templates. Our templates contain repair values
from Stack Overflow, and 2 of them are never reported.
We implement our templates in SOFIX to repair bugs.

o Evaluations on the widely used benchmark, Defects4]J.
In total, SOFIX repaired 23 bugs, which are more than
previous approaches. We further compared our repaired
bugs and our repair templates with previous approaches.
Our results show that our additional repair templates
and their repair values from Stack Overflow make the
improvements.

Uhttps://archive.org/details/stackexchange


https://archive.org/details/stackexchange

II. MOTIVATING EXAMPLE

1 return (...
2 call.get(Calendar . HOUR) ==
3 cal2.get(Calendar . HOUR) && ...);

(a) the buggy code
1 return (...

2+ call.get(Calendar . HOUR_OF DAY) ==

3+ cal2.get(Calendar .HOUR_OF DAY) &&
4— call . get(Calendar .HOUR) ==

5— cal2.get(Calendar . HOUR) && ...);

(b) our patch

Date inDate = null;

Calendar cStartOfDate = new GregorianCalendar();
cStartOfDate.set(Calendar.HOUR, 0);

(c) the code sample in a question post

Date inDate = inDF.parse("2014-06-05 17:50:50");

Calendar cStartOfDate = new GregorianCalendar();
cStartOfDate.set(Calendar.HOUR_OF DAY, ©0);

(d) the code sample in an accepted answer post

Fig. 1: The motivating example

In this section, we use a bug from Defects4] [[13]], the
Lang21 bug, to further illustrate the challenges and benefits of
SOFIX. Figure [Ta] shows the buggy code. In a buggy statement,
programmers use Calendar.HOUR as the argument, when
they call the get method. As shown in the API documenf’}
given the input, the get method returns the hour of the
morning or afternoon. However, the return value is against the
intension of programmers, so they replace Calendar.HOUR
with Calendar.HOUR_OF_DAY. With the modified input, the
get method returns the hour of the day.

SOFIX generates the patch as shown in Figure [Ib] to
repair the Lang21 bug. Defects4] presents manually written
patches. We find that our generated patch is identical to its
human-written patch. To the best of our knowledge, previous
approaches are insufficient to repair this bug. For example, Gao
et al. [10] repair crash bugs according to existing samples in
Stack Overflow. Their approach cannot repair this bug, since
the bug does not crash.

Existing approaches typically repair bugs at the granularity
of statements. As shown in Figure in this example, the
located faulty statement is lengthy, but only two input values
shall be replaced. Early approaches (e.g., [42]]) replace buggy
statements with statements at other locations. These approaches
are insufficient to repair the above bug, since it is unlikely that
other locations have the correct but lengthy statement. Recent
approaches [44]], [[17] can repair bugs within statements, but
they focus on i f-statements. As the buggy line of this example
is a return-statement, the above approaches are insufficient
either.

Stack Overflow contains many useful threads that discuss
how to repair bugs. In particular, we find a relevant discussion
for this exampleﬂ From the discussion, SOFIX identifies the
code pair as shown in Figures |lc|and [1d] After comparing their

Zhttps://docs.oracle.com/javase/8/docs/api/java/util/Calendar.html
3http://stackoverflow.com/questions/24056453
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Fig. 2: The overview of SOFIX

ASTs, SOFIX extracts the modifications such as updating the
values from Calendar.HOUR to Calendar.HOUR_OF_DAY,
deleting a nul1 value, and inserting an invocation on the parse
method. It is infeasible to use the above code samples to repair
the bug as Gao et al. [[10] did, since only one modification is
useful. Reusing the above code samples as a whole does not
repair the bug in Figure [Ta]

Instead of the granularity of statements, SOFIX repairs bugs
at a finer granularity of AST nodes (e.g., variables). From
Stack Overflow, SOFIX mines a repair pattern. The pattern
says that when repairing bugs, a variable can be changed
from Calendar.HOUR to Calendar.HOUR_OF_DAY. Based
on this pattern, we implement the Variable Replacer template
in SOFIX, and it repairs the bug in this section with the
template. We introduce the mining process in Section [I1Ij and
evaluate our repair templates in Section

III. APPROACH

Figure [2] shows the overview of SOFIX. It has three major
steps such as extracting (Section [[TI-A), mining (Section [[II-B)
and repairing (Section [[II-C)).

A. Extracting Stack Overflow

SOFIX has three components that sequentially extract repair
actions from Stack Overflow.

Algorithm 1 Extracting and Filtering Q&A Posts in Algorithm

Input: PLIST: a list records all posts.

Output: QALIST: a list stores the mapped Q&A posts.
1: Init for QLIST
2: for each p € PLIST do
3: if p.type == 1 then

4 q<p

5 if g.tags.contain(" java") then
6: QLIST.add(q)

7 end if

8 else

9: a<p

10: search for ¢ € QLIST,

11: such that

12: q.-Acld == a.ld && p.PId == a.Id
13: do

14: QALIST.add(pair < q,a >)
15: QLIST.remove(q)

16: end if

17: end for
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Fig. 3: An example for linked modifications

1. The post analyzer rebuilds the links between questions and
their answers. In the archives of Stack Overflow, posts are
stored in the format of XML. For example, the following XML
snippet includes three posts:

// question post

<row Id="4"
PostTypeId="1"
AcceptedAnswerId="7"
AnswerCount="13" .../>

// accepted answer post

<row Id="7"
PostTypeId="2"
ParentId="4" .../>

// answer post

<row Id="78"
PostTypeId="2"
ParentId="4"
Score="34" .../>

The posts are sorted by their creation dates, so a question
can be followed by irrelevant answers. Algorithm [I] shows the
procedure to rebuild the links. Line 1 initializes an empty list

QLIST to store unmapped questions, when it traverses all posts.

Line 2 to Line 17 add questions and their accepted answers to
the QAList list according to the ids. Line 15 removes mapped
questions from QLIST to reduce the searching effort.

2. The code pairs extractor builds code pairs from each pair
of a question and its accepted answer. In particular, from each
post, SOFIX extracts code samples, according to the tags such
as <code> and <pre>. Here, a post can have multiple code
samples. For example, an answer can rewrite the buggy code,
so it is easier to understand. Gao et al. [[10]] use key words (e.g.,
“instead of” and “change...to...””) to build their sample pairs,
but the heuristic is not fully reliable. SOFIX determines code
pairs based on their text similarity values, since the buggy and
fixed code samples are often similar. The similarity measure
is defined as follow:

SimTokenNum(b, f)
cx Len(b) + (1 — ¢) * Len(f)

Sim(b, f) = (1)
In the above equation, b denotes a buggy code sample;
f denotes the corresponding fixed code sample; and c is a
coefficient. It stands for the weights of token numbers in buggy
and fixed code samples when calculating their similarities.
SimTokenNum calculates identical tokens between two code
samples and Len counts tokens inside a code sample.
3. The modifications sequence miner is built on Spoon [34].
Spoon defines a meta mode]E] to denote code elements. The
meta model includes three parts: (1) the structural part contains

4http://spoon.gforge.inria.fr/structural_elements.html

the declarations of the program elements (e.g., interface, class,
variable, and method); (2) the code part contains executable
Java code (e.g., method bodies); and (3) the reference part
models the references to program elements (e.g., a reference
to a type). Based on the model, Spoon identifies three
types of code elements such as structural elements, code
elements and references. Given two ASTs (a; and as), SOFIX
leverages GumTree [9] to generate a modification sequence
that transforms a to as. Here, we formally define the concepts
that are related to modifications:

Definition 1 (Element). An element is a node or a subtree of
an AST.

For an e element, we use type(e) to denote its type, and
value(e) to denote its value. If e is a subtree, we define its
type as the type of its root.

Definition 2 (Action). An action is an atom operation on
an element. The atom operations include inserting, updating,
moving, and deleting.

Definition 3 (Modification). A modification is represented as
mia, e, e'), where a is an action; e is the source element; and
€' is the target element.

When a is inserting, e is &, and when a is deleting, €’ is
assigned to @. We use e; < parent(es) or ey < child(ey)
to denote that e; (or the root of e; when e; is a subtree) is
the parent of ey (or the root of e; when e is a subtree).

As code samples in Stack Overflow are code fragments,
Spoon often fails to build correct ASTs from such samples.
To handle the problem, as Zhong and Su [56] did, SOFI1x
adds import-statements that import common packages such
as java.util and java.io to the beginning of code samples.
In addition, it adds type-declaration and method-declaration
statements, if such statements are missing. For a pair of
ASTs, SOFIX leverages GumTree [9] to extract a modification
sequence. For example, a pair of code samples are as follow:

//Buggy Code (left) //Fixed Code (right)
z = 1; if (x<0)
if(x>0) x = abs(x);
x = abs(x); z = 1;
y = 1; X++;

The extracted modifications are as follow:

//Modifications of Output
Ml<moving,el,e2>
M2<inserting, —,e3>
M3<updating, e4,e5>>
M4<inserting,-,e6>
M5<deleting,e7,->>

oW N
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TABLE I: The manual inspection subjects

TABLE II: Mined repair patterns

Category | Number | SubE | NodeE U 1 D M Id  Pattern Name Modification Sequence in Repair Pattern
P 15 1 14 0.93 0.4 0.33 0.2 * denotes a node when behind an action, otherwise denotes a parent
M 85 5 80 0.67 | 1.11 | 1.52 | 0.53 1 InvoReplacer Update Invocation under *

Furthermore, SOFIX splits a modification sequence into linked
modification sequences, by their modified elements.

Definition 4 (Linked modification). We consider two modifi-
cations (my{a, e1,e2) and ma{ad’, es, es)) are linked, if e5 <
parent(es) or e + parent(ey). Special for the case that the
two modified elements are nodes, if parent(es) < parent(es)
or parent(es) < parent(ey), they are linked.

Figure [3] shows the links of the five modifications. Based
on the links, SOFIX builds four linked modification sequences
such as {m1), (ma, my), {m3), and (ms).

B. Mining Repair Patterns

SOFix then merges linked modification sequences, if they
are isomorphic. We define the isomorphism as follow:

Definition 5 (Modification Isomorphism). We consider that a
modification my{a, e1,es) is isomorphic to another modifica-
tion ma{as, es,eq) if
1) a1 = ay = inserting and type(es) = type(eq) or
2) a1 = az = updating and type(e1) = type(es) or
3) ay = as = moving and type(parent(ep)) =
type(parent(eq)) or
4) a1 = ay = deleting and type(parent(ey)) =
type(parent(es))

The definition considers action types, modified elements
and their parents. For Updating and Inserting actions, it
checks whether modified element types are linked. For Moving
and Deleting actions, it checks whether the types of parent
elements are linked.

Definition 6 (Sequence Isomorphism). A modification sequence
Sy(mi,m3,...,m,, ) is isomorphic to another modification
sequence So(m3,m3, ..., m2_) if

1) n1 = ny and

2) Vi < nq, m!

K2

is isomorphic to m?

We define the modification sequence isomorphism based on
the modification isomorphism. In particular, we require that the
lengths of sequences are the same and all the corresponding
modifications are isomorphic as defined in Definition [5] Based
on the above definitions of isomorphism, SOFIX puts linked
modification sequences into categories.

After categories are produced, SOFIX mines a repair pattern
from each category. In this paper, a repair pattern is a set
of linked modification sequences that repair a type of bugs.
However, we find that SOF1X builds many categories, and
most of them are redundant or even irrelevant, due to two
major reasons. First, a considerable portion of code samples
are designed for purposes other than repairing bugs (e.g.,

2 TypeReplacer Update Type under *

3 VarReplacer Update Variable under *

Update Invocation under *

ArgChanger Insert Variable under Invocation
Delete Variable under Invocation
ArgAdder Update Invocation under *

Insert Variable under Invocation

6  BinaryOpReplacer =~ Update BinaryOperator under *

Update Invocation under *

7 ArgRemover Delete * under Invocation

Update BinaryOperator under *

Insert BinaryOperator under BinaryOperator
Move * from BinaryOperator to the other
Move * from BinaryOperator to the other
Move * from BinaryOperator to the other
Delete BinaryOperator inside BinaryOperator

8  BinaryOplnversion

Insert Invocation under *

K VarTolnvo Delete VariableRead under *

* denotes a subtree when behind an action, otherwise denotes a parent

10 StateRemover Delete *

11 ReturnAdder Insert Return under *

Insert If under *
12 HfChecker Move Block from * to If

illustrating API usages). Second, our underlying tool [9] relies
on structural positions to extract modifications, but extracted
modifications do not present our desirable semantic mappings.

We randomly inspected 100 categories to understand how
to mine repair patterns. Here, we ignore categories that have
fewer than 5 instances. We carefully checked the isomorphic
modification sequences and the instances in these 100 cate-
gories, and tried to summarize effective and feasible repair
patterns. Table [I| shows the results. For Column “Category”,
“P” denotes categories with repair patterns, and “M” denotes
categories without patterns. Column “Number” lists the number
of categories. Column “SubE” lists categories whose modified
elements are subtrees. Column “NodeE” lists categories whose
modified elements are nodes. Columns “U”, “I”, “D”, and “M”
list the averages of updating, inserting, deleting, and moving
per modification sequence, respectively.

According to the results of manual inspections, we summa-
rize the following three findings:

1) Most linked sequences with patterns have one or more

updating actions.

2) Most linked sequences without patterns have only deleting

and moving actions.

3) Linked sequences with multiple deleting and inserting

actions seldom show any repair patterns.

Based on the findings, we design heuristics and implement
them into SOFIX to automatically filter categories that are
unlikely to contain repair patterns. In particular, based on
the first and second findings, SOFI1X filters categories that
contain several modifications but with only deleting or moving
actions, and based on the third finding, SOFIX filters categories
whose linked sequences contain more than two deleting or
inserting actions. Finally, there remains 136 categories and



SOFI1x produces a repair pattern from each remaining category.

C. Repairing Bugs

Based on mined repair patterns, SOFIX implements a set of
repair templates that modify buggy code. Our derived repair
templates define their compatible usage scenarios, and how to
synthesize values when generating patches. Here, the search
space of template values includes the buggy program, and the
instances where repair patterns are mined. Like some existing
approaches (e.g., [31]), the current implementation of SOFIX
uses repair templates in a one-shot manner, and it does not
combine repair templates for more complicated cases.

A mined repair pattern typically has more than five instances.
For its modification sequences, we inspected the structures
of the modified elements in ASTs, according to the linked
modifications and the values of modified elements in instances.
Due to the heavy effort, we did not implement repair templates
for all repair patterns. Instead, we selected a subset of repair
patterns to show the effectiveness of our approach.

First, we discard repair patterns, if we can not derive
their usage scenarios and template values. For example, we
find that a repair pattern inserts method invocations, but
the inserted methods have various programming contexts in
different instances. We cannot ensure where to insert a method
and what method shall be inserted, so we have to enumerate
to insert a invocation of all methods into each suspicious
faulty point. However, we believe the enumeration is too
expensive and has a low efficiency in repairing a new bug, so we
discard that pattern. Second, we discard repair patterns that are
combined with several other simple patterns, since our current
implementation works in a one-shot manner. We leave these
complicated patterns to our future work. Finally, we discard
repair patterns that modify large elements (e.g., interface,
class, and method), since we focus on fine-grained bug fixes.
Moreover, our underlying fault localization tool [4] cannot
locate faulty code elements that are larger than statements.

We find that it is feasible to merge some repair patterns,
due to their similar semantics. For example, in the Spoon meta
model, a string literal, a variable and a field have different
types. As a result, we mine separate repair templates for string
literals, variables, and fields. However, such repair patterns are
quite similar in their semantics (e.g., inserting a string literal
or a variable), so we merge them into a single repair template.

In total, we selected the 12 repair patterns as shown in
Table |lIl The first column lists pattern ids. The second column
lists pattern names. The last column lists linked modification
sequences. For this column, the asterisk (*) denotes changeable
elements, which are either modified elements or their parent
elements. We next introduce their details:

1. InvoReplacer. This pattern changes a method invocation
to another method invocation. We find that the source and
target invocations typically have identical parameter types. For
example, in an instance of the repair pattern, we find that an in-
vocation of the getDeclaredMethod (java.lang.String,
java.lang.Class) method is replaced with an invocation of

the getMethod(java.lang.String, java.lang.Class)
method. The two lists of parameter types are identical.

2. TypeReplacer. This pattern changes a type to another one.
3. VarReplacer. This pattern replaces a variable with another
variable.

4. ArgChanger, ArgAdder, ArgRemover. These patterns
modify an argument of a method invocation as follows:

The ArgChanger pattern either moves or updates an argument
of a method invocation. We can see that the ArgChanger pattern
has one modification on the “Invocation”, which means the
ArgChanger pattern changes to invoke another overloading
method with a replaced argument in different type.

The ArgAdder pattern inserts a variable to a method
invocation, and the ArgRemover pattern deletes a argument
from a method invocation.

5. BinaryOpReplacer. This pattern changes an operator to
another one. In a simple instance, > is modified to <.

6. BinaryOplInversion. This pattern changes the priorities of
operators. It has six modifications: three modifies on operators
and the other three are moving actions. The modifications
seem to be complicated, but from source code, they are easy
to understand. For example, we find that a+b-c is modified
to a+ (b-c) in an instance.

7. VarTolnvo. This pattern replaces a variable with a method
invocation. For example, in an instance, the original state-
ment iS int sum = total and the fixed statement is int
CalcTotal(). It changes the total variable to a
CalcTotal () method invocation.

8. StateRemover, ReturnAdder, IfChecker. These patterns
modify subtrees. In particular, the StateRemover pattern re-
moves a buggy statement; the ReturnAdder pattern inserts a
return statement; and the IfChecker pattern adds an if checker
before a buggy code block.

From the above repair patterns, we next derive our repair
templates. As mentioned in the beginning of this section, our
repair templates define both usage scenarios and template
values. Table |l1I| shows our derived repair templates. The last
column lists the ids of repair patterns in Table |lIl where the
corresponding repair template is derived from. The detailed
descriptions of the repair templates are as follows:

1. The BinaryOperator Replacer template.

Usage Scenario: The desirable buggy statement is a for-
statement, an if-statement, or a while-statement, and the
statement contains at least an operator that is replaced in one
or more instances.

Template Value: This repair template searches the instances
of the BinaryOpReplacer pattern for the replacements of a
given operator.

We carefully checked the asterisk (*) element in the isomor-
phic modification sequences of the BinaryOpReplacer pattern,
and found that the element has three typical types such as for-
statement, if-statement, and while-statement. As a result,
we limit the repair template to the three types of statements.
For example, here is a buggy statement if (a>b) {;}, it is
a if-statement and it has one > operator. When this repair
template modifies the buggy statement, it searches instances in

sum =



TABLE III: Repair templates in SOFIX

Template Name Description Pattern id
. For each operator in an IF or FOR or WHILE statement, this template seeks for a compatible operator to

BinaryOperator Replacer . 6
replace it.

Variable Replacer This template changes a variable or several identical variables into another compatible ones. 3
This template modifies a type in a local variable declaration, it seeks for a compatible type to replace

Type Replacer P yp p yp p 5
the current one.

Arguments Adder This template adds a compatible variable as a new argument to the invocation of an overridden method. 5

Arguments Mover This template moves an argument to another compatible position in the argument list. 4
This template changes an argument of an overridden method invocation into a compatible variable with

Arguments Replacer A 4
distrinct type.

Arguments Remover For each argument of an overridden method invocation, this template deletes it. 7

Invocation Replacer This template changes an invocation of a method into another method with identical parameter list. 1

BinaryOperator Inversion | For two linked operators, this template reverses the operating priority of them. 8

Variable To Invocation For each variable read, this template changes it to a non-parameter method invocation with similar name. 9

Return Statement Adder This template inserts a return statement before or after a statement. 11

Statement Remover This template deletes a statement. 10

If Checker Adder This template inserts a IF statement to check null points before a buggy block. 12

the BinaryOpReplacer pattern, and find one modification from
> to <. Based on this instance, SOFIX modifies the buggy
statement to if (a<b) {;}. In total, the BinaryOpReplacer
pattern contains 357 instances that have repair values.

2. The Variable Replacer template.

Usage Scenario: The buggy statement contains at least a
variable that is either appear in one or more instances or has
replaceable variables of the same type in the buggy program.
Template Value: This template searches the instances of the
VarReplacer pattern for replacement values. In addition, it
searches the buggy program for variables of the same type.

This template is derived from the VarReplacer pattern. When
leveraging this template to replace a variable, a replacement
variable shall be of the same type to avoid compilation errors.
If there are several identical variables in a buggy statement,
SOFIX can use this repair template to change all the identical
variables with another ones. In total, we collected 849 instances
with repair values.

3. The Type Replacer template.

Usage Scenario: The buggy statement is a local variable
declaration, and the variable type is replaced in instances.
Template Value: This template searches the instances of the
TypeReplacer pattern for replacement types.

We derive the TypeReplacer pattern to this template. The
modifications on the return type of a method appear in the
TypeReplacer pattern, but the corresponding replace template
is different from replacing types of variables. Our current
implementation considers replacing types of variables, and
ignores return types of methods. For this pattern, we extracted
1,087 instances with repair values.

4. The Argument Adder, Argument Mover, Argument
Replacer and Argument Remover templates.

Usage Scenario: The buggy statement contains at least one
method invocation.

Template Values: The Argument Mover template and the
Argument Remover template do not need any values. The
Argument Adder and the Argument Replacer template searches
the buggy program for added or replaced variables.

The four repair templates modify one argument in method
invocations. When applying the four repair templates on over-

ridden methods, SOFIX first checks whether the corresponding
modifications do not introduce compilation errors. For example,
before SOFIX adds an argument to a overridden method
#func () of a type, it checks whether the buggy program
declares a method with one more parameter. If such a method
is found (e.g., #func (T1) where 7T} donates a type), SOFIX
further searches for variables whose types are 73, and adds
them as a new argument one by one. Here, while the Variable
Replacer template replaces variables with variables of the same
type, the Argument Replacer template replaces arguments with
variables of only different types.

5. The Invocation Replacer template.

Usage Scenario: The buggy statement contains at least one
method invocation.

Template Values: This template searches for methods in buggy
program with identical parameter list.

This template is derived from the InvoReplacer pattern. As
described in the InvoReplacer pattern, this derived template
searches for other methods with identical parameter list in the
buggy program to mutate the method invocation.

6. The BinaryOperator inversion template.

Usage Scenario: The buggy statement contains two operators,
and one operator is the parent node of the other operator in
the AST of the statement.

Template Values: None.

This template is derived from the BinaryOplnversion pattern.
As it changes only structures, the repair template does not
need template values. This template is able to generate a
transformation from the left AST to the right one, i.e., ((e1
Op;1 e3) Ops e3) — (e1 Opy (e2 Ops e3)). Alternatively, it is
able to generate a transformation from the right AST to the left
one, i.e., (e; Op1 (e2 Opz e3)) — ((e1 Op1 e2) Op2 e3). As
the modification sequences of the two inverse transformations
are isomorphic, a single repair template is sufficient to repair
both cases.

7. The Variable To Invocation template.

Usage Scenario: The buggy statement contains at least one
variable read.

Template Values: This template searches the buggy program
for methods whose names are similar to variable names. Here,



TABLE IV: The bugs in the Defects4J benchmark

TABLE V: Overall result

Project Defects | Test Cases | Abbreviation Project | SOFIX | GenProg | xPAR | Nopol | HistoricalFix | ACS
JFreeChart 26 2,205 Chart Chart 5 - - 1 2 2
Apache Commons Lang 65 2,245 Lang Lang 4 - 1 3 7 3
Apache Commons Math 106 3,602 Math Math 13 5 2 1 6 12
Joda-Time 27 4,130 Time Time 1 - - - 1 1
Total 224 12,182 Total 23 5 3 5 16 18

SOFIX requires that the type of the variable is identical with
the return type of the method, and it searches only methods
without parameters.

This template is derived from the VarTolnvo pattern. After
we inspected all the instances in this pattern, we find that most
of the replacement methods have similar names to original
variables with no parameters. As a result, we restrict the search
scope within such methods.

8. The Return Statement Adder and the Statement Re-
mover templates

Usage Scenario: Every buggy statement.

Template Values: The Return Statement Adder template fills
the added return statement with the default values of the method
return type (e.g., int for 0, boolean for true or false, a
non-primitive type for null).

The Return Statement Adder template is derived from the
ReturnAdder pattern, and the Statement Remover template is
derived from the StateRemover pattern. The two templates
modify subtrees. They are simple and do not need to search
for template values.

9. The If Checker Adder template.

Usage Scenario: The buggy statement contains at least one
variable whose type is non-primitive.

Template Values: None.

This template is derived from the [fChecker pattern. We find
that in most instances of in this pattern, variables are checked
against null values. As a result, for each buggy statement, this
repair template checks all its variables against null values.

IV. EVALUATION

We implemented SOFIX, and conducted evaluations to
explore the following research questions:

(RQ1) What is the effectiveness of SOFIX in repairing real-
world bugs (Section [[V-A)?

(RQ2) Which bugs are repaired by SOFI1X, and which bugs
are repaired by other approaches (Section [[V-B)?

(RQ3) What are the differences between our repair templates
and the ones in other approaches (Section [[V-C))?

(RQ4) What are the impacts of SOFIX’s internal and underly-
ing techniques (Section [[V-D})?

RQ1 concerns the overall effectiveness of SOFIX. We use
SOFIX to repair the bugs in the Defects4] [13] benchmark.
Our results show that SOFIX repaired more bugs (23 in total)
than previous approaches [26], [19], [44]].

RQ2 concerns the different effectiveness between our ap-
proach and previous approaches. By comparing our repaired
bugs with the bugs that are repaired by previous approaches, we
find that SOFIX is effective in repairing bugs that need repair

values from Stack Overflow or bugs that need fined-grained
repairs.

RQ3 concerns the comparison between our repair templates
and ones in other approaches. We find that six repair templates
in SOFIX do not appear in compared approaches. As we mined
fine-grained repair templates from Stack Overflow, SOFIX is
more effective in repairing bugs than previous approaches.

RQ4 concerns the internal and underlying techniques of
SOFIX. Our results highlight the importance of mining from
Stack Overflow, since it is infeasible to repair six bugs without
such mining. In addition, our results show that there is an urgent
requirement for better fault localization techniques, since fault
ranks have significant impacts in repair time.

A. RQI. Overall Effectiveness

1) Setup: We select the Defects4J [13] benchmark, since it
is widely used. Sobreira et al. [41] present what repair patterns
are required to repair bugs in this benchmark.

To explore this research question, we compare SOFIX
with five previous approaches. In particular, GenProg [42]
is a pioneer approach in automatic program repair. PAR [17]]
includes more repair templates that are learnt from human
patches. Nopol [45] and ACS [44]] repair if-conditions from
hints of documents and code samples. HistoricalFix [19]
repairs bugs with manual repair histories. We compared with
these approaches, since these approaches are evaluated on the
Defects4] [13]] benchmark.

Table [[V] shows the benchmark. The first column lists the
four projects in Defects4]J. The second and third columns
respectively list the numbers of defects and test cases in each
project. The last column lists abbreviations for the projects.
We did not select bugs from the Closure Compiler projecﬂ
since Defects4] does not provide JUnit test cases for bugs of
this project.

For each bug, SOFIX uses GZoltar [4] to its locate faults.
GZoltar is a spectra-based fault localization tool. Given a
set of statements and test cases, it produces a rank list of
suspicious faulty statements. GZoltar has a suspicious threshold
to determine whether a statement contains a fault. We set the
threshold as 0.01 in our evaluation.

With the support of Astor [28], SOFIX implemented all the
repair templates in Table For each fault, SOFIX selects
its compatible repair templates to synthesize patches, until
it enumerates all the suspicious faults or reaches our pre-
defined time limit. Defects4J provides manually written patches.
Besides passing test cases, we manually compare synthesized
patches with manually written patches. We consider that a bug
is correctly fixed, only when a generated patch is identical

Shttps://code.google.com/closure/compiler
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Fig. 4: The comparison results of repaired defects

or semantically equivalent to its manually written patch. The
evaluations were conducted on a Ubuntu server with 2.00 GHz
Intel Xeon E5-2620 CPU and 16GBs of memory. We set the
maximum repair time for each bug as 3 hours.

2) Result: Table |V| shows that SOFIX repaired 23 bugs
in total. Furthermore, Table lists the results of previous
approaches. We find that SOFIX repaired more bugs than any
previous approaches. Here, it is worthy mentioning that our
results are achieved under more fair settings. For example,
HistoricalFix [19] manually located faults, but SOFIX uses
GZoltar to locate faults, which can reduce its effectiveness.
In addition, SOFIX is a general approach, but some previous
approaches (e.g., [44]]) repair only i f-statements.

B. RQ2. Repaired Bugs

1) Setup: We manually compared our repaired bugs with
those of previous studies such as Martinez et al. [26] and
Xiong et al. [44]. We did not compare the repaired bugs of
HistoricalFix, since Le et al. [19] did not present the names
of their repaired bugs. We leave this comparison to our future
work. Martinez et al. [26] also set the maximum time for
repairing bugs as 3 hours. Xiong et al. [44] set the maximum
time as 30 minutes. However, their approach focuses on only
i f-statements, and may not repair more bugs with more time.

2) Result: Figure [d] shows the results. We find that all the
approaches typically repaired different bugs. In particular, our
repaired bugs involve simple modifications. For example, by
replacing a single variable, SOFIX repaired the six bugs such

as Chart1ll, Chart24, Lang6, Lang59, Math5, and Math509.

An example is as follow:

1// patch for Chartll

2 Pathlterator iteratorl
3— Pathlterator iterator2
4+ Pathlterator iterator2

pl.getPathlterator (null);
pl.getPathlterator (null);
p2.getPathIterator (null);

Among the six bugs, ACS repaired Math5, since only its
buggy location is inside an i f-statement. Nopol did not repair
any of the six bugs, since it repaired only if-conditions.
GenProg repaired Math5, since only this program has the
correct statement for replacement. PAR has the potential to
repair both Lang6 and Lang59, but Le et al. [19] report that
PAR repaired only one defect in Lang project.

By replacing a binary operator, SOFIX repaired Chartl,
Math82, Math85, and Timel9. For example, SOFIX generated
the following patch for Chart1:

1// patch for Chartl

2— if (dataset != null) {
3+ if (dataset == null) {
4 return result;

5 }

ACS [44] repaired the two bugs. PAR can use its template,
changing i f-predicts with expressions, to repair the two bugs,
but only Chartl and Math85 can be repaired in this way.

TABLE VI: The details of repaired bug

Bug Id  Template Source  Time Rank Tries Psize
Chartl  BinaryOperator Replacer ~ SO 846 28 514 1
Chart4  If Checker Adder - 2,224 51 624 2
Chartl1 Variable Replacer P 8 5 31 1
Chart24 Variable Replacer Both 5 3 22 1
Chart26 If Checker Adder - 5,324 132 1,556 2
Lang6  Variable Replacer P 1,812 121 1,213 1
Lang21 Variable Replacer SO 10 2 19 1
Lang51 Return Statement Adder - 15 12 64 1
Lang59 Variable Replacer Both 75 19 209 1
Math2  BinaryOperator Inversion - 40 1 25 1
Math5  Variable Replacer P 1 1 1 1
Math33 Arguments Replacer P 547 20 372 1
Math34 Variable To Invocation P 2 1 2 1
Math50 Statement Remover - 155 3 170 4
Math57 Type Replacer SO 22 2 10 1
Math58 Arguments Remover - 93 11 92 1
Math59 Variable Replacer P 178 2 74 1
Math70 Arguments Adder P 8 1 16 1
Math75 Invocation Replacer P 1 1 3 1
Math80 BinaryOperator Inversion - 153 14 175 1
Math82 BinaryOperator Replacer SO 396 48 623 1
Math85 BinaryOperator Replacer SO 398 43 452 1
Timel9 BinaryOperator Replacer SO 10,102 313 4,196 1

No previous approaches repaired the Math80 defect. SOFIX
repaired this bug, by reversing its operator priority:
1// patch for Math80

2— int j 4 x n— 1;
3+ int j 4 % (n— 1);

An instanceE] of the corresponding repair pattern is as follow:

1 // buggy code in question post

2 if (idx — offset % n == 0)

34

4 retVal.concat(parts[idx] + "-");
}

1 //fixed code in accepted answer post

2 if ((idx — offset) % n == 0) // added parantheses

3¢

4 retVal += Character.toUpperCase (parts[idx].charAt(0))
5 + parts[idx].substring (1) + " ";

6}

The above code samples show how to repair a similar bug, i.e.,
changing the operator priority between “-” and “%”.

In summary, our results show that SOFIX is effective in
repairing bugs that need fined-grained repairs or repair values
from Stack Overflow. In addition, SOFIX repaired numbers of
new bugs that were not repaired by the compared approaches.

C. RQ3. Repair templates

1) Setup: SOFIX analyzed 31,017,891 posts from Stack
Overflow. During mining, we set the threshold as 0.75 and
the coefficient c as 0.1, for Equation 1| In total, we derived
13 repair templates, as shown in Table We compared our
repair templates with those of PAR [17] and HistoricalFix [19].
The repair templates in PAR are manually summarized from
human-written patches and HistoricalFix uses the templates in
previous researches of mutation testing [33]], [25] and repair
techniques [42], [L17].

Shttp://stackoverflow.com/questions/35012637
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Fig. 5: The comparison results of repair templates

2) Result: Figure E] shows the results. Here, we refer to finer
granularity of repair templates. For example, as HistoricalFix
splits the Expression Adder and Remover template of PAR into
two different templates, we count the Expression Adder and
Remover template of PAR as two templates. We find that our
following repair templates appear in PAR or HistoricalFix:

Our BinaryOperator Replacer template is the same as
the Change Infix Expression template in HistoricalFix. Both
templates modify operators. When modifying operators, Histor-
icalFix tries different operators randomly, but SOFIX searches
instances from Stack Overflow. Our Invocation Replacer
template is the same as the Method Replacer template in
PAR.

Our Variable Replacer, Arguments Adder, Arguments Re-
mover, Arguments Replacer templates are similar to the
Expression Replacer, Parameter Adder and Remover, Parameter
Replacer templates in PAR. The main difference lies in their
repair granularity. The granularity of SOFIX is finer, since our
above four templates modify variables, but the three templates
in PAR modify code at the granularity of expressions. As a
result, PAR is less effective to repair the bugs with small faults.
As shown in Section [II} a buggy statement can have lengthy
expressions, but only a small portion of such expressions are
faulty. Even if the faulty statement is correctly localized, it
is difficult for PAR to repair the statement. In the contrast,
SOFIX repaired the bug, since its Variable Replacer template
repairs finer code elements (e.g., variables).

Our If Checker Adder template corresponds to the Null
Pointer Checker template in PAR. The difference lies in their
target code elements. In particular, our If Checker Adder
template adds if checkers to blocks, but the Null Pointer
Checker template in PAR adds such checkers to statements.
For example, suppose that a buggy statement S; followed
by two associated statements Sy and Ss. The Null Pointer
Checker template adds checkers like if () {S1} S2 Ss, but
our If Checker Adder template adds checkers like if () {S1
So S3}.

Our remaining 6 templates do not appear in the referred two
approaches. To the best of our knowledge, our BinaryOperator
Inversion and Variable To Invocation never appear in previous
researches. As more fine-grained repair templates are mined
from Stack Overflow, for the Defects4] benchmark, SOF1X
repaired more bugs than previous approaches did.

D. RQA4. Internal and Underlying Techniques

1) Setup: When SOFIX repaired bugs, we recorded its in-
ternal data. For example, we recorded how SOFIX synthesized
values for repair templates, and the time of repairing each bug.
We manually inspected the data to present our results.

2) Result: Table [V shows our results. The second column
lists templates that repaired the corresponding bugs. Column

“Source” shows source of template values. In particular, “SO”
denotes that SOFIX obtained the correct values from Stack
Overflow; “P” denotes that SOFIX obtained the correct values
from the buggy program under repairing; and “Both” denotes
that SOFIX could obtain the correct values from both sources.
Column “Time” lists repair time in seconds. Here, we ignore
the time of fault localizations to make our results consistent
with the evaluations in existing papers [26], [19], [44]. Column
“Rank” lists rankings of correct faulty statements. Column
“Tries” denotes tried times before bugs were repaired. Column
“Psize” lists our generated patch sizes, which are the numbers
of modified code lines.

Column “Source” shows that in six repaired bugs, SOFIX
could only extract correct repair values from Stack Overflow.
The results highlight the importance of SOFIX, since it is
infeasible to repair the six bugs without mining Stack Overflow.

The repair time is largely in proportion to the rankings of
correct faulty statements. It took less than a minute for SOFIX
to repair bugs, if the underlying fault localization technique [4]]
correctly ranks faulty statements at the top. In the contrast, if
the underlying fault localization technique fails to rank faults
at the top, it took much longer for SOFIX to repair bugs. For
example, as the correct fault of Time19 is ranked as the 313rd
suspicious statement, it took more than two hours to repair
this bug. Indeed, as the faulty statement of Lang26 is too low,
SOFix failed to repair the bug within time limit. Although
our repair templates are able to repair the bug, it took more
than four hours for SOFIX to repair the bug. From our results,
it is desirable for researchers to propose more effective fault
localization approaches.

As our approach is based on one-shot manner and fine-
grained repair templates, our generated correct patches are
typically small. As shown in Column “Psize”, most of our
repaired bugs involve only one-line modifications. Chart4,
Chart26, and Chart50 are repaired by those repair templates
that modify subtrees (e.g., If Checker Adder), so their patches
modify more than one code line.

Debroy and Wong [7]] define three types of bugs:

o L1: programs with a single fault on a single statement.

e L2: programs with a single fault on multiple statements.

o L3: programs with multiple faults.

In this paper, we focus on L1 bugs, but leave L2 and L3 bugs
for future work. Our results show that if faults are not correctly
located, it takes much more time to repair bugs. DiGiuseppe
and Jones [8] show that existing approaches are effective to
locate only a single fault of L2 and L3 bugs. We further discuss
this issue in Section [Vl

E. Threats to Validity

The threats to internal validity include the limitation of
the underlying tools, since Spoon can ignore code elements
and Gumtree can ignore feasible edit actions. The threat
can be reduced with more advanced tools. The threats to
internal validity also include the manual process to derive
repair templates. To reduce the threat, we carefully inspect
mined patterns, and it can be further reduced with introducing



more researchers in the inspection. The threats to external
validity includes our chosen Defects4] benchmark and Stack
Overflow repository. Although Defects4J is widely used, our
effectiveness can be reduced in repairing other bugs. The threat
can be reduced by repairing more bugs from other sources.
In addition, we can extract more bug repair data in other
repositories to mitigate the dependencies on Stack Overflow.

V. DISCUSSION AND FUTURE WORK

Fixing bugs with multiple faults. We notice that a fault can
appear in multiple locations. For example, repairing Chart?7
needs replacing minMiddleIndex with maxMiddleIndex in
two statements. As single faults are repetitive, it can be feasible
to repair these bugs, if their faults are located. DiGiuseppe and
Jones [8]] complain that existing fault localization techniques
are insufficient to locate multiple faulty locations. In future
work, we plan to explore how to repair multiple faults.

Fully automate SOF1X. After SOFIX mines repair patterns,
we have to manually select useful ones. In addition, we have to
manually implement repair templates according to mined repair
patterns. The manual process is tedious and can lose useful
patterns. Although we introduce heuristic filter rules, these
rules are not fully reliable. In future work, we plan to explore
more advanced techniques to full automation. For example, it
is a hot research topic to mine specifications [54], [37]. It may
be feasible to use mined specifications to determine useful
repair patterns.

Exploring missing issues in our evaluations. Our evaluations
do not fully explore some issues. First, we inspected 100 mined
categories, but inspecting more categories can lead to more
findings. Second, we empirically set coefficient ¢ as 0.1 and
the threshold as 0.75, but did not explore the impacts of other
values. Third, we did not compare our repaired bugs with the
repaired bugs of HistoricalFix [19], due to the effort of re-
implementing the tool. Finally, we manually determine correct
patches, which can lead to errors. In our future work, we plan
to handle these issues. For example, Liu et al. [22] compare
test coverage to determinate correct patches. While we use
passed test cases and manual inspection to determine correct
patches, their criterion may be useful to reduce the manual
bias in this process.

VI. RELATED WORK

Automatic Program Repair. Given a buggy program, automat-
ic program repair searches for a source-level patch that repairs
the bug [42]. Various approaches are proposed to efficiently
search for patches [43], [35], [30], [16], [23], [24], [27].
BugFix [14] employs the apriori algorithm to rank previous fix.
SemFix [32]] repairs bugs in assignments and conditions. Liu ef
al. [20] learn from bug reports to fix bug. Rolim et al. [38] and
Le Goues et al. [18]] repair bugs based on examples. Saha et
al. [39]] rank patches with more repair templates and algorithms.
Chen et al. [S] leverage learnt contracts to fix bugs. Researchers
still hold controversial opinions about the effectiveness of
various approaches. For example, Qi ef al. [35] show that
RSRepair is more effective than GenProg, while Smith et

al. [40] observe the opposite. Le Goues er al. [[11] prepare
a benchmark for the follow-up research. Recent studies [48]],
[49] show that better test cases can improve the effects of
bug repair. Yang et al. [47] show that the suspiciousness-first
algorithm works better in parallel repair and patch diversity,
comparing with the rank-first algorithm. Hassan and Wang [[12]]
repair build scripts with fixing histories. Our approach mines
repair templates from Stack Overflow, complementing existing
approaches with more repair templates.

Empirical studies on bugs and fixes. Many researchers [13]],
[S00, [51], [52], [S3] manually inspect code changes and
commit messages to understand bug fixes. Barr et al. [2] report
that 11% bug fixes can be fully reconstituted from existing
code. Martinez et al. [29] report that at the line granularity,
3% to 17% bug fixes are temporal redundancy. It is feasible
to fix new bugs with historical sources. With the support of
an advanced tool [58], Zhong and Meng [S5] conduct a more
indepth study on reusing hints from past fixes. Our approach
mines repair templates from the other source than past fixes.
Analyzing online forums. Online forums such as Stack
Overflow provide a rich source for analysis. Cong et al. [6]]
proposed a sequential patterns based classification method to
detect question-answer pairs in a forum thread. Yang et al. [46]]
use an adaptive feature-based matrix factorization framework to
recommend relevant posts. Bhatia et al. [3]] proposed a model
for online thread retrieval based on inference networks that
utilized the structural properties of forum threads. Albaham et
al. [1]] adopted several voting techniques that had been applied
in ranking aggregates tasks such as blog distillation and expert
finding. Our approach analyzes forum posts from a different
angle, mining repair templates.

VII. CONCLUSION

Automatic program repair has been a hot research topic in
the software engineering community, but existing approaches
are less effective in repairing bugs, partially due to their limited
repair templates. Meanwhile, when programmers repair bugs,
they often search Stack Overflow to learn how to repair bugs.
This observation leads to our work that mines repair templates
from Stack Overflow. In this paper, we propose SOFIX that
mines fine-grained repair patterns from Stack Overflow. Based
on such patterns, we derive 13 repair templates. We conduct
an evaluation on the Defects4] benchmark. Our results show
that 23 bugs are repaired, which shows the effectiveness of
our approach. We further analyze repaired bugs in our work
and previous papers, and our findings highlight the importance
of mining repair templates from Stack Overflow.
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