
Assessing the Representativeness of Open Source

Projects in Empirical Software Engineering Studies

Hao Zhong and Ye Yang

Laboratory for Internet Software Technologies

Institute of Software, Chinese Academy of Sciences

Beijing, 100190, China

Email: {zhonghao,ye}@itechs.iscas.ac.cn

Jacky Keung

Department of Computing

The Hong Kong Polytechnic University

Kowloon, Hong Kong

Email: Jacky.Keung@comp.polyu.edu.hk

Abstract—BACKGROUND: Software engineering researchers
have carried out many empirical studies on open source software
(OSS) projects to understand the OSS phenomenon, and to
develop better software engineering techniques. Many of these
studies typically use only a few successful projects as study
subjects. Recently, these studies have received criticisms and
challenges on their representativeness on OSS projects.
AIM: First, we aim to examine to what extent data extracted
from successful projects are different from data extracted from
the majority. If data extracted from successful projects are quite
different from data extracted from the majority, approaches that
are effective on successful projects may not be effective in general.
Second, we aim to examine whether successful OSS projects are
representative to the whole population of OSS. If they are not,
conclusions that are drawn from only successful projects may
reflect the OSS phenomenon partially.
METHODOLOGY: We analyzed 11,684 OSS projects that are
hosted on SourceForge. When researchers select subjects, they
typically select successful projects that are attractive to both
users and developers. Considering this preference, we clustered
these projects into four categories based their attractiveness
to users and developers. Here, we use the K-means clustering
technique to produce combined result. Furthermore, we selected
eight indicators that are used in many existing studies (e.g., team
sizes), and compared indicators that are extracted from different
categories to investigate to what degree they are different.
RESULT: For the first research aim, the result shows that 66.1%
projects are under developing projects; 14.7% projects are user-
preference projects; 14.2% projects are developer-preference
projects; and only 5.0% projects are considered successful. For
the second research aim, the result shows that all the eight
analyzed indicators are highly unbalanced with the gamma
distribution. Furthermore, the result reveals that users and
developers of SourceForge have different perceptions on the
development status defined by SourceForge.
CONCLUSION: We conclude that successful projects are not
representative to the whole population of OSS, and data extracted
from successful projects are quite different from data extracted
from the majority. The result implies that conclusions drawn
from only a few successful projects may be challenged. This
work is important to allow researchers to refine conclusions of
existing studies, and to better understand and to carefully select
OSS project subjects for their future empirical experiments.

I. INTRODUCTION

Open source software (OSS) is a global phenomenon that

attracts much attention from stakeholders with diverse back-

grounds. Ever since its inception, many advocated developers

and commercial organizations have put forward tremendous

efforts to the OSS development, and benefit from knowledge

exchange and be able to rapidly drive innovations [41]. With

their contributions, open source portals such as SourceForge

now host millions of OSS projects. Among these projects,

especially those successful ones (e.g., Linux) have attracted

many users and developers.

The OSS phenomenon also attracts much attention from

academic research. Up to the present, researchers have con-

ducted many studies on OSS projects to understand the OSS

phenomenon, or to evaluate software engineering approaches.

Scacchi [33] surveyed existing studies, and point out that

these studies cover various perspectives of OSS (see Section II

for detailed descriptions of some such studies). Nevertheless,

some researchers criticize that conclusions drawn in many

existing studies may not be fully representative, since these

studies typically select only few successful projects for anal-

ysis. In particular, Crowston et al. [11] reviewed more than

one hundred published empirical studies on OSS projects.

Their result shows that most studies selected fewer than ten

successful projects for analysis (see Section II for the sub-

ject selection in some existing studies on OSS). Considering

this undesirable trend, Crowston et al. [11] challenge the

representativeness of existing empirical studies on OSS, and

suspect that conclusions drawn from those successful OSS

projects such as Linux might be significantly different from

conclusions drawn from the majority of OSS projects (see the

third paragraph of Section 3.3 in their paper [11] for details).

Crowston et al.’s challenge shocked the foundation of existing

studies on OSS, and needs to be responded with a more

systematic empirical analysis. In particular, various researchers

attempted empirical studies on the OSS projects to understand

software engineering theories and practices (see Section II

for details). For these studies, if data extracted from their

selected subjects are quite different from data extracted from

the majority of projects, the reliability of their conclusions

could be challenged, and their theories or practices may not be

truly reflected in general. Researchers also conducted various

empirical studies on the OSS projects to understand the OSS

phenomenon (see Section II for details). For these studies, if

selected subjects are not the majority of the OSS projects,

their drawn conclusions on OSS may not be representative,

and may only partially reflect the reality of OSS.

In response to Crowston et al.’s challenge, we attempted to

answer some of many related questions. Are successful OSS

projects the majority of the whole population of OSS projects?

Are data extracted from successful OSS projects significantly

different from data extracted from other projects? These ques-

tions are still open, and to answer these questions, there is a

strong need for a quantitative study on the representativeness

of OSS projects with regard to their success. However, such

a quantitative study on the representativeness of OSS projects

is challenging, since it requires a carefully designed analysis

methodology and tremendous effort to analyze statistics from

a large number of OSS projects.

In this paper, we propose a methodology that extracts

statistics from OSS projects and analyzes extracted data to

answer the preceding research questions. In literature, existing

studies tend to select successful projects that are attractive to

both users and developers. As a result, we define the success

of an OSS project as its attractions to users and developers.

Based on the definition, we conduct the first empirical study

on individual indicators and the representativeness of OSS

projects related to their project success. The result of this

study allows researchers to refine their conclusions, and to

select better subjects in their future studies. To the best of

our knowledge, this work is first of its kinds to quantitatively

analyze OSS projects.

This study makes the following contributions:

• A methodology that analyzes the representativeness of

OSS projects concerning to their project success. Based

on their attractions to users and developers, we use a clus-

tering technique to build four clusters of projects: under

developing projects, user-preference projects, developer-

preference projects, and successful projects .

• The first empirical analysis on the representativeness of

OSS projects concerning to their success. Our result

shows that successful projects are the minority of OSS

projects. To present a full overview of OSS, we suggest

that researchers should analyze more user-preference

projects, developer-preference projects, and under devel-

oping projects.

• An analysis on all the eight indicators used in our empir-

ical study. We find that indicators of successful projects

are typically thousand times larger than indicators of the

majority, therefore conclusions drawn from successful

projects can be significantly different from conclusions

drawn from the majority. If researchers need to claim

that their conclusions are general to all OSS projects, they

should select subject projects from all the four categories.

• More analyzed result on OSS. For example, we find that

existing channels fail to collect user feedbacks. As user

feedbacks are important for OSS developers to improve

their projects, we suggest that researchers should provide

better channels to collect user feedbacks. As another

example, we find that users and developers have different

perceptions of some development status, and we suggest

that development status should be more clearly defined

to eliminate the difference.

Our study reveals some realities of OSS. For example, our

result shows that OSS projects typically have small teams.

However, our result does not provide any comparisons between

open source software and closed source software, and we

further discuss this issue in Section V. The rest of our paper

is as follows. Section II presents related work. Section III

presents our analysis methodology. Section IV presents our

empirical study. Section V discusses issues of our approach.

Section VI concludes this paper.

II. RELATED WORK

This section briefly discusses the related important research

to our empirical study.

Empirical studies to understand software engineering

theories or practices. Researchers conducted various empiri-

cal studies on OSS projects to understand software engineering

theories or practices. Capra et al. [8] conclude that when a

project comes to an end, its governance becomes less formal,

and its development effort increases. Gyimothy et al. [19]

validate that some object-oriented metrics (e.g., couplings

between object classes) can be used to predict the fault-

proneness of classes. Kim et al. [25] conclude that refactoring

clones may not always improve software qualities. Kim et

al. [24] also conclude that refactoring may introduce more

defects, and the benefits of refactoring should be rethought. Shi

et al. [35] enumerate various findings on the documentation

evolution of five open source API libraries. Bachmann et

al. [3] conclude that most committed bug reports are not

related to bug fix or feature request. Bird et al. [4] conclude

that biases exist in defect datasets, and such biases have

negative impacts on defect prediction techniques. Aversano et

al. [2] conclude that design patterns are suitable to support

software that tends to change more frequently. Gabel and

Su [14] conclude that there is a general lack of uniqueness in

software. Ko et al. [26] conclude that word frequencies in bug

reports generally follow Zipf’s law. Harman and McMinn [20]

enumerate various findings on search based testing. Grechanik

et al. [17] enumerate various findings on code structures of

Java programs. Pandita et al. [30] present the effectiveness

of their approach with two popular APIs. Zhong et al. [43]

conclude that some simple test-suite-reduction approaches are

as effective as some complicated ones. Hindle et al. [21] reveal

that code is even more repetitive than natural languages. Wang

et al. [38] compare ten information retrieval techniques on

their effectiveness of recovering the links between concerns

and implementing functions. Schuler and Zeller [34] report

that the dynamic slice of covered statements that influence an

oracle is a good indicator for oracle quality. Polikarpova et

al. [32] compare inferred contracts with programmer-written

contracts. Zhang et al. [42] show that operator-based mutant

selection is not superior than random mutant selection. These

preceding studies typically analyze only several successful

projects, and the representativeness of selected projects may

affect their conclusions.

TABLE I
SUBJECT SELECTIONS AND USED DATA SOURCES IN SOME EXISTING STUDIES ON OSS

Author [Ref] Subject Data source

Mockus et al. [28] Mozilla and Apache email lists, cvs archives, and bug reports
Ye and Kishida [41] GIMP email lists and cvs archives
Paulson et al. [31] Linux, Apache, and Gcc code metrics (e.g, growing rates)
Huntley [22] Apache and Mozilla cvs archives
Dinh-Trong et al. [13] FreeBSD email lists, cvs archives, and bug reports
Kim et al. [25] Carol and DNSJava cvs archives
Gyimothy et al. [19] Mozilla code metrics (e.g., methods per class)
Gurbani et al. [18] a telephony server team sizes, lines of code, numbers of downloads, and etc.
Bird et al. [5] Apache, Ant, Python, Perl, and PostgreSQL email lists
Sowe et al. [36] Debian email lists
Capra et al. [8] 75 projects team sizes, lines of code, numbers of downloads, and etc.
Olbrich et al. [29] Lucene and Xerce 2 cvs archives
Koch [27] about 100 projects numbers of downloads, web hits, team sizes, and etc.
Boulanger [6] Linux, Apache, and MySQL defect densities and etc.

Empirical studies to understand the OSS phenomenon.

Researchers conducted various empirical studies on OSS

projects to understand the OSS phenomenon. Mockus et

al. [28] conclude that OSS projects overall can have low-

er defect densities and higher productivity than commercial

software. Paulson et al. [31] conclude that OSS project does

not have higher productivity, but defects in OSS projects are

more rapidly found and fixed than commercial software. Ajila

and Wu [1] conclude that software companies can achieve

higher productivity and quality if they reuse OSS projects

in a systematic way. Penta and German [15] conclude that

explicit contributors and copyright owners are not necessarily

the most frequent committers. Gurbani et al. [18] enumerate

various lessons and open questions on the OSS development.

Jensen and Scacchi [23] conclude that OSS projects have

different ways to migrate their participants from peripheral

roles to core leadership positions. Godfrey and Tu [16] con-

clude that Linux is growing faster than they expected. Bird

et al. [5] conclude that OSS projects can have latent social

networks. Sowe et al. [36] conclude that OSS developers

communicate frequently, and their communication follows

the fractal cubic distribution. Yamauchi et al. [40] conclude

that the communication of OSS developers heavily relies on

electronic media. Ye and Kishida [41] conclude that learning

is one of the major driving forces that attract OSS developers.

Dagenais and Robillard [12] conclude that the documentation

development of OSS follows three production models: initial

effort, incremental changes, and bursts. The preceding studies

typically select only few successful OSS projects to analyze.

Again, the preceding conclusions may provide many valuable

insights on the OSS phenomenon, but may not be generalizable

due to the selection of study subjects.

Characteristics of OSS projects. Capiluppi et al. [7]

analyzed 406 projects hosted on Freshmeat for characteristics

of OSS projects. As they analyzed data manually, only about

four hundred projects were analyzed, and their data were

extracted eight years ago. On the contrary, as we analyze

statistics automatically, our empirical study analyzes much

more up-to-date projects. Furthermore, our study focuses on

the representativeness of OSS projects with regard to their

success, instead of presenting general characteristics.

Subject selection in literature. Table I shows selected

OSS projects and used data sources of some existing studies.

Column “Author [Ref]” lists authors and references of these

studies. In this table, we focus on studies that were published

in the past ten years. Column “Subject” lists selected subjects

of these studies. We find that except the two studies (i.e., Capra

et al. [8] and Koch [27]), all the other studies in Table I select

only few successful OSS projects as subjects. Column “Data

source” lists major data sources used in these studies. We find

that many data sources are relevant to the indicators that are

analyzed in our methodology. For example, Gurbani et al. [18],

Capra et al. [8], and Koch [27] all use team sizes as data

sources, and our empirical study shows that the indicator of

team sizes is highly unbalanced. Besides direct usages, we

find that some data sources used in existing studies rely on

our indicators indirectly. For example, Mockus et al. [28], Ye

and Kishida [41], Dinh-Trong et al. [13], Bird et al. [5], and

Sowe et al. [36] all use email lists as data sources. Email lists

indirectly rely on team sizes, and small teams typically have

quite different email communications with large teams.

III. METHODOLOGY

Our methodology implements the following steps:

Step 1: Selecting OSS projects as subjects. The statistics

from a single project can be random or even false. For exam-

ple, a programmer may build tools to download released files

from a project automatically to increase download numbers,

since download numbers have impacts on user choices. To

reduce the negative impacts from such false statistics, we

select a large population of OSS projects as subjects, since

most projects do not produce false statistics to deceive users.

As we select thousands of projects for analysis, false statistics

from few projects should have little negative influence to our

conclusion. We define the success of an OSS project as its

attractions to users and developers. For users and developers,

different development status can have different attractions. In

particular, SourceForge defines the seven development status:

inactive, mature, production/stable (referred to as production

for short), beta, alpha, pre-alpha, and planning. To ensure the

representativeness of our study, we retrieve projects of all the

seven development status for analysis.

Fig. 1. Some statistics on SourceForge

Step 2: Extracting statistics of subjects. Through the

website of a project, SourceForge provides various statistics

of the project. For example, Figure 1 shows an HTML file

returned from SourceForge, and the file lists numbers of read

transactions, numbers of write transactions, and numbers of

total updated files on the two days (i.e., 3rd and 4th, November,

2010). We implemented a tool that parses all these HTML files

to extract statistics. A value of a single day can be random,

and sums within a duration can better reflect the natures of

a project. The duration should not be too short or too long,

since sums within a too short duration cannot fully reflect

the natures of a development status, and sums within a too

long duration may reflect natures of multiple development

status. Capiluppi et al. [7] state that 90% OSS projects do

not change their development status over six months. For the

preceding considerations, we choose to calculate sums within

two months. Among extracted statistics, we choose four user-

related indicators as follows to analyze user preference:

The sum of web hits. SourceForge provides web servers

for its hosted projects. On these server, developers can release

their websites, and users can browse their contents for projects

of their interests. This indicator reflects the attraction of a

project to users for browsing its contents.

The sum of file downloads. SourceForge provides file

servers for its hosted projects. On these server, developers

can release executable files of their projects, and users can

download these files for a try. If a user feels that a project is

indeed useful, the user may download its released files for a

trial. This indicator reflects the attraction of a project to users

for trying it.

The sum of forum posts. SourceForge provides forums for

all its hosted projects. In these forums, developers and users

can discuss various issues about their projects. The indicator

reflects the attraction of a project to users for participating.

The sum of opened bugs. SourceForge provides bug-report

servers to all its hosted projects. On these servers, users

can report bugs, and developers can fix reported bugs. For

example, the bug report server of Notepad++1 lists all its bug

reports, and most of them are from users. If a user finds a

bug of a project, the user can report the bug to the project,

so the indicator reflects the attraction of a project to users for

improving its quality.

We choose the four developer-related indicators as follows

to analyze developer preference:

Team sizes. In SourceForge, the website of a project lists

names of all its developers. If a developer makes contributes

continually to a project, the developer may require to be added

to the developer list of the project. The indicator reflects the

attraction of a project to developers for the identification of

1http://sourceforge.net/tracker/?group id=95717&atid=612382

its team.

The sum of read transactions. For the ease of the collab-

oration among developers, SourceForge provides concurrent

versions system (CVS) for its hosted projects. From CVS,

developers can check out source files of projects. If a developer

is interested in a project, the developer can check out its source

files to learn. In other programming tasks such as code review,

developers can also check out source files of OSS projects.

As a result, the indicator reflects the attraction of a project to

developers for reading its code.

The sum of write transactions. Through CVS of a project,

some developers have the right to check-in source files. As

developers need to write files after development, the indicator

reflects the attraction of an OSS project to developers for

collaborating.

The sum of updated files. When developers check in source

files to a project, some files of the project may be updated.

As each write transaction can update only one file or many

files, the indicator reflects the attraction of an OSS project to

developers for putting programming efforts on the project.

Step 3: Analyzing extracted statistics. Our study aims to

answer the following two research question:

• RQ1: To what extent are indicators that are extracted from

successful OSS projects different from indicators that are

extracted from other OSS projects?

• RQ2: To what extent do successful OSS projects represent

the whole population of OSS projects?

To answer the first research question, we present cumulative

percents and various quantile-quantile plots (Q-Q plots) of all

the indicators, since cumulative percents and Q-Q plots are

both widely used to compare distributions of samples [39].

From the result, we are able to see the differences between

data sources in successful projects and data sources in other

projects, and estimate whether conclusions drawn from suc-

cessful projects can be significantly different from conclusions

drawn from the majority of OSS projects or not.

To answer the second research question, we cluster all the

OSS projects into the following four categories:

(1) User-preference projects: These projects are attractive

to users, but are not attractive to developers.

(2) Developer-preference projects: These projects are at-

tractive to developers, but are not attractive to users.

(3) Successful projects: These projects are attractive to both

users and developers, and are considered successful.

(4) Under developing projects: These projects are not

attractive to either users or developers.

Values of different indicators are not comparable, and

cannot be used for clustering directly. We first normalize

all the extracted indicators to make them comparable. After

normalization, for each project, we use the sum of user-

related indicators to present its user preference, and use the

sum of developer-related indicators to present its developer

preference. Based on the preceding two sums, we use a

clustering technique described in [37] to put projects into

categories, and calculate percents of all the categories to

present their representativeness.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

0

10

20

30

40

50

60

70

80

90

100

 web hits

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

0

10

20

30

40

50

60

70

80

90

100

downloads

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

10
0

10
1

10
2

10
3

10
4

82

84

86

88

90

92

94

96

98

100

forum posts

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

10
0

10
1

10
2

10
3

91

92

93

94

95

96

97

98

99

100

 opened bugs

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

Fig. 2. Cumulative percents of user-related indicators

In existing studies, researchers typically select only suc-

cessful projects as their subjects among the four categories

of projects. Our definition is consistent with the definition of

Crowston et al. [10]. When they define the success of OSS

projects, they also take both users and developers into account

as the two major audiences. We understand that developers

and researchers can have different opinions on the success

of OSS projects. For example, some projects are of high

quality and are useful to a small group of users. Although our

methodology does not put these projects into the successful

category and researchers typically will not select these projects

as research subjects, their users and developers can still believe

that these projects are successful.

IV. EMPIRICAL ASSESSMENT

Based on our methodology, we conducted an assessment to

address the research questions as follows:

• RQ1: To what extent are indicators that are extracted from

successful OSS projects different from indicators that are

extracted from other OSS projects?

• RQ2: To what extent do successful OSS projects represent

the whole population of OSS projects?

Our first research aim leads to the first research question. To

answer the research question, we present cumulative percents

and Q-Q plots of all the indicators (RQ1). Our second research

aim leads to the second research question. To answer the

research question, we cluster collected OSS projects into four

categories, and analyze clustering result (RQ2).

From SourceForge, our extraction tool extracted statistics

from 30th July 2010 to 29th September 2010, and the extrac-

tion was completed within one week. For each development

TABLE II
CUMULATIVE PERCENTS OF WEB HITS FOR INACTIVE PROJECTS

Web hit Frequency Percent Cumulative percent

0 161 10.4% 10.4%
1 8 0.5% 10.9%

.
1,327,487 1 0.1% 99.9%
1,523,322 1 0.1% 100.0%

status, we randomly extracted statistic from 2,000 projects.

During the extraction, we find that only few projects changed

their development status during the week, and some projects

do not have specific statistic. For example, some projects

do not release any files, thus they do not have download

numbers. We filter out the aforementioned two types of

projects to eliminate the impacts from changed development

status and missing statistics. The remaining 11,684 projects

include 1,554 inactive projects, 1,672 mature projects, 1,556

production/stable projects, 1,631 beta projects, 1,672 alpha

projects, 1,750 pre-alpha projects, and 1,849 planning projects.

More details of our work can be found on our project site.2

A. RQ1: To what extent are indicators that are extracted

from successful OSS projects different from indicators that are

extracted from other OSS projects?

1) The cumulative percents of indicators: Figure 2 presents

cumulative percents of user-related indicators. We build the

figure based on distributions of these indicators, and we next

use the inactive curve of web hits in this figure as an example

to illustrate the building process. We organize sums of web

hits by their frequencies. Table II shows distributions of web

2http://itechs.iscas.ac.cn/cn/membersHomepage/zhonghao/oss.html

10
0

10
1

10
2

10
3

50

60

70

80

90

100

 team size

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

10
0

10
1

10
2

10
3

10
4

10
5

10
6

30

40

50

60

70

80

90

100

 read transactions

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

10
0

10
1

10
2

10
3

10
4

10
5

50

55

60

65

70

75

80

85

90

95

100

 write transactions

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

10
0

10
1

10
2

10
3

10
4

10
5

50

60

70

80

90

100

 updated files

c
u

m
u

la
ti
v
e

 p
e

rc
e

n
t

inactive

mature

production

beta

alpha

pre-alpha

planning

Fig. 3. Cumulative percents of developer-related indicators

Observed Value

E
x

p
e

c
te

d

V
a

lu
e

 Gamma Q-Q Plot

Observed Value

E
x
p

e
c
te

d

V

a
lu

e

Exponential Q-Q Plot

Observed Value

E
x
p

e
c
te

d

V

a
lu

e

 Student t Q-Q Plot

Observed Value

E
x
p

e
c
te

d

V

a
lu

e

Normal Q-Q Plot

Observed Value

E
x
p

e
c
te

d

V

a
lu

e

 Logistic Q-Q Plot

Observed Value

E
x
p

e
c
te

d

V

a
lu

e

 Laplace Q-Q Plot

Observed Value

E
x

p
e

c
te

d

V
a

lu
e

 Half-normal Q-Q Plot

Observed Value

E
x

p
e

c
te

d

V
a

lu
e

Chi-square Q-Q Plot

 !

 !"#"$ # $ %&'"$ (# %&'")*+"$# (#%&'"),-"$# (# %&'")*+"$# (#
!Æ (#

Fig. 4. Q-Q plots of web hits

hits for inactive projects partially. Column “Web hit” lists

sums of web hits for inactive projects. Column “Frequency”

lists frequencies of inactive projects with corresponding sums.

Column “Percent” lists percents of corresponding frequencies.

Column “Cumulative percent” lists cumulative percents of

corresponding frequencies. For example, from the last row

of Table II, only 1 inactive project has 1,523,322 web hits;

the corresponding frequency is approximately 0.1% (1/1554);

and the cumulative percent is 100% (i.e., no inactive project

has more than 1,523,322 web hits in the two months). To

build the inactive curve as shown in Figure 2, we use Column

“Web hit” in Table II to fill in the horizontal axis, and Column

“Cumulative percent” in Table II to fill in the vertical axis.

As several elite projects have much more web hits than the

majority has, we choose the logarithmic scale instead of the

linear scale for the horizontal axis of Figure 2 to better present

web hits. Based on the result as shown in Figure 2, we come

to the following findings:

Finding and implication 1: From Figure 2, we find that

all the four indicators are highly unbalanced. Indicators of

several elite projects are hundreds or even thousands larger

than indicators of the majority. If researchers plan to draw

conclusions from user-related indicators, they should be aware

of this huge difference.

Finding and implication 2: We find that many users

are willing to browse contents or download files for a trial

run, but far fewer users will post on forums or open bug

reports. The existing communication channels between users

and developers may be too complicated for users to participate,

and developers should consider providing a more user friendly

and attractive environment.

Finding and implication 3: We find that different develop-

ment status has different attractions to users, and the attraction

order to users is as follows: production, mature, beta, alpha,

inactive, pre-alpha, and planning. However, development status

can be of the different meanings as users would normally

expect. For example, in contrary to expectations from many

users, we find that some mature projects still have many bugs

to be fixed.

Figure 3 shows cumulative percents of developer-related

indicators. Comparing with the result as shown in Figure 2,

we come to the following findings:

Finding and implication 4: We find that all the four

developer-related indicators are also quite unbalanced. Several

elite projects are hundreds or even thousand times more

attractive to developers than the majority of projects. Our result

is consistent with existing empirical studies. For example,

Capiluppi et al. [7] reported that 49% projects have only

one developer. Our result shows that about 50% projects have

only one developer, and 90% projects have fewer than ten

developers. Capiluppi et al. [7] consider that a team forms

a community only when it has more than ten developers.

Following their definition, we find that only 10% projects

can have communities, since only these projects have more

than ten developers. Thus, we conclude existing approaches

on social networks of OSS projects (e.g., the one proposed by

Bird et al. [5]) are applicable for only 10% elite projects.

Finding and implication 5: We find that different devel-

opment status also has different attractions to developers, and

the attraction order to users is as follows: production, beta,

alpha, mature/pre-alpha, planning, and inactive. Comparing

with Finding 3, we find that users and developers can have

different perceptions on specific development status, since the

two orders are different.

2) The QQ plots of indicators.: In statistics analysis, Q-

Q plots are commonly used to compare shapes of two dis-

tributions. In Q-Q plots, the horizontal axis and the vertical

axis list quantiles of theoretical distributions and observed

distributions, respectively. If two compared distributions are

identical, the Q-Q plot follows 45-degree line. If two compared

distributions agree after linearly transforming, the Q-Q plot

follows some lines, but not necessarily 45 degrees.

To reveal which distributions all the indicators follow, we

draw various Q-Q plots for the eight common distributions

(i.e., gamma, exponential, student t, normal, logistic, laplace,

half-normal, and chi-square distributions). Figure 4 shows

the drawn Q-Q plots of web hits. For the sub-graph of

each distribution, the horizontal axis lists quantiles of the

corresponding theoretical distribution, and the vertical axis

lists quantiles of observed web hits. Due to space limit, we

do not present Q-Q plots of other indicators. The Q-Q plots

of these indicators are all similar with the Q-Q plots of web

hits. From the Q-Q plots shown in Figure 4, we come to the

sixth finding as follows:

Finding and implication 6: We find that all the indicators

follow the gamma distribution, since only the Q-Q plots of

the gamma distribution are linear. In particular, web hits and

downloads are identical with the gamma distribution, and other

indicators agree with the gamma distribution after linearly

transforming. Here, the lower parts and the higher parts of

some indicator may follow different distributions. We further

discuss this issue in Section IV-D.

B. RQ2: To what extent do successful OSS projects represent

the whole population of OSS?

Different indicators are not comparable. To combine all the

indicators, we define the normalization function as follows:

norm(xi) =
log(xi + 1)− log(min(x) + 1)

log(max(x) + 1)− log(min(x) + 1)
(1)

Based on the preceding two sums, we use the K-means

clustering technique [37] to cluster all the projects. As we

define four categories totally, we set the number of clusters as

four. Figure 5 shows the result. In Figure 5, horizontal axes

list attractions to users, and vertical axes list attractions to

developers. For each figure, we use a legend to show percents

of categories: “×” denotes percents of developer-preference

projects; “◦” denotes percents of successful projects; “+”

denotes percents of user-preference projects; and “·” denotes

percents of under developing projects. From the legend of

Figure 5, we come to our seventh finding as follows:

Finding and implication 7: We find that 66.1% projects are

under developing; 14.7% projects are user-preference; 14.2%

projects are developer-preference; and only 5.0% projects are

successful in total. Given the small percentage of successful

projects, the sample size is not large enough to be repre-

sentable to the whole population of OSS projects.

In Figure 5, we further calculate the clustering result of

each development status, and we derive our eighth and ninth

findings as follows:

Finding and implication 8: We find that users may have

incorrect perception on some development status. For exam-

ple, as shown in Figure 5, 63.2% mature projects are still

under developing. Among them, some projects even have no

developers, and are already abandoned by their developers. In

some cases, developers may refer a project as mature, simply

because they do not want to maintain the project any more.

Finding and implication 9: We find that in general, a

project is often not attractive to users or developers during

its early development status such as planning, pre-alpha, and

alpha. Gradually, some projects can become more attractive

to developers and users in the follow-up development status,

but the increase of user attractions are much slower than

the increase of developer attractions. For example, 5.9%

planning projects are developer-preference, and 6.5% planning

projects are user-preference. At the same time, 11.6% pre-

alpha projects are developer-preference, but only 6.9% are

user-preference. The trend shows that users are slower to

change than developers are. As another example, inactive

projects also show similar trends, since 13.2% inactive projects

are still user-preference even after they become inactive.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lo
p

e
r

14.2%

5.0%

66.1%

14.7%

all

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lo
p

e
r

1.3%

0.1%

85.4%

13.2%

inactive

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lo
p

e
r

7.5%

5.7%

63.2%

23.6%

mature

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lo
p

e
r

25.1%

19.4%

30.7%

24.8%

production

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lo
p

e
r

28.4%

7.7%

45.2%

18.7%

beta

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lp
e

r

20.8%

2.5%

65.1%

11.6%

alpha

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e

v
e

lo
p

e
r

11.6%

0.6%

80.9%

6.9%

prealpha

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

user

d
e
v
e
lo

p
e
r

5.9%

0.2%

87.4%

6.5%

planning

Fig. 5. Clustering result

C. Summary

We summarize our findings as follows:

Result 1. Based on Finding 7, we conclude that successful

OSS projects are not representative to the whole population

of OSS, since successful projects are in the minority.

Result 2. Based on Findings 1, 4, and 6, we conclude

that all the eight indicators follow the gamma distribution,

and indicators of few successful OSS projects are much

larger than the majority. The highly unbalanced distributions

of analyzed indicators imply that conclusions drawn from

successful projects can be quite different from conclusions

drawn from the majority.

Result 3. Based on Findings 3, 5, 8, and 9, we conclude

that different development status has different attractions to

users and developers. In addition, we find that users and

developers have different perceptions on development status

in SourceForge. As the different perceptions mislead users, we

suggest that these status should be clearly defined to eliminate

differences.

Result 4. Based on Finding 2, we conclude that existing

channels fail to attract users for participating OSS develop-

ment. As user feedback is quite important for OSS devel-

opment, we suggest that researchers and practitioners should

provide better channels to collect user feedbacks.

D. Threats to validity

In this section, we discuss the briefly threats to validity that

can affect our findings.

The threats to internal validity include that we choose

limited indicators, and these indicators may not well reflect

the success of OSS projects. The threats should be reduced if

we introduce more indicators into analysis in future work. The

threats to internal validity also include the setting of our study.

For example, we set the duration for calculating sums as two

months, and the impacts of other durations are not evaluated in

our study. As another example, we analyze all the projects as

a whole, and domains of projects may bias the analysis result.

The threats should be reduced if we put projects of different

domains into different categories, and analyze each category

separately in our future work.

The threats to external validity include that we do not

consider selected data and normalization techniques used in

specific empirical studies. Our findings support that conclu-

sions drawn from existing empirical studies may not be rep-

resentative. However, a specific empirical study may use data

other than our analyzed indicators, and may have techniques

to reduce the huge differences of collected data. As a result,

the impacts of our findings to existing empirical studies may

vary and could not be fully determined. The threat should

be reduced by revisiting existing empirical studies with data

extracted from both successful projects and other projects.

Like any other empirical studies, the threats to external validity

include the time issue. Our result reflects the state of the

art, and can become inapplicable years later with the rapid

progress of the OSS development. The threat could be reduced

by replicating the empirical study years later with update-to-

date data and our proposed methodology.

V. DISCUSSIONS AND FUTURE WORK

Studies on unsuccessful projects. Our study reveals that

most OSS projects are unsuccessful, but existing studies

typically focus on only successful projects. With our find-

ings, researchers can improve their work in two following

directions. First, researchers can conduct studies on more

unsuccessful projects to provide comprehensive understanding

on the OSS phenomenon. Second, researchers can propose

approaches that are effective for the predominate unsuccessful

projects to achieve success. In future work, we plan to work

towards both the two directions, so that we can provide more

comprehensive empirical result and more effective approaches.

Distributions of indicators. Although all the indicators

follow the gamma distribution as a whole, different ranges

of a single indicator may follow different distributions, and

we do not provide any theories to explain the phenomenon.

We released all the data on our project website, so other re-

searchers can also try different distributions, and propose their

theories to explain why indicators follow such distributions.

Open source vs closed source. Our study provides no

comparison between open source software and closed source

software. Instead, our study provides insights on the subject

selection of future studies to ensure the representativeness

of their conclusions. We agree that a convincing comparison

between open source software and closed source software may

be achieved, if replicating our study with comparable numbers

of closed source projects (e.g., with ISBSG data3). In future

work, we plan to work towards this research direction.

Life cycles of OSS projects. Chillarege [9] presents the

product life cycle of commercial software. In future work,

we plan to investigate whether OSS projects follow similar

life cycles, and to propose approaches that can predicate

the development status changes of a given OSS project. In

addition, our empirical study analyzes only one period of

statistics from SourceForge. In future work, we plan to extract

more statistics from different time period and compare these

statistics to reveal the evolution of OSS projects in relation to

their project success.

VI. CONCLUSION

There are many existing empirical studies that are conducted

on several quite successful projects (e.g., Linux, Mozilla, and

Apache), and their conclusions heavily rely on representative-

ness of their selected subjects. As an attempt to investigate

the true representativeness of these selected subjects, we

conducted an empirical study based on an extensive collection

of 11,684 projects hosted on SourceForge, allowing us to

understand to what degree successful projects can be used to

represent the entire OSS community.

An assessment methodology has been devised and employed

in the study, the result shows only 5% projects are considered

3http://www.isbsg.org

truly successful, and indicators extracted from successful

projects are quite different from indicators extracted from

the majority. As a result, we can reasonably indicate that

the conclusions produced by many of the empirical studies

may be incorrectly representing the reality in the entire OSS

community, techniques and methods derived from these studies

may only be relevant to the selected successful projects, which

is in fact the minority cases according to our assessment.

The statistics produced from the study are also important

to reflect the current status of conclusions drawn from many

OSS empirical studies, and can be used as a reference for

researchers to determine the correct sample size and the

limitations of selected project subjects.

ACKNOWLEDGMENTS

We appreciate reviewers for their supportive and construc-

tive comments. This work is sponsored by the National Natural

Science Foundation of China No. 61100071 and 60873072.

REFERENCES

[1] S. Ajila and D. Wu. Empirical study of the effects of open source
adoption on software development economics. Journal of Systems and

Software, 80(9):1517–1529, 2007.

[2] L. Aversano, G. Canfora, L. Cerulo, C. Del Grosso, and M. Di Penta. An
empirical study on the evolution of design patterns. In Proc. ESEC/FSE,
pages 385–394, 2007.

[3] A. Bachmann, C. Bird, F. Rahman, P. Devanbu, and A. Bernstein. The
missing links: Bugs and bug-fix commits. In Proc. 16th FSE, pages
97–106, 2010.

[4] C. Bird, A. Bachmann, E. Aune, J. Duffy, A. Bernstein, V. Filkov, and
P. Devanbu. Fair and balanced?: Bias in bug-fix datasets. In Proc.

ESEC/FSE, pages 121–130, 2009.

[5] C. Bird, D. Pattison, R. D’Souza, V. Filkov, and P. Devanbu. Latent
social structure in open source projects. In Proc. 16th FSE, pages 24–
35, 2008.

[6] A. Boulanger. Open-source versus proprietary software: Is one more
reliable and secure than the other? IBM Systems Journal, 44(2):239–
248, 2010.

[7] A. Capiluppi, P. Lago, and M. Morisio. Characteristics of open source
projects. In Proc. 7th CSMR, pages 317–327, 2003.

[8] E. Capra, C. Francalanci, and F. Merlo. An empirical study on the
relationship between software design quality, development effort and
governance in open source projects. IEEE Transactions on Software

Engineering, 34(6):765–782, 2008.

[9] R. Chillarege. The marriage of business dynamics and software
engineering. IEEE Software, 19(6):43–49, 2002.

[10] K. Crowston, H. Annabi, and J. Howison. Defining open source software
project success. In Proc 24th ICIS, pages 327–340, 2003.

[11] K. Crowston, K. Wei, J. Howison, and A. Wiggins. Free/libre open
source software development: What we know and what we do not know.
ACM Computing Surveys, 44(2):1–35, 2012.

[12] B. Dagenais and M. P. Robillard. Creating and evolving developer
documentation: Understanding the decisions of open source contributors.
In Proc. 18th FSE, pages 127–136, 2010.

[13] T. Dinh-Trong and J. Bieman. The FreeBSD project: A replication
case study of open source development. IEEE Transactions on Software

Engineering, pages 481–494, 2005.

[14] M. Gabel and Z. Su. A study of the uniqueness of source code. In Proc.

16th FSE, pages 147–156, 2010.

[15] D. M. German and M. D. Penta. Who are source code contributors and
how do they change? In Proc. 16th WCRE, pages 11–20, 2009.

[16] M. Godfrey and Q. Tu. Evolution in open source software: A case study.
In Proc. ICSM, pages 131–142, 2002.

[17] M. Grechanik, C. McMillan, L. DeFerrari, M. Comi, S. Crespi,
D. Poshyvanyk, C. Fu, Q. Xie, and C. Ghezzi. An empirical investigation
into a large-scale Java open source code repository. In Proc. 4th ESEM,
pages 1–10, 2010.

[18] V. Gurbani, A. Garvert, and J. Herbsleb. A case study of a corporate
open source development model. In Proc. 28th ICSE, pages 472–481,
2006.

[19] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-
oriented metrics on open source software for fault prediction. IEEE

Transactions on Software Engineering, 31(10):897–910, 2005.
[20] M. Harman and P. McMinn. A theoretical and empirical study of search-

based testing: Local, global, and hybrid search. IEEE Transactions on

Software Engineering, 36(2):226–247, 2010.
[21] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu. On the naturalness

of software. In Proc. 34th ICSE, pages 837–847, 2012.
[22] C. Huntley. Organizational learning in open-source software projects:

an analysis of debugging data. IEEE Transactions on Engineering

Management, 50(4):485–493, 2004.
[23] C. Jensen and W. Scacchi. Role migration and advancement processes

in OSSD projects: A comparative case study. In Proc. 29th ICSE, pages
364–374, 2007.

[24] M. Kim, D. Cai, and S. Kim. An empirical investigation into the role
of refactoring during software evolution. In Proc. 33st ICSE, to appear,
2011.

[25] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An empirical study of
code clone genealogies. In Proc. 10th ESEC/13th FSE, pages 187–196,
2005.

[26] A. Ko, B. Myers, and D. Chau. A linguistic analysis of how people
describe software problems. In Proc. VL/HCC, pages 127–134, 2006.

[27] S. Koch. Exploring the effects of sourceforge. net coordination and
communication tools on the efficiency of open source projects using data
envelopment analysis. Empirical Software Engineering, 14(4):397–417,
2009.

[28] A. Mockus, R. Fielding, and J. Herbsleb. Two case studies of open
source software development: Apache and Mozilla. ACM Transactions

on Software Engineering and Methodology, 11(3):309–346, 2002.
[29] S. Olbrich, D. Cruzes, V. Basili, and N. Zazworka. The evolution and

impact of code smells: A case study of two open source systems. In
Proc. 3rd ESEM, pages 390–400, 2009.

[30] R. Pandita, X. Xiao, H. Zhong, T. Xie, S. Oney, and A. Paradkar.
Inferring method specifications from natural language API descriptions.
In Proc. 34th ICSE, pages 815–825, 2012.

[31] J. Paulson, G. Succi, and A. Eberlein. An empirical study of open-source
and closed-source software products. IEEE Transactions on Software

Engineering, 30(4):246–256, 2004.
[32] N. Polikarpova, I. Ciupa, and B. Meyer. A comparative study of

programmer-written and automatically inferred contracts. In Proc.

ISSTA, pages 93–104, 2009.
[33] W. Scacchi. Free/open source software development. In Proc. 6th

ESEC/FSE, pages 459–468, 2007.
[34] D. Schuler and A. Zeller. Assessing oracle quality with checked

coverage. In Proc. 4th ICST, pages 90–99, 2011.
[35] L. Shi, H. Zhong, T. Xie, and M. Li. An empirical study on evolution

of API documentation. In Proc. FASE, pages 416–431, 2011.
[36] S. Sowe, I. Stamelos, and L. Angelis. Understanding knowledge sharing

activities in free/open source software projects: An empirical study.
Journal of Systems & Software, 81(3):431–446, 2008.

[37] H. Spath. The Cluster Dissection and Analysis Theory FORTRAN

Programs Examples. Prentice-Hall, 1985.
[38] S. Wang, D. Lo, Z. Xing, and L. Jiang. Concern localization using

information retrieval: An empirical study on Linux kernel. In Proc.

18th WCRE, pages 92–96, 2011.
[39] M. Wilk and R. Gnanadesikan. Probability plotting methods for the

analysis of data. Biometrika, 55(1):1, 1968.
[40] Y. Yamauchi, M. Yokozawa, T. Shinohara, and T. Ishida. Collaboration

with lean media: how open-source software succeeds. In Proc. CSCW,
pages 329–338, 2000.

[41] Y. Ye and K. Kishida. Toward an understanding of the motivation Open
Source Software developers. In Proc. 25th ICSE, pages 419–429, 2003.

[42] L. Zhang, S.-S. Hou, J.-J. Hu, T. Xie, and H. Mei. Is operator-based
mutant selection superior to random mutant selection? In Proc. 32nd

ICSE, pages 435–444, 2010.
[43] H. Zhong, L. Zhang, and H. Mei. An experimental study of four typical

test suite reduction techniques. Information and Software Technology,
50(6):534–546, 2008.

