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Abstract—In recent years, deep learning obtains amazing
achievements in various fields, and has been used in safety-critical
scenarios. In such scenarios, bugs in deep learning software can
introduce disastrous consequences. To deepen the understanding
on bugs in deep learning software, researchers have conducted
several empirical studies on their bug characteristics. In the
prior studies, researchers analyzed the source code, bug reports,
pull requests, and fixes of deep learning bugs. Although these
studies provide meaningful findings, to the best of our knowledge,
no prior studies have explored the runtime behaviors of deep
learning bugs, because it is rather expensive to collect runtime
impacts of deep learning bugs. As a result, some fundamental
questions along with deep learning bugs are still open. For
example, do most such bugs introduce significant impacts on
prediction accuracy? The answers to these open questions are
useful to a wide range of audience. In this paper, we conducted
the first empirical study to analyze the runtime impacts of deep
learning bugs. Our basic idea is to inject deliberately designed
bugs into a typical deep learning application and its libraries
with a mutation tool, and to compare the runtime differences
between clean and buggy versions. In this way, we constructed
1,832 buggy versions, and compared their execution results with
corresponding clean versions. Based on our comparison, we
summarize 9 findings, and present our answers to 3 research
questions. For example, we find that more than half of buggy
versions do not lead to any observable errors, and most of them
introduce only insignificant differences on the accuracy of their
trained models. We interpret the significance of our findings from
the perspectives of application programmers, API developers,
and researchers. For example, based on our findings, better
results alone are insufficient to prove better parameters nor better
treatments, and researchers shall build strong theories to explain
their improvements.

I. INTRODUCTION

As a broader family of machine learning techniques, deep
learning has been used in various fields (e.g., computer
vision [48] and natural language processing [17], [73]). In
software engineering, researchers also have used deep learning
to handle domain-specific problems (e.g., generating code
comments [35] and locating faults [79]). In recent years, deep
learning has found its way to more safe-critical scenarios (e.g.,
self-driving cars [23]), but a bug in such scenarios can lead to
disastrous consequences [85]. Meanwhile, a recent study [39]
reports that deep learning is not fully tested.

To deepen the knowledge on deep learning bugs, researchers
have conducted various empirical studies on bugs in deep
learning clients [38], [84] and libraries [40]. In these studies,
to understand bugs and their fixes, researchers have analyzed
many bug reports [40], [84], pull requests [40], and threads on
StackOverflow [38], [84]. As it is too expensive to recreate and

execute real bugs, these studies did not analyze the runtime
behaviors of deep learning bugs. As a result, many questions
along with deep learning bugs are still open. For example, do
such bugs produce observable error messages, and do they
introduce significant differences in the accuracy of trained
models? The answers to these questions are useful to improve
the quality of deep learning software.

It is challenging to conduct an empirical study to answer
the above questions.

Challenge 1. It is expensive to recreate and execute deep
learning bugs. To execute a bug, researchers shall locate the
exact buggy commits and their testing inputs. As this process
is often expensive, in the prior studies researchers [38], [40],
[84] never execute all deep learning bugs in their studies.

Challenge 2. It is challenging to analyze many bugs. As
it needs much expertise to understand deep learning bugs, in
all the prior studies [38], [40], [84], researchers analyzed only
hundreds of bugs. As a result, their findings can be not general.

Challenge 3. It is challenging to ensure the reliability
of the analysis. Pham et al. [69] trained six popular neural
network models on three datasets, and they find that identical
training runs have around 10% random accuracy differences.

Researchers like to analyze real bugs in empirical studies,
but analyzing real bugs can introduce a bias to our study (see
the end of this section for more discussions). Mutation testing
is widely used to inject bugs. In this study, we use such bugs
to attack the above three challenges. In particular, as bugs
are automatically injected, we bypass the first challenge. For
the second challenge, in total, we used a mutation tool, called
mutmut [9], to create 1,832 buggy versions. To attack the third
challenge, following the guideline of Arcuri and Briand [15],
we execute both mutants and clean versions multiple times,
and use statistic tests to compare their results.

Although mutmut is designed to inject bugs to traditional
software, it is sufficient for our study, since researchers report
that bugs in deep learning libraries [40] and their applica-
tions [38], [84] are both quite similar to those in the traditional
software. As it is too expensive to recreate real bugs, we have
to substitute them with mutants. Researchers have intensively
compared mutants with real faults, but their studies focus on
whether mutation scores are correlated with the ability of a test
suite to detect real faults [43], [66]. The above comparisons
are irrelevant to our empirical study, since we do not calculate
mutation scores. Instead, we care about whether mutants can
produce similar buggy behaviors as real faults do. A recent
survey [65] claims that this problem is rarely studied and is



still an open question. Gopinath et al. [31] implemented a tool
to extract bug fixes, and compared the changed tokens between
mutants and bug fixes. Even with advanced machine learning
techniques, a recent work [58] achieved only around 70%
fscore to identify bug fixes. As a result, their conclusions can
be polluted by other types of code changes. Their study does
not touch the runtime behaviors of bugs either. Meanwhile,
an early study [24] reports that 85% of corrupted states from
mutants are the same with those that are produced by real
faults. Due to the above considerations, we believe that it is
reasonable to inject bugs with our mutation tool.

Our study explores the following research questions:
• RQ1. What are the symptoms of injected bugs?

Motivation. For programmers, the answers are useful
to debug deep learning bugs, and for researchers, the
answers are useful to explore better debug tools.
Answer. More than half of buggy versions do not lead to
observable errors (Finding 1). Although these bugs typi-
cally reduce the accuracy and increase the training time
(Findings 2 and 3), most of them introduce insignificant
differences and are difficult to be identified (Finding 4).

• RQ2. What are the impacts of mutation operators?
Motivation. The answers are useful to understand the
impacts of different bugs. Here, we put a bug into a
category based on the bug’s type of code modification
during mutating, and analyze impacts by bug categories.
Answer. We find that the impacts of bugs can be quite
different. For example, the bugs caused by modifications
on if-statements introduce more crashes (Finding 5), and
some bugs can have more impact on the accuracy (e.g.,
modifications on assignments, Findings 6 and 7) or the
training time (e.g., wrong comparisons, Finding 6).

• RQ3. What are the impacts on deep learning phases?
Motivation. A deep learning program typically has three
phases: preprocessing, constructing, and learning. The
answers are useful to debug bugs in different phases.
Answer. We find that normal outputs and crashes are
equally distributed in the three phases (Finding 9). For
those normal outputs, the bugs of the constructing and
learning phases introduce more visible impacts on both
accuracy values and training time than those of the
preprocessing phase (Finding 8).

After we conduct this study, we realize that analyzing real
bugs introduces a survival bias. According to our results,
many injected bugs do not introduce observable differences
in trained models, but it is difficult to detect such bugs, even
if they are quite similar to real bugs. Analyzing real bugs thus
ignores bugs that are similar to our injected bugs. Indeed, this
bias can motivate in-depth discussions. For example, why can
buggy code still train models whose accuracy is close to those
models trained from clean code? How to detect such bugs?

II. METHODOLOGY

A. Our Selected Deep Learning Application
We select a sentiment classifier [45] as our subject applica-

tion due to the following consideration: (1) sentiment classi-

fication is a classical natural language processing (NLP) task,
and has been used in various applications [19], [21]; (2) convo-
lutional neural network (CNN) [49] is widely used in various
research fields [25], [63], and is often used with other deep
learning models like recurrent neural network (RNN) [29]; (3)
The problems of many deep learning applications [16], [22],
[30] can be reduced to the classical classification problem;
(4) our classifier has three implementations that are built on
TensorFlow [14], Keras [8], and Theano [18], which are among
the top ten of the most popular deep learning libraries [33],
[80]; and (5) the classifier is published in a reputable NLP
conference (EMNLP 2014) with more than 8,000 citations.

In this work, although we select only an NLP application,
we analyzed thousands of its buggy versions, which are much
more than the inspected bugs of the prior studies [38], [40],
[84]. Indeed, in a recent empirical study, Pham et al. [69]
also analyzed only a single application, i.e., image classi-
fication. For this application, Pham et al. [69] chose three
networks: LeNet [51], ResNet [34], and WideResNet [82]. As
a comparison, we chose three implementations of our selected
application to explore the impacts on deep learning libraries.

B. The Characteristic of Our Application

Table I shows our subject. Column “Implementation” shows
the three implementations of our selected application. Column
“Library” introduces their underlying deep learning libraries.
As shown in Subcolumn “Name”, the application is built on
the three popular libraries such as TensorFlow, Theano, and
Keras. Although MILA stopped developing Theano, we still
selected its Theano implementation, since the github project
of Theano [13] and a forked project called Aesara [12] are still
under active maintenance. In our study, we inject bugs to both
the applications and the libraries. We chose library versions
newer than the minimum requirement and compatible with our
selected application. The sizes of libraries are much larger than
those of the implementations.

C. Dataset

Kim [45] used movie reviews to train the model. The dataset
was released by Pang and Lee [64], and it is available on
their website [1]. It contains 5,331 positive reviews and 5,331
negative reviews. In a movie review, a comment is associated
with a subjective rating (e.g., one star). The rating is used
to label the sentiment of the comment. For example, “one of
the greatest family-oriented, fantasy-adventure movies ever” is
regarded as a positive review, but “the movie is a mess from
start to finish” is regarded as a negative review.

D. Injected Bugs

In software testing, mutation testing [41] is a classical
technique to inject bugs, and it is widely used in vari-
ous research fields such as software testing [26], network
protocols [78], web service [81], and deep learning system
testing [55]. It implements various mutation operators, and
each operator generates a type of buggy versions. After bugs
are injected, researchers count how many injected bugs are



TABLE I: Our selected deep learning applications
Implementation (sentence classification) Library

URL Language File LoC Covered % Name File Tagged Version LoC Covered %
[3] Python 2.7 4 369 287 77.8% Theano 352 389 1.04 98,250 15,610 15.9%
[4] Python 3.6 3 188 187 99.5% TensorFlow 1,614 15,363 1.15 289,509 80,524 27.8%
[5] Python 3.6 3 187 147 78.6% Keras 91 7,210 2.31 18,299 4,806 26.3%

File: the number of source files; LoC: the line of code; Covered: the number of executed lines, when we trained the applications with the default setting
and dataset (Section II-C); %: Covered

LoC
; Tagged: GitHub projects with the library tags.

detected by a test suite to determine the quality of this test
suite. The generated programs with defects are called mutants.
To generate a mutant, researchers carefully design mutation
operators, which change code in a specific way.

For deep learning, researchers have proposed various ap-
proaches to generate data inputs. For example, adversarial
attacks [83] has been a hot research topic, and the approaches
in this line (e.g., [74]) mutate data to generate more chal-
lenging testing inputs, and their purpose is to measure the
robustness of trained models. Besides data inputs, researchers
(e.g., [55], [72]) adapt mutation testing techniques to mutate
trained models, and their purpose is to measure the quality of
testing data. According to the IEEE glossary [37], a software
bug or fault is an incorrect step or data definition in a program.
The above approaches do not mutate code, and thus they do
not inject bugs to deep learning systems. As our study focuses
on the impacts of deep learning bugs, we do not choose them
in our study, but use a classic mutation testing tool [41]. In
particular, as our applications in Table I are all written in
Python, we selected mutmut [9] to inject bugs, and we the
eight mutation operators as listed in Table II, since they are
shared by other mutation tools [2], [44], [56]. In Table II, the
first column shows our selected eight operators. For example,
the first row shows the arithmetic operator replacement. An
arithmetic operator is replaced by an alternative, when the
tool generates a buggy version. Here, op1 denotes an original
operator, op2 denotes its target operator, and they construct
a tuple to denote the mapping between two operators. For
example, a code snippet is shown as below:

1 i m s h p l o g i c a l = ( imshp [ 0 ] , ) + i m s h p l o g i c a l [ 1 : ]

If the arithmetic operator replacement is applied to it, the
original operation “+” will be replaced by the target operation
“-”, as a result, the mutated code becomes as follow to
introduce a bug:

1 i m s h p l o g i c a l = ( imshp [ 0 ] , ) − i m s h p l o g i c a l [ 1 : ]

A modification can introduce syntax errors. We ignored such
modifications and did not consider them as bugs, because
syntax errors lead to compilation errors and will be fixed
before they become real bugs in deep learning code.

E. General Protocol

We collected the impact of a bug with the three steps:
Step 1. Collecting the execution results of original appli-

cations. To collect the results, we trained models with the three
original implementations. During the training process, we used
the dataset in Section II-C. Table III shows the default settings

TABLE II: Mutation operators
Operator Description

ArOR op1↔ op2 ∈ {+↔ −, ∗ ↔ /,%↔ /, //↔ /}
BitOR op1↔ op2 ∈ {&↔ |,∧ ↔ &, <<↔>>}

ComOR op1↔ op2 ∈ {>↔>=, <↔<=,==↔!=, is↔ is not}
LogOR op1↔ op2 ∈ {and↔ or, not↔}
AsOR op1 ↔ op2 ∈ {+=↔−=,+=↔=,−=↔=, ∗=↔/=

, ∗=↔=, /=↔=}
MemOR op1↔ op2 ∈ {in↔ not in}

BVR b1↔ b2 ∈ {True↔ False}
NVR original value↔ original value + 1

ArOR: arithmetic operator replacement; BitOR: bitwise operator replace-
ment; ComOR: comparison operator replacement; LogOR: logical operator
replacement; AsOR: assignment operator replacement; MemOR: member
operator replacement; BVR: boolean value replacement; NVR: numeric
value replacement

of the three applications, and their default settings have minor
differences. Column “loss function” shows the loss functions.
A loss function defines how to minimize the distance between
predictions and ground truth labels. By default, all three
implementations use cross-entropy [7] as their loss functions.
Here, cross-entropy is a measurement to quantify the distance
between two probability distributions. Column “embedding
dimension” shows the dimension of word embedding. Word
embedding is a language modeling technique that translates
the vocabulary into vectors of real numbers [59]. This column
defines the dimensions of the vector for each word. Column
“embedding initialization” shows the way to initialize word
embedding. The TensorFlow implementation initializes word
vectors with random values [11], but the other two imple-
mentations use a pre-trained model called word2vec [59].
Word2vec uses a shallow neural network model that is pre-
trained on a large corpus. Compared to random values, its
built vectors can reveal the similarity between words. Column
“filter size” defines the parameters of filters. In a convolution
operation, a filter is a matrix that defines a region to select the
local feature of an input tensor. In a textual convolution, this
matrix is a vector because word embedding encode words into
one-dimension vectors. Column “batch size” shows the num-
ber of samples in a batch. To reduce memory cost, the training
process on a dataset is divided into multiple passes. The batch
size defines the number of samples that are propagated through
the built network in each pass. Column “epoch number” shows
the number of epochs in the whole training process. An epoch
is a full training cycle on the whole training set, and a training
process can contain more than one epoch. In our study, we
have many buggy versions, and it is infeasible to execute them
in an acceptable time limit. We notice that if we reduced the
epochs, the accuracy values of trained models have only minor
changes, but the training time can be significantly reduced:
Theano from 8,000 seconds to 1,600 seconds and TensorFlow



TABLE III: The default settings of the three implementations
loss function embedding dimension embedding initialization filter size batch size epoch number

Theano 300 word2vec [3,4,5] 50 25
TensorFlow cross-entropy 128 random uniform distribution [3,4,5] 64 200

Keras 50 word2vec [3,8] 64 10

from 7,200 seconds to 600 seconds. As a result, we reduced
the epoch number of the Theano implementation and the
TensorFlow implementation to 5 and 20, respectively, to save
time. Please note that for the Theano implementation and the
TensorFlow implementations, we reduce the epoch numbers of
both clean and buggy versions. As a result, the setting shall
not introduce bias to our study. The average training time of
the Keras implementation was about 60 seconds, so we did
not change its default epoch number.

Some API calls (e.g., atomicAdd) are nondeterministic on a
GPU. To rule out their impacts, as Pham et al. [69] did, we
trained all models on a single CPU thread. To rule out the
impacts of settings, we use their original settings.

Step 2. Collecting the execution results of buggy versions.
To obtain the results of the process with bugs, we used
mutation tools described in Section II-D to generate buggy
versions (i.e., mutants). This mutation tool is built upon a
Python parser called parso [10], and it can build the AST
of source code. During the executions of clean versions, we
used a coverage analysis tool [6] to record all touched files
and their covered lines. We executed all the implementations
for 50 times. We found that their coverage remains unchanged.
As a result, we believed that more executions may not lead to
more covered code lines. For each line that was covered in the
standard application, we analyzed whether its corresponding
AST node can be mutated by a mutation operator. When a
mutation operator was found, we used mutation tool to mutate
this line, and generated a buggy version. If more than one
mutation operator were found, we generated multiple buggy
versions by iterating the found operators. As large files can
have much more mutation nodes than small files, if we mutate
all nodes, most mutants are the buggy versions of several large
files, which introduces a bias to our study. To reduce this bias,
in each buggy version, we limit the number of mutated nodes
for each file. For Keras, we limited the nodes to 50, and for
Theano and TensorFlow, we limited the nodes to 30, since
the latter two libraries have more source files. As we did not
compare the results from different libraries, this setting does
not affect our results.

For each buggy version of an implementation, we trained
the model on the same dataset, and we used the identical
default settings. As there were many buggy versions, due to
time limit, we executed each buggy version only once. For
executed buggy versions, we recorded their outputs such as
accuracy and training time. For versions which could not be
executed, if the program stopped automatically, we recorded
its error message; if an execution hanged, we manually stopped
it and recorded error message. We then classified the results
by their outputs.

Step 3. Comparing execution results. We conducted ten-

TABLE IV: The overall distribution of symptoms
Normal Crash Hang Total

Theano 297 (57.45%) 217 (41.97%) 3 (0.58%) 517
TensorFlow 266 (57.70%) 195 (42.29%) 0 461

Keras 538 (62.99%) 315 (36.89%) 1 (0.12%) 854

fold cross validations for both clean and buggy versions. All
three implementations report their classification accuracy, so
we compared the accuracy values to analyze the impacts of
bugs. Here, the accuracy is calculated by Equation 1, where
Nc denotes the number of correct classification results and Ni

denotes the number of incorrect classification results.

Accuracy =
Nc

Nc +Ni
(1)

To compare the results of the clean versions and our buggy
versions, we introduce two-tailed t-test [53] instead of one-way
ANOVA, since this is a comparison between two sets of data.
The null hypothesis is that the difference between a buggy
version and a clean version is insignificant. If the hypothesis
is rejected at the significance level α = 0.05, we consider that
the difference is significant. We further compared their means
to determine whether the results were significantly increased
or reduced. Please note that even if a difference is statistically
insignificant, if it occurs in a safe critical application such as
self-driving cars, it can lead to disastrous consequences.

III. EMPIRICAL RESULT

This section presents the results of our study. More details
are listed on our project website:
https://github.com/bugdataupload/deeplearningbugs

A. RQ1. Runtime Symptoms

1) Protocol: As introduced in Section II-E, we trained a
model on every buggy version, and stored its output to a
log. After that, we implemented a tool to check the log. If
it produced no crashes or errors, we extracted its accuracy
and training time. In addition, when mutmut generated buggy
versions, our tool recorded the link between each buggy ver-
sion and its mutation information (i.e., the mutation operator,
the mutated file, the modified line number, and the execution
log). We analyzed the results of each implementation with four
steps. First, based on the logs of buggy versions, we classified
their outputs into categories. Second, we manually inspected
some buggy versions to understand their impacts. Third, for
those buggy versions that produce normal outputs, we drew
box plots to show the distributions of their accuracy values
and training times. Finally, we compared the accuracy values
and training times between clean versions and buggy versions.

https://github.com/bugdataupload/deeplearningbugs
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2) Results: Table IV shows three types of symptoms:
1. Normal outputs. Column “Normal” lists the number of

buggy versions with normal outputs. These buggy versions
terminate with outputs whose formats are consistent with the
outputs of clean versions. Besides their values, we cannot find
any traces of the injected bug. However, several outliers can
produce abnormal values. For example, such a outlier occurs
in the result method of the Reduce class:

1 def r e s u l t ( s e l f ) :
2 i f s e l f . r e d u c t i o n == m e t r i c s u t i l s . R e d u c t i o n .SUM:
3 re turn s e l f . t o t a l
4 e l i f s e l f . r e d u c t i o n in [
5 m e t r i c s u t i l s . R e d u c t i o n .WEIGHTED MEAN,
6 m e t r i c s u t i l s . R e d u c t i o n . SUM OVER BATCH SIZE ] :
7 re turn s e l f . t o t a l / s e l f . c o u n t

Given a value whose type is Reduce, this method calculates
a value based on the value of self.reduction. The return
value is used to calculate the overall accuracy of a trained
model. In Line 7, our mutation tool replaces the arithmetic
operator from “/” to “*”. The Reduce class calculates output
metrics, and the above modification causes a wrong calculation
of the accuracy. In this example, we obtain a wrong accuracy,
884,543.00. Although the value is illegal (greater than one),
we put it into the normal category, because it produces no
error messages.

2. Crashes. Here, we consider a raised exception as a crash.
For example, the following method throws an exception:

1 i f c o s t i s None :
2 i f known grads i s None :
3 r a i s e A s s e r t i o n E r r o r ( ” . . . can ’ t bo th be None . ” )

In Line 1, the mutation tool changes None to not None. As
the cost is not None, the mutated code throws exceptions.

3. Hangs. For example, the _add_unique_metric_name

method of the Model class has a while statement as follows:

1 whi le metr ic name in s e l f . m e t r i c s n a m e s :
2 metr ic name = ’%s %d ’ % ( base met r i c name , j )
3 j += 1

In Line 1, in is replaced with not in. As Line 2 does not
modify metric_name, the loop becomes infinite.

Finding 1. More than half of the buggy versions do not
produce observable errors (57.45% to 62.99%); fewer than
half of the buggy versions crash (36.89% to 42.29%); and
several buggy versions hang (0% to 0.58%).

For the buggy versions that produce normal outputs, we
drew box plots to show the distributions of their accuracy
values. Figure 1 shows the results. To make the figures more
readable, in this figure, we removed five data points, because
their accuracy values were far outstripped the legal range.
For example, as introduced in the beginning of this section,
the accuracy of a buggy version is 884,543.00, and this data
point was removed from this figure. Please note that we still
included these data points, when we compared the accuracy
values between clean and buggy versions.

Figure 1 shows that most buggy versions only slightly
change accuracy. Although we injected bugs to the executed
lines, some bugs did not change the values of executions. For
example, the Reduce class has the following code lines:

1 i f s e l f . r e d u c t i o n == m e t r i c s u t i l s . R e d u c t i o n .
SUM OVER BATCH SIZE :

2 num values = K. c a s t (K. s i z e ( v a l u e s ) , s e l f . d t y p e )
3 e l i f s e l f . r e d u c t i o n == m e t r i c s u t i l s . R e d u c t i o n .

WEIGHTED MEAN:
4 i f s amp le we igh t i s None :
5 num values = K. c a s t (K. s i z e ( v a l u e s ) , s e l f . d t y p e )
6 e l s e :
7 num values = K. sum ( s amp le we igh t )

In Line 1, the mutation tool replaces “==” by “!=”. When
the mutated line was executed, the value of self.reduction

was WEIGHTED_MEAN, so Line 2 is incorrectly executed. Al-
though Line 5 is not executed which should be in original
program, the final results keep unchanged because Line 2
and 5 are the same. However, when self.reduction is set to
SUM_OVER_BATCH_SIZE under other settings, Line 2 should be
executed but not, the above bug may lead to visible differences.

In a box plot, the minimum denotes the lowest data point
excluding outliers, and the maximum denotes the largest data
point excluding outliers. Figure 1 shows that most outliers are
below the minimum. In particular, 31 out of 32 Keras outliers,
3 out of 7 Tensorflow outliers, and 16 out of 21 Theano outliers
are below their minimums. After inspection, we notice that
bugs in core algorithms can have more impact. For example,
the call method of the Dense class implements an activation
operation of a neural network. This operation is a non-linear
transformation function, and belongs to the core algorithms.
Its code lines are as follows:

1 def c a l l ( s e l f , i n p u t s ) : . . .
2 i f s e l f . a c t i v a t i o n i s not None :
3 o u t p u t = s e l f . a c t i v a t i o n ( o u t p u t )
4 re turn o u t p u t



TABLE V: The symptoms classified by bug types
Theano TensorFlow Keras

Normal Crash Hang Total Normal Crash Hang Total Normal Crash Hang Total
ArOR 9 (33.3%) 18 (66.7%) 0 27 36 (72.0%) 14 (28.0%) 0 50 39 (48.1%) 42 (51.9%) 0 81
BitOR 0 0 0 0 0 0 0 0 0 0 0 0

ComOR 41(36.9%) 70 (63.1%) 0 111 45 (48.9%) 47 (51.1%) 0 92 94 (49.0%) 98 (51.0%) 0 192
LogOR 55 (45.1%) 65 (53.3%) 2 (1.6%) 122 61 (47.3 %) 68 (52.7 %) 0 129 88 (51.2%) 84 (48.8%) 0 172
AsOR 2 (66.7%) 0 1 (33.3%) 3 8 (80.0%) 2 (20.0 %) 0 10 10 (71.4%) 4 (28.6%) 0 14

MemOR 5 (17.9%) 23 (82.1%) 0 28 6 (16.2%) 31 (83.8%) 0 37 16 (40.0%) 23 (57.5%) 1 (2.5%) 40
BVR 78 (86.7%) 12 (13.3%) 0 90 51 (79.7%) 13 (20.3%) 0 64 67 (83.8%) 13 (16.2%) 0 80
NVR 107 (78.7%) 29 (21.3%) 0 136 59 (74.7%) 20 (25.3%) 0 79 224 (81.5%) 51 (18.5%) 0 275

In Line 2, our buggy version replaces is not with is. Al-
though self.activation is not None, this activation function
is disabled, and its output value is passed to follow-up layers
directly. As a result, the overall accuracy values are reduced.

Figure 1 shows that 1 Keras outliers and 3 TensorFlow
outliers are beyond the maximum. Although some buggy
versions produce higher accuracy, we find that even the results
of such outliers are mostly accidental. For example, the code
of the compute_mask method is as follows:

1 i f cache key in s e l f . ou tpu t mask cache :
2 re turn s e l f . ou tpu t mask cache [ cache key ]
3 e l s e :
4 , ou tpu t masks , = s e l f . r u n i n t e r n a l g r a p h ( i n p u t s , masks )
5 re turn o u t p u t m a s k s

In Line 1, the buggy version replaces in with not in. Al-
though the clean version and our buggy version go to different
branches, we observe that both Lines 2 and 5 return none.
We executed each buggy version for only once. Due to
various random issues, the accuracy of this buggy version
is higher than most clean versions. To fully understand this
buggy version, we executed it for additional 10 times, and
compared the results with the accuracy of clean versions. Our
t-test comparison shows that the accuracy between the clean
versions and this buggy version are not significantly different.

Finding 2. For the accuracy, 50 outliers are below the
minimum, and only 10 outliers are beyond the maximum.

Figure 2 shows the distributions of training times. In total,
19 out of 19 Theano buggy outliers, 16 out of 17 TensorFlow
buggy outliers and 31 out of 37 Keras buggy outliers are
beyond the maximum. After inspection, we notice that some
bugs can change the settings of the training process. For
example, the _validate_or_infer_batch_size method sets
batch_size to 32, if both batch_size and steps are None:

1 i f b a t c h s i z e i s None and s t e p s i s None :
2 b a t c h s i z e = 32

The buggy version changes the condition to set the value:

1 i f b a t c h s i z e i s not None and s t e p s i s None :
2 b a t c h s i z e = 32

In our setting, the batch size is 64 and variable steps is None.
After the modification, in the buggy version, batch_size is
modified to 32. As we introduce in Section III-A1, reducing
batch size increases the number of training passes, and more
passes increases the training time from about 60 seconds to
about 100 seconds.

Figure 2 shows that 1 out of 17 TensorFlow buggy outliers
and 6 out of 37 Keras buggy outliers are below the minimum.
We notice that some bugs can break the training process. For
example, the fit_loop method has a code line:

1 c a l l b a c k s . model . s t o p t r a i n i n g = F a l s e

The mutation tool replaces False with True. When this
variable is True, the training loop will break:

1 f o r epoch in range ( i n i t i a l e p o c h , epochs ) : . . .
2 i f c a l l b a c k m o d e l . s t o p t r a i n i n g : break

As a result, the training program does not loop enough times
as the predetermined epoch number, the training time is thus
reduced from about 60 seconds to 6 seconds.

Finding 3. For the training time, 7 outliers are below the
minimum, and 66 outliers are beyond the maximum.

Figures 1 and 2 show that our injected bugs have different
impacts on the three implementations. For the accuracy, the
impacts on Theano and TensorFlow are both minor, and the
impact on Keras is more visible. For the training time, most
buggy versions of Theano and TensorFlow increase the time,
but the impacts on Keras are more diverse. We compared the
prediction accuracy of buggy versions with clean versions. Our
results show that for Theano and TensorFlow, the differences
are insignificant, but the differences of Keras are significant.
As introduced in the first example of this section, in total,
5 buggy versions produced invalid accuracy values (e.g., an
accuracy that is greater than one). After we removed the 5
outliers, the differences of Keras are also insignificant. The
result leads to a finding.

Finding 4. If buggy versions do not crash or hang, their
accuracy medians are close to those of clean versions.

In summary, more than half of buggy versions produce
normal outputs without observable errors. Although most of
them cause accuracy reduction and increase training times,
their differences from clean versions are insignificant.

B. RQ2. Impacts of Different Bug Types
1) Protocol: RQ1 explores the overall impacts of bugs. In

this research question, we analyze the impacts of different bug
types. Table II shows our mutation operators. Each type of
operators introduces a type of bugs. We classified our buggy
versions by their corresponding mutation operators. For each
category of bugs, we re-conducted our analysis in RQ1 to
explore the impacts of different bug types. In addition, we
manually inspected 35 crashes to explore their causes.
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2) Results: We manually classified 35 crashes as follows:
1. Raise and assert statements in if statements (11,

31.4%). For example, in Section III-A2, we have proposed
such an example, when we introduce the crashes of Table IV.

2. Wrong assignments via if statements (9, 25.7%). For
example, Keras has an if statement as follows:

1 i f shape i s not None and not b a t c h s h a p e :
2 b a t c h s h a p e = ( None , ) + t u p l e ( shape )

When Line 1 is executed, batch_shape is None, shape is not
None. As a result, Line 2 is executed and batch_shape is
assigned to tuple(shape). The buggy version removes the
first not from Line 1. As the condition of Line 1 is now false,
Line 2 of the buggy version is not executed, and batch_shape

remains None. In the following code, batch_shape is fed to a
method as follows:

1 i n p u t l a y e r = I n p u t L a y e r ( b a t c h i n p u t s h a p e = b a t c h s h a p e ,
name=name , d t y p e = dtype , s p a r s e = s p a r s e , i n p u t t e n s o r =
t e n s o r )

The above code throws an exception, because the __init__

method of the InputLayer class has a check and input_shape

is also None:
1 i f not i n p u t s h a p e and not b a t c h i n p u t s h a p e :
2 r a i s e V a l u e E r r o r ( . . . )

3. Type errors caused by incorrect operators (8, 22.9%).
The _init_graph_network method of the Network class has
a code line:

1 mask cache key += ’ ’ + o b j e c t l i s t u i d ( masks )

The buggy version replaces “+” with “-”. In Python, the
subtraction of two strings are undefined. As a result, the buggy
code throws an exception.

4.Dimension mismatches (4, 11.4%). For example, the
Input method of class InputLayer has a code line:

1 o u t p u t s = i n p u t l a y e r . inbound nodes [ 0 ] . o u t p u t t e n s o r s

The buggy version replaces index 0 with 1, and throws an
exception. Its message says list index out of range.

5. Wrong assignments (3, 8.6%). For example, the
__init__ method of the InputLayer class has a code line:

1 def i n i t ( s e l f , i n p u t s h a p e =None , i n p u t t e n s o r =None
, . . . ) : . . .

2 i f i n p u t t e n s o r i s None :
3 s e l f . i s p l a c e h o l d e r = True

In Line 3, the buggy version changes True to False. This
modification affects the following code:

1 i f K. i s p l a c e h o l d e r ( v ) :
2 s e l f . f e e d i n p u t n a m e s . append ( name ) . . .

As the above code does not append name, the following code
raises an exception:

1 def s t a n d a r d i z e i n p u t d a t a ( da t a , names , s h a p e s =None , . . . ) :
2 i f not names :
3 r a i s e V a l u e E r r o r ( ’ E r r o r when c h e c k i n g model ’ . . . ) . . .

Table V shows our operators and the symptoms of their
corresponding buggy versions. For each operator, we calcu-
lated the proportion of its symptoms in the brackets. Based
on our manual inspection, more than 50% crashes are caused
by if-statements. ComOR MemOr and LogOR can often
change if-statements, but NVR seldom directly modify if-
statements. The observation is largely consistent with results
of Table V. In this table, we also find that ComOR, MemOR,
and LogOR lead to more crashes, and BVR and NVR lead to
more normals.

Finding 5. ComOR, MemOR and LogOR introduce more
crashes than other mutation operators, since the three
operators often change if-conditions and more than half
of crashes are caused by such changes.



For those normal outputs, Figure 3 and 4 shows the dis-
tribution of accuracy values and training times, for different
operators, respectively. As NVR, LogOR and ComOR often
change the computation process, Figures 3 shows that they
have more impact on prediction accuracy. For example, the
binary_crossentropy method is as following:

1 def b i n a r y c r o s s e n t r o p y ( y t r u e , y pred , f r o m l o g i t s =
F a l s e , l a b e l s m o o t h i n g =0) : . . .

2 i f l a b e l s m o o t h i n g i s not 0 : . . .
3 y t r u e = K. s w i t c h (K. g r e a t e r ( smoothing , 0 ) ,

s m o o t h l a b e l s , lambda : y t r u e )
4 re turn K. c a t e g o r i c a l c r o s s e n t r o p y ( y t r u e , y pred ,

f r o m l o g i t s = f r o m l o g i t s )

In Line 1, NVR changes the initial value of label_smoothing
from 0 to 1. As a result, Line 3 is executed, and y_true is
calculated in a different way. As y_true is the ground truth
to calculate prediction accuracy, its new values significantly
reduce accuracy.

Figure 4 shows that ComOR has more impact on training
times. ComOR often modifies conditions of loop statements,
and thus increase the training time. In addition, it can change
the initial values that determine the conditions to terminate the
training. For example, the conv2d method in Theano has the
code lines as follows:

1 def conv2d ( . . . ) : . . .
2 i f image shape i s not None :
3 b s i z e = image shape [ 0 ]
4 imshp = image shape [ 1 : ]
5 e l s e :
6 b s i z e , imshp = None , None

The buggy version removes not from Line 2, so bsize and
imshp are assigned to None. Theano can select the fastest
algorithm to optimize the training if bsize is not None. After
bsize is assigned to none, the optimization is disabled, and it
increases the training time.

Finding 6. NVR, LogOR and ComOR can produce buggy
versions whose prediction accuracy values are much lower
than others, and ComOR can increase the training time
much more than others.

We compare the accuracy values of different operators with
the one-way ANOVA [53]. The result shows that 48.76%
comparisons in Theano, 91.83% comparisons of Keras, and
all the comparisons of TensorFlow are significantly different.
As operators produce significant differences in most cases, we
further compared buggy versions of each operator with clean
versions. We find that NVR and BVR significantly reduce the
accuracy values of Theano; AsOR significantly increases the
accuracy values of TensorFlow; AsOR and MemOR signifi-
cantly reduce the accuracy values of Keras.

Finding 7. Mutation operators produce significantly differ-
ent accuracy values of their corresponding buggy versions,
and several operators can produce significate deviations
from accuracy values of clean versions.

C. RQ3. Impacts on Deep Learning Phases

1) Protocol: In this research question, we analyze the
impacts of bugs on different deep learning phases. A deep
learning task typically include three phases such as prepro-
cessing, constructing, and learning [71]. In deep learning
applications, raw data are stored in different formats (e.g.,
texts, images, and videos). As the first phase, before raw
data are fed into the neural networks, a preprocessing stage is
introduced to transfer them into mathematical representations.
For example, word embedding [52] is used to transfer text into
vectors in our subject application. As the second phase, the
structure of a deep model is constructed. The structure includes
the applied network unit like CNN and RNN, the number of
network layers and parameters, the auxiliary components (e.g.,
dropout layers). As the phase of learning, the core function
of deep model is applied. The training data are imported to
train the model, and a back-propagation algorithm is used to
minimize overall loss [50]. After a model is trained, the testing
data are fed to the trained model to produce outputs, and its
outputs are compared to a golden standard (labels) to judge
the effectiveness of the model. In study, we cannot separate
training and testing into two phases, because Keras implement
its training and testing in a single method, fit.

To determine which phases a bug can influence, we sepa-
rated each application program into a preprocessing phase, a
constructing phase, and a learning phase. In Table VI, we show
the lines of code for each phase. We executed the applications,
and compared its coverage with a buggy location to determine
whether the buggy location is touched by a phase. If a buggy
location is commonly used, it can affect more than one phase.
For example, common APIs like loss function and activation
are both necessarily called in building network structure and
computing output through network. In this case, we counted
the bug twice in both the constructing and learning phases.

2) Result: Before we introduce the result, we introduce
some bug samples in different phases:

1. A bug sample in the preprocessing phase. Many bugs
in the preprocessing phase reside in the operations of vectors,
and can cause related problems such as indexes out of ranges.
For example, the Keras application has the following code:

1 # Data P r e p a r a t i o n
2 i f s e q u e n c e l e n g t h != x t e s t . shape [ 1 ] :
3 s e q u e n c e l e n g t h = x t e s t . shape [ 1 ]

In the above code sample, sequence_length is the size
of the testing data. In a buggy version, x_test.shape[1] is
modified to x_test.shape[2], and it leads to IndexError.

2. A bug sample in the constructing phase. We notice that
dimension mismatches [40] often occur in the constructing
phase. For example, in the constructing phase of the Keras
application has the following code:

1 # C o n v o l u t i o n a l b l o c k
2 c o n v b l o c k s = [ ]
3 f o r sz in f i l t e r s i z e s :
4 conv = Convolu t ion1D ( f i l t e r s = n u m f i l t e r s , k e r n e l s i z e =sz

, padd ing =” v a l i d ” , a c t i v a t i o n =” r e l u ” , s t r i d e s =1) ( z )
5 conv = MaxPooling1D ( p o o l s i z e =2) ( conv )
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TABLE VI: The impacts on deep learning phases
Name Phase Normal Crash Hang Total

P (82) 19 (55.9%) 15 (44.1%) 0 34
Theano C (166) 233 (58.4%) 163 (40.9%) 3 (0.7%) 399

L (121) 151 (52.4%) 134 (46.6%) 3 (1.0%) 288
P (32) 18 (85.7%) 3 (14.3%) 0 20

TensorFlow C (84) 232 (55.1%) 189 (44.9%) 0 421
L (72) 214 (53.0%) 190 (47.0%) 0 404
P (91) 16 (59.3%) 11 (40.7%) 0 27

Keras C (93) 373 (63.2%) 216 (36.6%) 1 (0.2%) 590
L (3) 272 (59.3%) 186 (40.5%) 1 (0.2%) 459

P: the preprocessing phase; C: the constructing phase; L: the learning
phase. In Column “Phase”, the numbers inside the brackets denote the
lines of code that appear in the corresponding phases of applications.

6 conv = F l a t t e n ( ) ( conv )
7 c o n v b l o c k s . append ( conv )
8 z = C o n c a t e n a t e ( ) ( c o n v b l o c k s ) . . .
9 z = Dropout ( d r o p o u t p r o b [ 1 ] ) ( z )

10 z = Dense ( h idden dims , a c t i v a t i o n =” r e l u ” ) ( z )

The above code builds the structure of a deep learning net-
work. Line 3 iterates each filter size. For each size, a conv

unit is generated by combining a convolution layer (Line 4)
and a pooling layer (Line 5), and a tensor is transformed from
multiple dimensions to a block by the Flatten operation (Line
6). After that, the block is concatenated to a list (Line 8), and
a dropout and dense layer are added to the end of the network.
Line 6 calls the compute_output_shape method of Flatten to
generate the output shape:

1 def c o m p u t e o u t p u t s h a p e ( s e l f , i n p u t s h a p e ) : . . .
2 re turn ( i n p u t s h a p e [ 0 ] , np . prod ( i n p u t s h a p e [ 1 : ] ) )

In a mutant, input_shape[0] is modified to input_shape[1],
and it leads to a dimension mismatch.

3. Bug samples in the learning phase. Our learning phase
includes both the training and testing of a deep learning model.
Many bugs in core APIs can affect both training and testing.
For example, as we introduced in Section III-A2, a bug can
disable the activation function, and thus influence both phases.
During the training process, the weights of a deep learning
network are updated, and bugs on weights affect only the
training process. For example, the TensorFlow application has
a code line as follows:

1 o p t i m i z e r = t f . t r a i n . AdamOptimizer (1 e −3)

The argument of the above code is the learning rate, and it
determines the speed of gradient descent [46]. A buggy version
modifies it from 1e-3 to 1.001. A correct learning rate must
be less than 1, so the modified value 1.001 influences the
accuracy significantly.

For those buggy versions without crashes, Figure 5 and 6
show the distribution of accuracy values and training time by
different deep learning phases, respectively. The outliers in
the preprocessing phase are fewer and those of the other two
phases. This observation leads to a finding:

Finding 8. The buggy versions in the constructing and
learning phases have more impact on both accuracy values
and training time than those of the preprocessing phase.

Comparing to the preprocessing phase, the bugs of the other
phases can affect the learning process. As shown in our bug
sample in the learning phase, some bugs can directly lead to
more visible differences.

Table VI shows the impacts on deep learning phases.
Although the lines of code in the preprocessing phases do not
differ much from those in the learning phases, the learning
phases have much more bugs. As we injected bugs to both
application code and API code, some few learning-related lines
in application code can call many lines of API code. Except
the preprocessing phase of TensorFlow version application, the
distributions lead to another finding:

Finding 9. In all the phases, the distributions of normal
outputs and crashes are largely the same.

In summary, the bugs in the preprocessing phase have less
visible impacts than those in the constructing and learning
phases, but as for normal outputs and crashes, the bugs in the
three phases typically show minor differences.

D. Threats to Validity

The internal threats include equivalent mutants. As such
mutants are semantically equivalent to original programs [47],
our results can underestimate the derivation of buggy versions.
The external threats to validity include our analyzed subjects
and our injected source files. Although we selected a popular



deep learning application with three different implementations,
our selected subjects were limited to this application and the
code structures of our injected files. To reduce the threat, we
select a neural model that is widely used and often used with
other models, and it could be further reduced by analyzing
more types of deep learning models.

IV. INTERPRETATION

The significance of our findings are as follows:
Developing deep learning applications. When applications

do not achieve their expected results, researchers often blindly
tune their parameters and try different treatments. Our results
show that an unexpected low result can also be caused by
bugs either in their applications or deep learning libraries.
Meanwhile, researches are satisfied when they find that their
results are better than the prior ones. However, our results
show that better results alone do not justify better parameters
nor better treatments, in that better results can be caused by
bugs. This type of problems can be relieved by more human
inspection on potential bugs. However, ultimately, researchers
shall build strong theories to explain their improvements based
on better results. The bugs in the learning phase have more
visible impacts than the preprocessing phase, and comparable
impacts to the constructing phase (Finding 8), but more than
half of bugs do not have observable error messages (Finding
1). Nejadgholi and Yang [60] report that the test cases in deep
learning code use more oracle approximations than those of
the traditional software. As oracle approximations consider a
range of values as legal, such test cases are unlikely to reveal
bugs that cause minor different outputs. In critical applications,
a minor difference can be significant, and their programmers
shall pay more attention to minor differences.

Developing deep learning libraries. We find that more
than half of bugs do not have observable error messages
(Finding 1) and most of them insignificantly change accuracy
(Finding 4). Nejadgholi and Yang [61] report approximations
are common in the test cases of deep learning libraries. Such
test cases can silently ignore the above bugs. Crashes and their
messages explicitly warn library users of bugs, but Finding
9 shows that in all the phases, more than half of bugs do
not produce any crashes. The library developers can provide
more internal states checking and messages display, so that
detecting and localizing bugs can be more efficient. We also
find that although changing program structures or logic often
cause crashes (Finding 6), if a bug does not change program
structures or logics (e.g., NVR and BVR), it is less possible
to cause crashes (Finding 5). This finding can be useful in
debugging performance issues.

Detecting bugs in deep learning software. Although prior
approaches [68], [77] detect bugs in trained models, we find
that most of our injected bugs do not lead to observable
differences of their accuracy (Finding 1). Although injected
bugs do not introduce any observable differences as a whole,
we notice that different types of bugs can produce quite
different results (Finding 7). It indicates some types of bugs

can be detected more easily. In future work, we plan to start
from such bugs, and explore bug detection approaches.

V. RELATED WORK

Empirical studies on bugs. Tan et al. [75] studied bugs from
open source projects such as the Linux kernel and Mozilla.
Thung et al. [76] analyze the bugs of machine learning
systems. Zhang et al. [84] analyze the bugs in application code
that calls TensorFlow. Islam et al. [38] analyze the application
bugs of more deep learning libraries. Jia et al. [40] analyze
the bugs inside deep learning library TensorFlow. Humbatova
et al. [36] introduce a taxonomy of faults in deep learning
systems, and Islam et al. [38] analyze their repair patterns.
Most prior approaches analyze the static characteristics of
bugs, but our study analyzes the dynamic characteristics that
are observed during executions.
Detecting deep learning bugs. Pei et al. [67] propose a white-
box framework to test real-world deep learning systems. Ma et
al. [54] propose a set of multi-granularity criteria to measure
the quality of test cases for deep learning systems. Tian et
al. [77] and Pham et al. [68] introduce differential testing
to discover bugs in deep learning software. Our findings are
useful for researchers to design better bug detection tools.
Mutation testing. Some early work of mutation testing can
be dated back to 1970s [27], [32], [62]. As the programming
language developed rapidly, mutation testing techniques have
been applied to different languages including Fortran [20],
C [70], Java [57], C# [28], and so on. Meanwhile, mutation
testing is also widely used in various research fields such
as software testing [26], network protocols [78] and web
service [81]. These prior works focus on traditional software,
but we apply it to deep learning software. As a result, our
empirical study is able to report runtime behaviors of deep
learning bugs, which are not analyzed in prior studies.

VI. CONCLUSION AND FUTURE WORK

To understand the runtime impacts of bugs on deep learning,
with a mutation testing tool, we injected 1,832 bugs to 3 deep
learning applications. Based on the execution results of these
bugs, we classified and analyzed their overview characteristics,
and also explored the impacts of bug types and deep learning
phases. Our analysis lead to 9 findings, and we interpret these
findings from the perspectives of application programmers,
API developers, and researchers. Our study presents a compre-
hensive understanding on the dynamic characteristics of bugs
in deep learning software.

In future work, we plan to analyze more deep learning
models (e.g., RNN [42]) and the impacts of multiple mutation
operators. As many of our injected bugs do not introduce
observable differences, we plan to explore more advanced
techniques to detect such bugs.
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