
Understanding Mirror Bugs in Multiple-Language Projects

YE TANG, HONGHAO CHEN, ZHIXING HE, and HAO ZHONG∗, Shanghai Jiao Tong University,
China

As software is widely used in daily life, bugs can introduce catastrophic consequences. Researchers have
conducted empirical studies to delve into bug characteristics, exploring topics such as buggy locations,
symptoms, causes, and repair patterns. To attract users, many applications have implementations in different
languages. If an implementation has a bug, other implementations can have similar bugs. In this paper, we
term cross-language clone bugs as “mirror bugs”. Understanding mirror bugs is crucial, as they offer insights
into broader bug patterns. Still, no prior study has explored mirror bugs, leaving several research questions
unanswered. For example, can bug fixes in one language help detect and repair bugs in other languages? Is a
bug’s patch useful for addressing its mirror bugs?

To address these questions, we conducted the first empirical study analyzing mirror bugs. Our investigation
focused on 638 bugs from four projects, implemented in both Java and C#. Our study presents answers to four
interesting research questions. For example, some programmers actively fix mirror bugs even without tool
support. Consequently, there is a timely need for tools that assist in detecting mirror bugs. Following this
insight, we manually identified and fixed 9 new mirror bugs, with 5 already accepted by programmers.

ACM Reference Format:
Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong. 2024. Understanding Mirror Bugs in Multiple-Language
Projects. ACM Trans. Softw. Eng. Methodol. 1, 1 (July 2024), 25 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Software bugs have caused catastrophic consequences and huge monetary losses [93]. For example,
as reported by Wong et al. [94], the bugs in the ERP system of Hewlett-Packard caused a $160
million loss, and the bugs in the purchasing system of Ford Motor Co. caused a $400 million loss. To
understand the characteristics of software bugs, researchers [68, 80, 103] have conducted various
empirical studies, and most of these studies analyze bugs whose source files are implemented in a
single programming language. These studies analyze bugs in different types of applications from
different perspectives. In particular, some studies [68, 80, 97, 103] report that many bugs appear in
clones. Following this insight, researchers [64, 109] have proposed approaches to detect bugs in
similar code fragments.

To attract more users, many projects are implemented in multiple programming languages. For
instance, Similarweb [35] is a company that specializes in analyzing app markets. Its customers
include LinkedIn [36] and other widely-used applications. According to its report [37], 100% of
American mobile applications have both iOS and Android implementations, and the percentage of
global mobile applications is 37%. Even if a project is implemented in a single language, outsiders can
∗Manuscript received July, 2024.
(Corresponding author: Hao Zhong.)

Authors’ address: Ye Tang, tangye_22@sjtu.edu.cn; Honghao Chen, chenhonghao@sjtu.edu.cn; Zhixing He, chandlr@sjtu.
edu.cn; Hao Zhong, zhonghao@sjtu.edu.cn, Shanghai Jiao Tong University, Shanghai, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2024/7-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

2 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

re-implement the project in other languages. For example, LocationTech implements, Java Topology
Suite (JTS) [17], a library that provides geometric functions. Meanwhile, outsiders implement, Net
Topology Suite [18], a C# correspondence of JTS. Many projects are initially implemented in a
language, and are ported to other languages [19, 20]. As a result, these projects can have many
similar code fragments in different languages [56, 69, 91]. Like bugs in clones, the similar code
fragments in different languages can have similar bugs. In this paper, we call such bugs mirror bugs
for short. A study on mirror bugs can motivate the research on corresponding detection techniques.
Compared with bugs in clones of the same programming language, language features provide

intriguing elements for the studies of mirror bugs. For example, memory leaks are less found
in Java code than in C code, since Java provides the garbage collection mechanism to manage
memory resources. As another example, two programming languages can provide APIs with subtle
differences [107]. The differences can cause mirror bugs that will not appear in clone bugs. To
deepen the understanding of bugs, in our ICSE 2024 poster paper [55], we conduct the first empirical
study on mirror bugs. In this paper, we report the distribution of mirror bugs in real projects, and
introduce our work plans, e.g., analyzing why some bugs have no mirror bugs. We have completed
the planned study, and our study explores the following research questions:

• RQ1. How many mirror bugs are there?
Motivation: The answers are useful for increasing the awareness of mirror bugs.
Answer: Finding 1 shows that in total, we already found 15.0% of bugs in both Java and C#
implementations. As the implementations in two languages have many differences during
their independent evolution, the percentage cannot be ignored, and can motivate many
research topics on mirror bugs.

• RQ2. How many mirror bugs are fixed?
Motivation: The answers are useful for understanding the repairs of mirror bugs.
Answer: Finding 2 shows that 65.6% of our mirror bugs are fixed. In particular, among the
63 fixed bugs, 48 (76.2%) bugs were identified by their programmers. Among the 33 unfixed
bugs, Finding 3 shows that we have produced the symptoms of 27 (81.8%) bugs. Finding 4
shows that detecting mirror bugs is beneficial when the other sides have many bug reports.

• RQ3. Why do some bugs have no mirror bugs?
Motivation: The answers are useful for understanding the differences between projects.
Answer: For bugs that are not cross-languages, Finding 5 shows that 71.0% of them have
no corresponding buggy locations in other implementations. Finding 6 shows that the other
causes include language-specific problems (20.3%) and other minor factors (8.7%).

Our study enriches the common knowledge with surprising findings. For example, some re-
searchers believe that mirror bugs are few. As they expected, in Lucene and Hibernate, mirror bugs
are around 10% of the sampled bugs. However, to their surprise, we find around 60% sampled bugs
from JTS are mirror bugs. Indeed, programmers from NTS even actively learn the fixed bugs of JTS.
If programmers and researchers pay more attention to mirror bugs like NTS programmers, they
can detect more mirror bugs. In contrast, we find no mirror bugs from Log4j2, since Log4net is still
equivalent to the old version, Log4j. We discuss the significance of our findings in Section 5.

Our study is not limited to only suggestions, but are actionable in real development. For example,
a major interpretation of our findings is that it is feasible to detect new mirror bugs by learning
known bugs. To explore whether this vision works in real development, in Section 6, we try to
fulfill this vision on our dataset by answering the following two research questions:

• RQ4. Can we repair new mirror bugs by manually learning known bugs?
Motivation: The answers are useful for understanding the potential of repairing new mirror
bugs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 3

Linked issues

causes

Fixed

Bug Testcase Reminder (view)

David Ellingsworth

Assign to me

Nathan Xu

Second-level cache doesn't support @OneToOne
Description
Currently Hibernate's second-level cache doesn't support @OneToOne.
The issue here is the entity which is not fetched from cache is mapBy
field and currently Hibernate only supports collection cache as the only
non-id cache (see https://docs.jboss.org/hibernate/

orm/5.4/userguide/html_single /Hibernate_User_Guide.html#caching
for details). In the case of @OneToOne, the mapBy field is not of
collection but of scalar so it is not within the current l2c scope.

see https://hibernate.zulipchat.com/#narrow/stream/132096-
hibernate-user/topic/2nd.20lvl.20cache for further details

Environment

None

Add a comment…

Pro tip: press M to comment

Closed

Actions

Bug reports should generally be
accompanied by a test case!

Assignee

Reporter

Fix versions

5.5.0.Alpha1

Development

6 branches

9 commits 8 months ago

4 pull requests MERGED

2 b ild

Details

/ /Projects Hibernate ORM HHH-14216 6Hibernate ORM
Software project

PLANNING

Hibernate ORM
Board

Roadmap

Backlog

Active sprints

Reports

Components

Issues

DEVELOPMENT

Code

Releases

OPERATIONS

You're in a company-managed project

Learn more

Your work Projects Filters Dashboards Teams Apps

(a) HHH-14216 [4]

One-to-one second level cache issue #2552
deAtog commented on 18 Sep 2020

When assembling an object with one-to-one relationships, a second
level cache miss occurs while trying to assemble the related object.
The OneToOneType has the following code: ... Hibernate ORM has
this same issue, so coordinating a fix in both would benefit all.

(b) NHibernate#2552 [5]

1 public Object assemble (...) ... {
2 − return resolve (session . getContextEntityIdentifier (owner), session ,owner);
3 + Serializable id = (Serializable) getIdentifierType (session) . assemble(oid , session , null) ;
4 + if (id == null) {return null ;}
5 + return resolveIdentifier (id , session) ;
6 }...

(c) The patch for HHH-14216 [6]

1 public override object Assemble (...) {
2 − return ResolveIdentifier (session . GetContextEntityIdentifier (owner), session , owner);
3 + object id = GetIdentifierType (session) .Assemble(cached, session , null) ;
4 + if (id == null) {return null ;}
5 + return ResolveIdentifier (id , session) ;
6 }...

(d) The patch for NHibernate#2552 [7]

Fig. 1. An example mirror bug.

Answer:We manually identify and repair new bugs from our already analyzed bugs. In total,
we have fixed 9 new mirror bugs according to how their corresponding bugs in the other
language are fixed. Among them, 5 patches are accepted by their programmers. The results
confirm that it is feasible to detect previously unknown mirror bugs, and the knowledge of
repairing a bug is useful to repair its mirror bugs.

• RQ5: What are the challenges if researchers automate the process?
Motivation: The answers are useful for understanding the potential and challenges of
automatically repairing mirror bugs.
Answer: We conduct a pilot study on 9 mirror bugs with bug reports on both sides. We find
that template-based approaches have the potential of repairing 5 mirror bugs if templates are
carefully modified. The remaining 4 bugs could not be fixed by template-based approaches,
but mirror bugs provide useful hints to implement their new patches.

In summary, this paper makes the following contributions:
• An extended empirical study for mirror bugs.We conducted the first empirical study on
mirror bugs [55] and extend this study with extra research questions and detailed analysis. For
instance, we construct the first classification framework for mirror bugs in this manuscript.

• A dataset for mirror bugs. We present the first publicly accessible dataset of mirror bugs,
which comprises 638 bugs from four real-world projects implemented in both Java and C#.

• Manually fixed mirror bugs.We make the first attempt to detect and repair new mirror
bugs by learning from known bugs. To date, we have identified 9 new mirror bugs and
successfully repaired all of them, 5 of which have been confirmed by developers.

• Lessons for automated program repair.We conduct a pilot study to explore the feasibility
and challenges of repairing mirror bugs automatically. We find that templates can repair 5
mirror bugs. Repairing the remaining 4 bugs needs more complicated techniques, but mirror
bugs provide hints for repairing these bugs.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

4 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

2 EXAMPLE
To illustrate our target problem, this section introduces a sample mirror bug from Hibernate.
Hibernate has both a Java implementation and a C# implementation, i.e., Hibernate [21] and
NHibernate [20]. It is a framework for programmers to simplify the interactions with databases, and
it allows them to define the mapping relations between classes and database tables. For example,
the below XML file defines a one-to-one mapping between Person and Address:
1 <class name="Person">
2 <id name="Id" generator=" identity " />
3 <one−to−one name="Address"/>
4 </class>

After the above mapping is defined, when a Person object is created, a corresponding Address

object is created. To reduce the effort of copying data from the database, Hibernate implements a
cache. If an object is fetched multiple times, Hibernate checks the cache to reduce the response time.
Figure 1a shows a bug report of Hibernate. When a mapping is one-to-one, Hibernate does not
check the cache to reduce the response time. As shown in Figure 1b, NHibernate has an identical bug.
A programmer mentions that a workaround is to define the mapping as a many-to-one relation:
1 <class name="Person">
2 <id name="Id" generator=" identity " />
3 <many−to−one name="Address" column="Id" ... />
4 </class>

When mappings are one-to-one, the buggy versions of Hibernate and NHibernate do not check
whether an object is in the cache. We inspected the patches for both the Hibernate and NHibernate

bugs, and found some overlapped changes. For example, the changes in Figure 1c and Figure 1d are
overlapped. The assemble and Assemble methods are called when one-to-one objects are created. In
both patches, Line 2 does not check the cache, but the added lines fetch an object from the cache, if
it is already created.
Many projects have implementations in different languages. As shown in our example, a bug

in an implementation can be reproduced in the implementations in other languages. In our study,
RQ1 explores the overall distributions. The bug in Figure 1 appears in both the Java and the C#
implementations. We call such bugs two-sided bugs (an alternative term for mirror bugs). For
two-side bugs, RQ2 explores how many such bugs are already fixed. The bug in Figure 1 is fixed on
both sides. For unfixed two-side bugs, in Section 6.1, we build their patches according to their fixing
commits, and report our new bugs and patches to issue trackers of the other implementations. For
fixed two-side bugs, we conduct a pilot study to explore the potential and challenges of repairing
them automatically in Section 6.2. If a bug appears in only the Java or the C# implementation, we
call them one-side bugs. RQ3 explores why a bug from an implementation does not appear in the
implementation of the other language.

3 METHODOLOGY
This section introduces our dataset (Section 3.1), and our analysis protocols (Section 3.2).

3.1 Dataset
In this study, we use the following criteria to select subject projects. First, the project must be
implemented in Java and C#. We select this language pair, since the two languages are similar.
Although mirror bugs exist in other programming language pairs, analyzing source files across two
languages requires much more programming expertise. We leave the exploration of other language

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 5

Table 1. Dataset

Project Language Version LOC Developer Star Commit Bug Fixed Open
Total Sample Total Sample

Lucene [22] Java 9.2.0 824,006 263 1,430 36,387 4,197 380 90 511 102
Lucene.NET [19] C# 4.8.0 614,285 46 1,934 6,693 445 31 24 16 11
Hibernate [21] Java 6.1 979,596 444 5,240 15,187 9,187 873 90 146 45
NHibernate [20] C# 5.3.12 577,391 171 2,041 8,656 2,424 37 33 100 24
JTS [17] Java 1.19.0 114,370 42 1,515 1,293 97 58 48 41 17
NTS [18] C# 2.5 115,948 25 1,130 2,176 60 23 19 5 3
Log4j2 [23] Java 2.18 175,183 142 1,990 12,462 1,834 367 90 368 30
Log4net [8] C# 2.0.14 28,946 13 700 1,203 412 18 8 73 4

Total 3,429,725 1,146 15,980 84,057 18,656 1,787 402 1,260 236

One-sided
bugs

One-sided
bugs

Yes

No

1. Search similar
symptoms in

Yes

No
3. Reproduce in

Yes

No2. Search equivalent
implentation in

Two-sided
bugs

Two-sided
bugs

Test case

Pull request

Bug report

Input
RQ1. Overall
Distribution

RQ2. Fixed or
Unfixed

RQ3. One-
sided Bug

Repairing
Mirror Bugs

Manual Analysis RQs

Fig. 2. The classification framework.

pairs to future work. Second, the project must have an issue-tracking system (e.g., JIRA [24])
and a code repository. With the two systems, it is feasible to learn the details of bugs and their
fixes. Finally, the project must have more than 300 issue reports, so we can collect sufficient
bug reports for analysis. Following the three criteria, we select 4 projects, since they are well-
known and widely used. Table 1 shows our selected projects. Lucene [22] and Lucene.NET [19]
are text search engines. Hibernate [21] and NHibernate [20] are object and relational mapping
frameworks that help programmers interact with databases. JTS [17] and NTS [18] are libraries for
creating and manipulating vector geometry, and they are popularly used in geographic information
systems. Log4j2 [23] and Log4net [8] are logging frameworks that help record application behaviors.
We selected the four projects from Github, since their C# implementations are all ported from
Java implementations. For example, the website of NHibernate explains that it starts as a port of
Hibernate. As a result, it is easier to locate their mirror bugs. In Column "Project", each row denotes
an implementation in either Java or C#. Column “Language” lists the programming languages of
implementations. Typically, projects in different languages have separate websites. For example,
Lucene [22] and Lucene.NET [19] have two different websites. As our study involves much manual
inspection effort, we cannot afford the effort of analyzing too many issue reports. Although there are
many other cross-language projects, from the four projects, our collected subjects are competitive
with those of prior empirical studies (e.g., [98]).

Column “Version” lists the latest versions. Except Lucene.NET and Lucene, all projects have close
versions of Java and C# implementations. Besides, all projects except JTS and NTS support priority
flags for their bug reports. Column “LOC” lists the lines of code. Lucene and Hibernate are large
projects. In total, the four projects have more than three million lines of code. Column “Developer”
lists the number of developers. All the Java implementations have more developers than their C#
correspondences. In Column “Star”, the numbers show the number of stars on Github. Although
the version Lucene.NET is much older than Lucene, it has more stars. In all the other projects, the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

6 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

Java implementations have more stars than their C# implementations. Column “Commit” lists
the number of commits. We notice that a higher version has more commits. Except for JTS and
NTS, the Java implementations are more actively maintained than their C# implementations. For
example, when we conducted this study, the current versions of Lucene.NET and Lucene were 4.8.0
and 9.2.0, respectively. Although Lucene.NET is similar to Lucene 4.8.0, it becomes quite different
from Lucene 9.2.0. As we deliberately select projects with diverse backgrounds, the four selected
projects show different patterns in the above aspects.

Column “Bug” lists the number of all bug reports. For all the other projects, the Java implemen-
tations have much more bug reports than their C# implementations do. As JTS and NTS are niche
libraries, both projects have fewer than 100 bug reports. In our study, we select both fixed and open
bugs. We use two criteria to select fixed bugs: (1) bug reports must be created after 2017, and (2) bug
reports must be blocker, critical, and major ones. The second criterion does not apply to JTS and
NTS since they do not have priorities. Column “Fixed” lists the number of our selected fixed bugs.
Besides the above two criteria, we use two other criteria to select open bugs: (1) bug reports must
include test cases or pull requests, and (2) bug reports must be confirmed and not workarounds.
Column “Open” lists the number of our selected open bugs. Subcolumn “Total” presents the total
selected open bug reports. Subcolumn “Sample” presents the number of open bug reports selected
for analysis. In total, we analyzed 236 samples.
Column “Fixed” lists the number of our selected fixed bugs. In total, as shown in subcolumn

“Total”, we have 1,787 candidate fixed bug reports. From these candidates, we select bug reports
in the following order. The bug reports of JTS and NTS have no priorities. For the two projects,
we select bug reports from the latest ones. For the other three projects, we select bug reports in
order of their priorities. For each implementation, we terminate the selection, if all candidates are
inspected or 90 bug reports are selected. Subcolumn “Sample” lists the number of our final selected
fixed bug reports. In total, we have analyzed 402 samples.
Due to the heavy manual effort, it is infeasible to manually inspect so many bug reports. Re-

searchers typically analyze fewer bug reports in their empirical studies. For example, Xuan et
al. [98] analyze 300 bugs in their empirical study. Furthermore, in their studies, researchers do not
align and analyze bugs in different languages. Although our analysis is more difficult, we already
analyzed more bugs.

3.2 Analysis Overview
Figure 2 shows our classification framework. The input for classification comprises a bug report.
The bug report can have a pull request or a test case. First, we search for bug reports with similar
symptoms in the other-side projects. If no such reports are found, we then examine the available
pull requests to identify equivalent implementations. If we have test cases, we translate these
test cases and attempt to reproduce the symptoms to determine whether the bug is two-sided or
one-sided. As introduced in Section 1, our study has three research questions. RQ1 explores the
overall distributions. In this RQ, we classify bugs into two-sided and one-sided bugs. Two-sided bugs
appear in both the Java and the C# implementations, but one-sided bugs appear in only the Java or
the C# implementation. For two-sided bugs, RQ2 explores how many of them are already fixed. If
they are unfixed, in Section 6.1, we try to write their patches according to their fixing commits.
After that, we report our new bugs and pull requests to collect feedback from programmers. In
addition, we explore the challenges of automating the repairing process in Section 6.2. For one-sided
bugs, RQ3 explores why it is infeasible to trigger their symptoms in other languages.

Our manual inspection includes reading the introductions and manuals of the projects; inspecting
bug reports to understand the symptoms; and inspecting patches to understand the causes. Our

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 7

1 //WKTReader.java
2 private Polygon readPolygonText(StreamTokenizer tokenizer ,
3 EnumSet<Ordinate> ordinateFlags) { ...
4 if (nextToken.equals (WKTConstants.EMPTY)) {
5 − return geometryFactory.createPolygon () ;
6 + return geometryFactory.createPolygon(createCoordinateSequenceEmpty (...)) ;
7 }... } ...

(a) The patch of JTS#827

Fix WKTReader to produce correct XY coordinate dimension for POLYGON EMPTY
JTS' commit locationtech/jts@7c89c9b
FObermaier committed on 18 Jan

(b) A NTS commit[10] that mentions the JTS patch

1 //WKTReader.cs
2 private Polygon ReadPolygonText(TokenStream tokens,
3 GeometryFactory factory , Ordinates ordinateFlags) { ...
4 if (nextToken.Equals(WKTConstants.EMPTY)) {
5 − return factory .CreatePolygon() ;
6 + return factory .CreatePolygon(CreateCoordinateSequenceEmpty(...))
7 }...}...

(c) The modifications of the NTS commit[10]

Fig. 3. A two-sided bug

classification results can be affected by human bias. To reduce the bias, the two authors indepen-
dently classified the bugs according to the same protocols. We then apply Krippendorff’s 𝛼 test [70]
to measure the inconsistency of our classification results. Krippendorff’s 𝛼 value is between zero
and one, where zero denotes a random chance and one denotes a perfect agreement. Initially, the
value for our classification is 0.9102, which indicates statistical confidence. To get the final results,
we discuss the inconsistent classifications and attempt to achieve perfect agreement. If inconsistent
results still exist, another author makes the final decision based on their discussions.

4 EMPIRICAL RESULT
This section introduces our empirical results. More details of our study are on our website: https:
//anonymous.4open.science/r/cross-language-DD47

4.1 RQ1. Overall Distribution
4.1.1 Protocol. To answer this research question, we classify bugs into one-sided bugs and two-
sided bugs. For each bug report within one of the paired projects, 𝑝𝑙 , we search the corresponding
bug reports in the other project, 𝑝𝑙 ′ , to identify a report with similar symptoms. This search is
facilitated by reading and comparing the symptoms detailed in the two bug reports to determine
their similarity. For example, after reading the bug report in Figure 1a, we determine that this bug
is related to one-to-one mappings. We then search the bug reports of NHibernate with the keyword,
“one-to-one”. From the retrieved bug reports, we identify the bug report in Figure 1b. The two bug
reports describe a similar symptom in fetching second-level caches. If we can find such a report,
we examine the fixing commits to verify if they resolve the similar bug, thereby confirming the
bug as two-sided.
If we cannot find a bug report with similar symptoms, we locate its buggy files in 𝑝𝑙 according

to its fixing commit. Subsequently, we search for equivalent source files in the latest version of
𝑝𝑙 ′ by identifying files with similar names. As ported implementations have many similar code

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://anonymous.4open.science/r/cross-language-DD47
https://anonymous.4open.science/r/cross-language-DD47

8 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

1 //TermsEnum.java
2 public abstract class TermsEnum implements BytesRefIterator { ...
3 public static final TermsEnum EMPTY =
4 − new BaseTermsEnum() {
5 + new TermsEnum() {
6 + private AttributeSource atts = null ;
7 ...} }
8 //BaseTermsEnum.java
9 public abstract class BaseTermsEnum extends TermsEnum {...}

(a) fixing patch for LUCENE-9661

1 //TermsEnum.cs
2 public abstract class TermsEnum : IBytesRefEnumerator{ ...
3 public static readonly TermsEnum EMPTY = new TermsEnumAnonymousClass();
4 private class TermsEnumAnonymousClass:TermsEnum
5 {...} ...}

(b) unchanged counterpart in Lucene.NET

Fig. 4. A one-sided bug

fragments, it is straightforward to locate many equivalent source files. For example, the source
files in Figure 1c are quite similar with the code lines in Figure 1d. If we can reproduce a similar
symptom on the equivalent source files of 𝑝𝑙 ′ , we classify this bug report as a two-sided bug. If a
bug is simple, it is straightforward to reproduce its symptom. If it is complicated, programmers
often implement test cases to verify whether their patches work as expected. We translate these
test cases to the other language to check whether similar symptoms can be triggered. If equivalent
source files do not exist, we identify it as a one-sided bug.

For open bug reports, if a bug report is open and its pull request is accepted or merged in the latest
version, we follow the above procedure to determine whether it is a two-sided bug or one-sided
bug. In instances where a pull request is unavailable, we attempt to reproduce the bug symptoms in
𝑝𝑙 using the provided test case. Subsequently, we translate these test cases into another language
to ascertain whether similar symptoms can be triggered in 𝑝𝑙 ′ . If both versions exhibit similar
bugs, we classify the bug report as a two-sided bug; conversely, if we cannot reproduce the similar
symptoms in 𝑝𝑙 ′ , we categorize it as a one-sided bug.

4.1.2 Result. We classify the bugs into two categories:
T1 Two-sided bugs (96/638, 15.0%). The bugs in this category appear in both Java and C#

implementations. In particular, mirror bugs account for 14.7% of fixed bug reports (59/402) and
15.7% of open bug reports (18/236). The ratio of open bug reports is slightly higher than that of fixed
bug reports. As for programming languages, the ratio of Java implementation is 18.8% (96/512),
and the ratio of C# implementations is 76.2% (96/126). Programmers can actively locate and fix
mirror bugs. For instance, JTS [17] is a Java library for creating and manipulating vector geometry.
A bug report of JTS [25] complains that empty Polygon objects are created as 3-dimensional data,
but they shall be two-dimensional data. Figure 3a shows its patch. The buggy code at Line 5 calls
createPolygon without any arguments, and it sets the dimension to 3. To fix the bug, Line 6 passes
an argument to createPolygon, and Polygon objects are created with the correct dimension. NTS is
the C# implementation of JTS. As shown in Figure 3b, NTS programmers can read this bug, and
modify their code accordingly. Figure 3c shows the modifications on NTS, and they are quite similar
to the modifications on JTS as shown in Figure 3a.

T2 One-sided bugs (542/638, 85.0%).We determine that a bug report is one-sided, if we cannot
reproduce its symptoms on the corresponding implementation using the other language. For

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 9

0% 20% 40% 60% 80% 100%
Percentage (%)

Log4J2/Log4Net
JTS/NTS

Hibernate/Nhibernate
Lucene/Lucene.NET

39

9

11

90

12

87

83

8

16

27

20

Two-sided Java-sided C#-sided

(a) Fixed bug reports.

0% 20% 40% 60% 80% 100%
Percentage (%)

Log4J2/Log4Net
JTS/NTS

Hibernate/Nhibernate
Lucene/Lucene.NET

14

5

18

30

5

43

89

4

1

21

6

Two-sided Java-sided C#-sided

(b) Open bug reports.

Fig. 5. The distribution of one-sided and two-sided bugs.

example, Lucene-9661 [11] reports a random hang. As shown in Figure 4a, Line 4 of the TermsEnum

class creates an instance of BaseTermsEnum. To create the instance of BaseTermsEnum, it needs to
call TermsEnum, since as shown in Line 9 BaseTermsEnum is a subclass of TermsEnum. This process
constructs a class initialization cycle. As Java Virtual Machine has a unique initialization lock [34],
when it loads TermsEnum and BaseTermsEnum at two different threads simultaneously, a thread (𝑡𝑎) can
hold the lock for TermsEnum and another thread (𝑡𝑏) can hold the lock for BaseTermsEnum. When this
happens, it causes a deadlock. As shown in Figure 4a, to fix the bug, Line 5 replaces BaseTermsEnum
with TermsEnum. Lucene.NET does not implement the corresponding class of BaseTermsEnum. As
shown in Figure 4b, EMPTY is simply initialized by a private class TermsEnumAnonymousClass. Due to
the different implementations, Lucene-9661 does not appear in Lucene.NET. The above observations
lead to a finding:

Finding 1. In total, 15.0% of sampled bugs appear in both the Java and C# implementations.
C# implementations have a higher ratio of mirror bugs than Java implementations.

Figure 5 shows the distribution of different projects. The orange bars denote two-sided bugs; the
yellow bars denote bugs that appear on only Java implementations; and the grey bars denote bugs
that appear on only C# implementations. When Log4j upgrades from 1.x to 2.x, most source files
are rewritten. The implementation of Log4net is similar to Log4j 1.x, and Log4j2 becomes quite
different from Log4net. As we select recent bugs, the bugs from Log4net are similar to Log4j 1.x,
but we find no two-sided bugs between Log4j2 and Log4net. In contrast, JTS and NTS have more
two-sided bugs. In RQ2, we find that the programmers of NTS actively read and fix bugs that are
reported to JTS. For example, as shown in Figure 3b, the message of the nts@60eed6b [10] commit in
NTS has a link to the jts@7c89c9b commit in JTS. Please refer to Section 4.2 for a detailed analysis.
In summary, 15.0% of bugs are two-sided. Considering the two implementations may become

quite different during their evolution, the percentage is attractive enough for further investigation.
Also, there can be some opportunities in researching mirror bugs, since more mirror bugs can be
fixed when programmers (e.g., JTS) pay attention to such bugs.

4.2 RQ2. Fixed or Unfixed
4.2.1 Protocol. In this section, we analyze how many two-sided bugs were fixed. For some bug
reports in 𝑝𝑙 , we find their corresponding bug fixes of 𝑝𝑙 ′ , and classify these bug reports into T1.1.
Based on whether their bug reports of 𝑝𝑙 ′ are identified, we refine this category into T1.1.1 and
T1.1.2. We put unfixed two-sided bugs into T1.2, explore why they are unfixed, and refine this
category based on the causes.

4.2.2 Result. We identified two types of two-sided bugs:
T1.1 Fixed two-sided bugs (63/96, 65.6%). In this category, a bug is already fixed in the Java

implementation and the C# implementation. We further refine them according to the fixing process
we observe.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

10 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

nhibernate / nhibernate-core Public

Jump to bottom

Query cache always missed in session having
altered the entities #1730

Code Issues 576 Pull requests 58 Discussions Actions Security Insights

New issue

igitur commented on 5 Jun 2018• edited by fredericDelaporte

igitur mentioned this issue on 5 Jun 2018

Query cache always missed in session having altered the entities #1731
 Merged

hazzik added t: Bug c: Core p: Major labels on 5 Jun 2018

Refer to https://hibernate.atlassian.net/browse/HHH-5210
When using a query which is marked as cacheable, NHibernate caches
both the query with the session timestamp, and its last invalidation
timestamp ...
 ... This causes the result of the method to be always false , discard-ing
the cache results and hitting the database forever with that session.

(a) Part of nhiberante#1730 descriptions from
NHibernate.

Environment

None

Fixed

Pinned fields

Click on the next to a field label to start pinning.

Bug Testcase Reminder (view)

Strong Liu

Assign to me

Strong Liu

Bug Testcase Reminder (edit)

Created May 9, 2010 at 5:23 AM

Updated January 28, 2012 at 9:01 PM

Resolved May 10, 2010 at 8:45 PM

1) Why is it comparing the cache's timestamp with session's timestamp? The cache itself can expire the data via
timeout and Hibernate should expire the data if any relevant table was changed (both are happening). Besides, I
wasn't able to think of a single use case where the cached data could be considered "outdated" just because its
timestamp is higher than the current session's timestamp (meaning that they are newer than the session).

2) The javadoc for the SessionImplementor.getTimestamp() says:
"System time before the start of the transaction"
So, someone consuming this method can assume that this timestamp is related to the transaction. If the
timestamp was related to the transaction, then the cache's timestamp would never be higher than session's. Then,
this comparison would make sense, to not return something which would never happen and is probably wrong.
So, it's up to the developers to decide what's wrong:

JavaDoc + the logic to get a timestamp which is used when creating the query cache

getTimestamp() value + UpdateTimestampsCache.isUpToDate logic + other places relying in the wrong return
value

Closed

Details

Bug reports should generally be accompanied by a test case!

Assignee

Fix versions 3.5.2 3.6.0.Beta1

Development Create branch

1 commit 12 years ago

Participants Steve Ebersole

Bug reports should generally be accompanied by a test case!

Components hibernate-core

Affects versions 3.5.1 3.5.3

Priority Major

Automation Rule executions

Configure

/ /Projects Hibernate ORM HHH-5210

Add a comment…Pro tip: press M to comment

Hibernate ORM
Software project

Project pages

Github

in.relation.to

Atlassian Status

hibernate.org

Slack integration

PLANNING

Board

Reports

Components

Issues

DEVELOPMENT

Code

Releases

OPERATIONS

Deployments

You're in a company-managed project

Learn more

Your work Projects Filters Dashboards People Apps Create

Query Cache effective only after closing the session
that created the cache
Reporter Strong Liu Created May 9, 2010 at 5:23 AM
Description
When using a query which is marked as cacheable, Hibernate caches both the
query and the timestamp in the cache, but uses two different timestamps ...
...causing the result of the method to be "false", discarding the cache results
and hitting the database...

(b) Part of HHH-5210 descriptions from
Hibernate.

Fig. 6. An example of both-sided bug reports

T1.1.1 Fixed mirror bugs with both bug reports (15/96, 15.6%). In this category, a bug is
reported to both the Java implementation and the C# implementation. The two bug reports are
often similar. For example, as reported by HHH-5210, on the Java side, a timestamp shall be set to
the time when a query result is cached, but it is set to the created time of the current session. In
NHibernate#1730, NHibernate programmers confirm that the identical bug exists on the C# side.
Figure 6 shows the two bug reports. The two reports are created by different developers, but
NHibernate#1730 has a reference to HHH-5210. NHibernate#1730 even copies many sentences from
HHH-5210 to describe the bug.
As the developers of open-source projects often change, even if we can find a bug report, it is

difficult to determine whether the reporter is a user or a developer. As a user is unlikely to use both
the Java and the C# implementations, the bug reports can be filed by developers.
T1.1.2 Fixed mirror bugs with one-side bug reports (48/96, 50.0%). In this subcategory,

a bug is reported to only one side, but programmers still fix the same buggy symptoms in both
the Java and C# implementations. Also, we find evidence indicating they may actively learn the
patches for the same bugs in the other implementation. For example, as shown in Figure 3, after a
programmer fixed JTS#827 [25], another developer fixed the same bug symptom on NTS. We believe
that NTS programmers learn how JTS#827 is fixed, since the message of the NTS fixing commit has a
link to the JTS commit. The above observations lead to a finding:

Finding 2. In total, 63 (65.6%) of our found 96 two-sided bugs are already fixed. Among
them, 15 have bug reports in both Java and C# implementations, but 48 bugs have bug
reports only on one side.

T1.2 Unfixed two-side bugs (33/96, 34.3%). In this category, we can find buggy methods on
both sides. We further refine this category based on whether fixes have been implemented.
T1.2.1 Potential confirmed bugs (10/96, 10.4%). In this subcategory, we can find buggy

methods on both sides, and we find fixes on only one side. We have produced the symptoms of
these bugs in the other implementations, and write their patches. Among these unfixed mirror
bugs, more than half of them are real bugs, but remain unfixed by developers. For example, NTS#567
[12] complains that GeometryFixer changes the dimension of the coordinates when the input is
a polygon. As shown in Figure 9a, the dimension change happens at Line 3, when it sets the
dimension for z. This dimension is invalid when z is not a number. The fixed code checks z before
the assignment. As shown in Figure 9b, the Java counterpart has an identical bug. We further
analyze these bugs in Section 6.1.
T1.2.2 Potential unconfirmed bugs (17/96, 17.7%). In this subcategory, we can find buggy

methods on both sides, but neither side fixes them. We find potential unconfirmed bugs only from
open bug reports. For instance, LUCENENET#964 [38] complains that the GroupingSearch class may

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 11

0% 20% 40% 60% 80% 100%
Percentage (%)

JTS/NTS

Hibernate/Nhibernate

Lucene/Lucene.NET

6

3

36 3

3

8

reported bugs identified bugs unfixed bugs

(a) Fixed bug reports.

0% 20% 40% 60% 80% 100%
Percentage (%)

JTS/NTS

Hibernate/Nhibernate

Lucene/Lucene.NET

2

1

3

3

1

8

9

3

7

reported bugs identified bugs unfixed bugs

(b) Open bug reports.

Fig. 7. The distribution of two-sided bugs.

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

(a) Lucene/Lucene.NET
20

02
20

03
20

04
20

05
20

06
20

07
20

08
20

09
20

10
20

11
20

12
20

13
20

14
20

15
20

16
20

17
20

18
20

19
20

20
20

21
20

22
20

23
20

24

(b) Hibernate/Nhibernate

20
17

20
18

20
19

20
20

20
21

20
22

20
23

20
24

(c) JTS/NTS

Java project timeline

C# project timeline

Two-sided report

Sample Date

Fixed w/ report

Fixed w/o report

Unfixed bugs in Java

Unfixed bugs in C#

Fig. 8. The lifetime of two-sided bugs.

miss specific groups, even if such groups are defined in IndexSearcher.Search. The reporter of
this bug provided a test case [39] to reproduce the symptom. As this bug report is still open, we
reproduce this bug on the latest Lucene.NET. Furthermore, we translate this test case to the Java,
and observe the same symptoms in the latest Lucene.

T1.2.3Minor symptoms (6/96, 6.2%). These bugs haveminor symptoms in 𝑝𝑙 , and programmers
of 𝑝𝑙 ′ may not fix them. For example, the symptom of Lucene-10118 [13] is that the log messages in
ConcurrentMergeScheduler are too simple. The programmers of Lucene may not pay attention to
this minor bug. The above observations lead to the following finding:

Finding 3. We have produced the symptoms of 81.8% (27/33) of unfixed two-sided bugs.

Figure 7 shows the distribution of different projects. Log4j2 and Log4net are not included, since
we found no two-sided bugs in the two implementations. Table 1 shows that Lucene and Hibernate

have many bug reports. Their programmers can have too many bugs to repair, so they do not
actively fix mirror bugs. As a result, we found that all mirror bugs in the two projects have bug
reports. In contrast, JTS and NTS have fewer than 100 bug reports, and we find that no mirror bug
in this project has bug reports. Meanwhile, as programmers do not have many bugs to repair, they
actively learn the bug reports from the other implementations. As a result, we find many identified
mirror bugs in the two projects. Meanwhile, Lucene and Hibernate do not actively fix mirror bugs.
As a result, we find more unfixed mirror bugs in the two projects. Although the programmers of
JTS and JTS fixed many mirror bugs, we still found unfixed ones.

Figure 8 shows the lifespan of two-sided bugs. The light blue and light red arrows represent
the timelines of Java and C# projects, respectively. The gray dotted line indicates the start time of

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

12 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

sampling bug reports. The green circles depict fixed mirror bugs with both bug reports (T1.1.1).
Their positions are their reported dates. The black lines link Java and C# reports of mirror bugs. The
three projects have different temporal patterns. For Lucene and Lucene.NET, Java bugs are reported
earlier than their C# counterparts. In Hibernate and NHibernate, both Java and C# bugs can be
firstly found in the other sides. For JTS and NTS, the two mirror bugs are reported at the same time.
The orange squares represent fixed mirror bugs with one-side reports (T1.1.2). Their positions are
the reported dates of one-side bug reports. The red triangles denote unfixed two-sided bugs. Their
positions are the reported dates of known bug reports from the other sides. The orientation of
each triangle indicates in which project bugs remain unfixed. In particular, an upward triangle (△)
denotes that a bug is unresolved in a Java project, and a downward triangle (▽) indicates that a bug
remains unfixed in a C# project. For instance, in Figure 8 (a), a red downward triangle in the blue
arrow denotes that we can find the mirror bug of a Lucene bug, but this mirror bug is unfixed in
the latest version of Lucene.Net. The three projects follow different patterns. The development of
Lucene.NET significantly lags behind that of Lucene, and it does not support many features of the
latest Lucene. As a result, Lucene provides more mirror bugs than Lucene.NET. Both Hibernate and
NHibernate are under active maintenance and have many bug reports. As a result, Hibernate and
NHibernate both provide mirror bugs and are mutually beneficial. NTS is not as popular as JTS. As it
has only a few bug reports, the developers of NTS actively identify and repair mirror bugs from JTS.
The above observations lead to a finding:

Finding 4. Detecting mirror bugs is beneficial when the other sides have many bug reports.

In summary, we find that users seldom report bugs to multiple implementations, since they
typically use projects in a language. However, according to the results from JTS and NTS, many
mirror bugs can be identified, if their programmers actively identify and fix such bugs. Although it
is difficult to set up the programming contexts (e.g., databases), we have produced the symptoms of
27 unfixed two-sided bugs.

4.3 RQ3. One-sided Bug
4.3.1 Protocol. In Section 4.1, we classify bugs into two categories. The bugs in the T2 category
are found in only one implementation, and cannot be reproduced in the other. In this research
question, we analyze why these bugs appear in only an implementation of a project. Our analysis
has the following steps. First, we read each bug report to learn its symptoms. Second, we investigate
its fixing commits to learn its modified locations and causes. Third, we search the source files of the
other-language implementation for correspondences. If we cannot find such locations, we classify
them into subcategories of T2.1, according to the granularity of missing correspondences. If we
find the correspondences of a bug, we further analyze why it is infeasible to produce the symptoms.
We then classify this bug into subcategories of T2.2 and or T2.3, according to its reason.

4.3.2 Result. Our identified categories are as follows:
T2.1 No corresponding source files (385/542, 71.0%).We failed to find their corresponding

buggy locations.
T2.1.1 File differences (190/542, 35.0%). In this subcategory, we can find corresponding

modules in 𝑝𝑙 and 𝑝𝑙 ′ , but their files are different. For example, LUCENE-10401 [26] reports that the
codec in Lucene lacks an empty check. The codec is a component of Lucene, and it is responsible
for reading and writing index files. The buggy codec mentioned by LUCENE-10401 is Lucene90, but
Lucene.NET uses an old codecwhose version is Lucene46. As the two implementations of codec have
many different files, we cannot reproduce the symptom of LUCENE-10401 on Lucene.NET.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 13

1 // RobustLineIntersector . cs ...
2 private ... CopyWithZ(Coordinate p, double z) {
3 − var pCopy = new CoordinateZ(p);
4 − if (!double.IsNaN(z)) pCopy.Z = z;
5 − return pCopy;
6 + Coordinate res ;
7 + if (double.IsNaN(z)) res = p.Copy();
8 + else res = new CoordinateZ(p) { Z = z };
9 + return res ;
10 }...

(a) The patch of NTS#567 [12].

1 // RobustLineIntersector . java ...
2 private ... copyWithZ(Coordinate p, double z) {
3 Coordinate pCopy = new Coordinate(p);
4 if (!double.IsNaN(z)) pCopy.setZ(z) ;
5 return pCopy; }...

(b) The JTS code equivalent with the buggy code of NTS#567

Fig. 9. An example of potential bugs

T2.1.2 In-file differences (93/542, 17.2%). In this subcategory, buggy files in 𝑝𝑙 have their
corresponding files 𝑝𝑙 ′ , but the implementation details are different. For example, as we introduced
in Section 4.1.2, LUCENE-9661 reports a deadlock in LUCENE. As shown in Figure 4, although the
buggy files are found in both the Java and C# implementations, they lock the resource differently.
As a result, the deadlock does not appear in the Lucene.NET.

T2.1.3Module differences (102/542, 18.8%). In this subcategory, we cannot find the correspond-
ing modules. For example, LUCENE-10260 [14] reports a display problem with luke, a visualization
module of Lucene. As Lucene.NET has no visualization module, we cannot reproduce this bug.

Finding 5. In total, 71.0% of one-sided bugs are caused by implementation differences.

T2.2 Language-specific bugs (110/542, 20.3%). In this category, bugs are caused by languages
and their development environments.
T2.2.1 Build bugs (35/542, 6.5%). As programming languages have their own building tools,

build bugs are seldom across languages. For example, Lucene-10042 [15] reports that the minimum
JDK version is set at the wrong place in gradle [27] scripts. As gradle is a Java building tool, this
bug will not affect Lucene.NET.

T2.2.2 Languages and frameworks (58/542, 10.7%). The bugs in this subcategory are caused by
language-specific features and frameworks. For example, Lucene code calls a Java API, System.nano-
Time(). As C# does not have the corresponding API, Lucene.Net calls DateTime.UtcNow.Ticks *

100 to mimic System.nanoTime(). The calculation is wrong since a unit tick is equivalent to 100
nanoseconds. As a result, a LUCENENET bug report [16] complains that a method hangs when it is
executed. To fix this problem, the above call is replaced by J2N.Time.nanoTime(), which is declared
by a third-party library, J2N.

T2.2.3 Library-related bugs (17/542, 3.1%). In this category, bugs are caused by dependencies.
For example, Lucene-8175 [2] is caused by a concurrency bug in ICU4J. ICU4J is an API library
providing Unicode services. Lucene.NET calls ICU4N, a C# implementation of ICU4J, but it does not
have the concurrency bug.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

14 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

0% 20% 40% 60% 80% 100%
Percentage (%)

Log4J2/Log4Net
JTS/NTS

Hibernate/Nhibernate
Lucene/Lucene.NET

94

18

99

69

4

6

7

28

4

8

6

No implementation Language-specific Others

(a) Fixed bug reports.

0% 20% 40% 60% 80% 100%
Percentage (%)

Log4J2/Log4Net
JTS/NTS

Hibernate/Nhibernate
Lucene/Lucene.NET

13

1

31

60

14

4

26

21

7

1

7

14

No implementation Language-specific Others

(b) Open bug reports.

Fig. 10. The distribution of one-sided bugs.

Finding 6 . In total, 20.3% of one-sided bugs are caused by languages and development
environments.

T2.3 Others (47/542, 8.7%). In this category, we cannot reproduce bugs, due to various minor
reasons.

T2.3.1Hard to trigger (22/542, 4.1%).These bugs are reported to 𝑝𝑙 , but we fail to write test cases
to trigger their corresponding symptoms from 𝑝𝑙 ′ . For example, the test case of Lucene-10598 [28]
calls the SortedSetDocValues.docValueCount method to calculate the unique ordinals of an indexed
document. In the latest C# implementation, this method is unimplemented. As a result, it is difficult
to reproduce this bug on Lucene.NET.

T2.3.2 Migration bugs (11/542, 2.0%). Some bugs are introduced during the migration from 𝑝𝑙
to 𝑝𝑙 ′ , and such bugs do not appear in 𝑝𝑙 . An example is NTS#380 [9]. As shown below, Line 5 calls
a wrong method. A programmer mentions that JTS calls the right method, ever since the oldest
traceable commit. As NTS is migrated from JTS, NTS#380 shall be introduced during the migration
process.
1 //GeometryTransformer.cs
2 public class GeometryTransformer {...
3 public ... Transform(Geometry inputGeom){...
4 if (inputGeom is LinearRing)
5 − return TransformLineString ((LinearRing)inputGeom, null) ;
6 + return TransformLinearRing((LinearRing)inputGeom, null) ;... } ... }
7 //GeometryTransformer.java
8 public class GeometryTransformer {...
9 public ... Transform(Geometry inputGeom){...
10 if (inputGeom instanceof LinearRing)
11 return TransformLineString ((LinearRing)inputGeom, null) ;... } ... }

T2.3.3 Reverted changes (14/542, 2.6%). In this category, the modifications of fixing a bug are
reverted, before these modified files are translated to the other project. For example, when Lucene

programmers implement multiple threads to delete documents, they delete Lines 7 to 9 as shown in
the below code fragments:
1 //DocumentsWriter.java
2 final class DocumentsWriter {
3 private final IndexWriter writer ; ...
4 private boolean doFlush (...) ... {
5 boolean hasEvents = false ;
6 while(flushingDWPT != null) {...}
7 − if (hasEvents) {
8 − writer .doAfterSegmentFlushed(false, false) ;
9 − } ...
10 } ... }
11 //DoucmentsWriter.cs

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 15

12 internal sealed class DocumentsWriter {...
13 private bool DoFlush (...) {
14 bool hasEvents = false ;
15 while (flushingDWPT != null) {...}
16 if (hasEvents) {
17 PutEvent(MergePendingEvent.INSTANCE);
18 } ...
19 } ... }

As reported in LUCENE-7894 [1], a thread wrongly counts the number of documents. To fix the
bug, the deletions of Lines 7 to 9 are reverted. Lucene.NET does not implement multiple threads
support for deleting documents, and the corresponding Lines 16 to 18 are never deleted. As a result,
LUCENE-7894 [1] cannot be reproduced on Lucene.NET.
Figure 10 shows the distributions of different projects. In total, we cannot reproduce 71.0% of

bugs, since we cannot locate their correspondences in the other implementations. We search for
similar source files, but their correspondences can be dissimilar. As we are outsiders to these
projects, we may not find some hidden correspondences, and thus overestimate the percentage of
T2.2. If programmers replicate our study, they can find more mirror bugs.

In summary, in the majority of one-sided bugs, we fail to find corresponding implementations
(71.0%). The others cannot becomemirror bugs because they are language-specific (20.3%) or because
of other minor reasons (8.7%). Here, if their programmers replicate our study, the percentage for
no corresponding implementation could be lower, since they can locate more correspondences of
buggy source files.

5 THE SIGNIFICANCE OF OUR FINDING
In this section, we interpret the significance of our findings.

Understanding the importance of mirror bugs. Although we can ignore valid cases, Finding
1 shows that 15.0% of all inspected bugs appear on both sides. As shown in Finding 2, only 23.8% of
fixed two-sided bugs are explicitly reported. Programmers can actively find and repair mirror bugs.
For example, we find that several programmers contribute to both JTS and NTS, and they actively
fix mirror bugs. As a result, in this project, we found more mirror bugs. If suitable programmers are
invited or proper tools are proposed, it is feasible to detect mirror bugs from more projects. Log4net
is ported from log4j, but we sampled bugs from log4j2. As a result, we find no mirror bugs for this
project. Still, when Log4net is updated to log4j2 in the future, it should be feasible to detect mirror
bugs from this project. Although we do not categorize mirror bugs based on their symptoms, we
do categorize them according to the locations where they occur. It would be worthwhile to conduct
a new empirical study to explore the categorization of mirror bugs’ symptoms.

Detecting and repairing mirror bugs. Like JTS and NTS, an application can have imbalanced
users, and a version can attract many more users than other versions. The bug reports of the
popular version can be useful for other versions. Although we manually inspected only limited
bugs, we have found and repaired 9 new mirror bugs. A tool can detect many more bugs if properly
developed. Given a list of bugs, the tool must first filter out one-side bugs. We find that one-side
bugs are caused by implementation differences (71.0%, Finding 5), language-specific issues (20.3%,
Finding 6), or various minor reasons (8.7%). Researchers have investigated how to detect and repair
cross-platform bugs [45, 72, 75, 110]. Motivated by these approaches, in Section 6, we try to repair
manually unfixed mirror bugs and analyze the challenges of automating the repairing process.

Exploring evolution patterns of mirror bugs. In software, clones are common [87], and the
evolution of clones is intensively studied [47, 67, 83]. These studies analyze clones in the same
language. If we extend the definitions of clones, we can find clones across languages [56], and

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

16 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

Table 2. Our reported new mirror bugs

Original Id Symptom Priority Our Id Status
LUCENE-8755 QuadPrefixTree crashes when indexing at high precisions Critical LUCENENET#644 PR rejected
LUCENE-9940 DisjunctionMaxQuery.equals() is wrongly implemented Major LUCENENET#779 Open
LUCENE-10008 CommonGramsFilterFactory ignores the ignoreCase setting Major LUCENENET#780 PR accepted
LUCENE-10059 JapaneseTokenizer throws AssertError with backtrace Major LUCENENET#775 PR accepted
LUCENE-10441 ArrayIndexOutOfBoundsException in during indexing Major LUCENENET#1003 PR acceptedLUCENE-8614 ArrayIndexOutOfBoundsException in ByteBlockPool Major
HHH-14413 EntityUpdateAction increments the version when updating is vetoed Blocker NH#3198 PR accepted
NH#1419 IsDirty throws exceptions for transient many-to-one objects Major HHH-15848 Open
NTS#567 GeometryFixer does not keep the dimensions of target coordinates N/A JTS#919 PR accepted
NTS#589 WKTReader creates 3-D coordinates when reading 2-D ones N/A JTS#939 Open

mirror bugs are cross-language clones with bugs. On one hand, the known knowledge of clones is
useful for understanding mirror bugs. For example, Kim et al. [67] show that after programmers
copy a code fragment from a code location, this code fragment typically becomes dissimilar during
evolution. We notice that when an application is initially ported from Java to C#, its C# source
files are quite similar to its Java source files, but they also become less similar with evolution.
For example, As shown in Table 1, the latest versions of the Java implementation and the C#
implementation are typically different, and their latest source files become quite different. On the
other side, the evaluation of cross-language projects and mirror bugs can deepen the knowledge of
the evolution of clone bugs. Unlike classical clones, cross-language projects can become similar, if
a lagging version catches up. As a result, bug fixes can be useful for future versions, even if their
correspondences are not implemented.

6 REPAIRING MIRROR BUG
As we summarize in Section 5, it is feasible to detect and repair new mirror bugs by learning known
bugs. In this section, we try to fulfill this vision on our dataset by answering the following two
research questions?

• RQ4: Can we repair new mirror bugs by manually learning known bugs?
• RQ5: What are the challenges if researchers automate the process?

6.1 RQ4. Repairing New Mirror Bugs
As we summarize in Section 5, it is feasible to detect and repair new mirror bugs by learning known
bugs. In this section, we try to manually fulfill this vision on our dataset.

6.1.1 Protocol. As we introduced in Section 4.2.2 (T1.2.1), we identified 10 potential confirmed
mirror bugs. To explore whether known bugs are useful for repairing mirror bugs, we try to repair
these potential mirror bugs with their corresponding known bugs. Preparing patches necessitates a
profound understanding and expertise in both Java and C# project implementations. Our steps are
as follows. First, based on the descriptions of a bug report in 𝑝𝑙 , we manually write test cases to
reproduce the buggy symptoms on 𝑝𝑙 ′ . Second, if we reproduce the symptom, we proceed to address
it in 𝑝𝑙 ′ by referencing the corresponding fixing commit from 𝑝𝑙 . We then manually translate the
patch into the alternative language implementation. Third, if we fix the bug in 𝑝𝑙 ′ , we report this
bug and our fixed code to 𝑝𝑙 ′ . Finally, we collect and analyze the feedback from developers.

6.1.2 Feedback from programmers. It takes much programming experience to identify and repair
bugs from real projects. As outsiders, for our projects, we cannot even determine whether their
source files have bugs or not. Fortunately, the known bugs in a language provide valuable references
to identify the bugs in the other language. Based on the known bugs, we successfully located all the
new buggy locations of the known 10 bugs. Based on their known patches, we fixed them according

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 17

to the existing patches in the other languages. The 10 bugs are already confirmed and fixed on one
side. After we reproduce them in the other implementations, all our found new bugs shall be true
bugs. Still, we need feedback from programmers to understand their attitudes toward mirror bugs.
As a result, we report our new bugs and their pull requests to the corresponding implementations.
Table 2 shows the results. The first three columns list the IDs, the symptoms, and the priorities
of the original bug reports. Columns “Our Id” lists the IDs of our bug reports. In Rows 6 and 7
of Table 2, LUCENENET#1003 is a mirror bug of LUCENE-10441 and LUCENE-8614. The two Lucene bug
reports complain the same symptoms, and their pull requests are similar. Although this problem
has been reported twice, both bug reports are still open. We find that Lucene.Net has the same
bug and throws a corresponding exception. Column “Status” lists the status of our pull requests.
Programmers have responded to 5 of our pull requests:

1. Five pull requests were already accepted. For example, as we introduced in T2.1.2, NTS#567
[12] reports that its GeometryFixer class unintentionally changes the coordinate dimensions. In
particular, given a two-dimensional coordinate as the input of its fix method, it constructs a
3-dimensional coordinate, and the additional dimension is assigned to NaN, which means "not a
number". We find that the latest version of JTS also has a GeometryFixer class, and it has the same
buggy symptom. Based on the patch of NTS#567 as shown in Figure 9a, we prepare the following
patch for JTS:
1 // RobustLineIntersector . java
2 private static Coordinate copyWithZ(Coordinate p, double z) {
3 − Coordinate pCopy = new Coordinate(p);
4 − if (! Double.isNaN(z)) pCopy.setZ(z) ;
5 − return pCopy;
6 + Coordinate res ;
7 + if (Double.isNaN(z)) res = p.copy() ;
8 + else res = new Coordinate(p);
9 + p.setZ(z) ;
10 + return res ;
11 }...

The above patch does not fully resolve the bug, due to the implementation differences. However,
the knowledge learned from Figure 9a helps us resolve the problem in other code locations. For
example, by replacing the constructor with copy(), we fixed the identical problem in the SegmentNode
class of JTS:
1 public class SegmentNode{
2 public final Coordinate coord; // the point of intersection
3 public SegmentNode(Coordinate coord, ...) {...
4 − this . coord = new Coordinate(coord);
5 + this . coord = coord.copy() ;
6 ...}...}

We reported our found bug and its pull request (JTS#919 [29]) to JTS. Our bug report was
confirmed in three days, and our pull request was accepted two days after we submitted it.

2. A pull request was rejected but programmers confirmed that this pull request could
be useful in future versions. In Lucene, the QuadPrefixTree class utilizes Quadtrees to index
coordinates. Given a two-dimension point in a rectangle region, QuadPrefixTree repeatedly divides
the current region into four quadrants, and enters the quadrant where this point is, until the region
is smaller than a pre-defined proportion. Lucene-8755 [3] complains that the getCell method of
this class throws an IndexOutOfBoundsException, if a coordinate falls on the borders of a bounding
box. To fix this bug, programmers write the following patch [30]:

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

18 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

1 //QuadPrefixTree. java
2 public Cell getCell (Point p, int level) {...
3 − build (...) ;
4 − return cells . get (0) ; ...
5 + for (int lvl = 0; lvl < levelLimit ; lvl ++){
6 + int c = battenberg (currentXmid, currentYmid, xp, yp) ; ...
7 + str . bytes[str . length++] = (byte) ('A' + c) ;
8 + }
9 + return new QuadCell(str, rel) ;
10 }

The new implementation of getCell method properly handles the coordinates on borders. Al-
though the old version is considered a bug, the programmers of Lucene decided to keep the buggy
behavior. In another patch [31], programmers use a Boolean value, robust, to check whether the
version is newer than 8.3.0:

1 //QuadPrefixTree. java
2 + protected boolean robust = true;
3 protected SpatialPrefixTree newSPT() {
4 − return new QuadPrefixTree(ctx,
5 + QuadPrefixTree tree = new QuadPrefixTree(ctx,
6 maxLevels != null ? maxLevels : MAX_LEVELS_POSSIBLE);
7 + tree . robust = getVersion () .onOrAfter(Version .LUCENE_8_3_0);
8 + return tree ;
9 }
10 public Cell getCell (Point p, int level) {...
11 − build (...) ;
12 − return cells . get (0) ;
13 + if (! robust) {...
14 + buildNotRobustly (...) ;
15 + if (! cells . isEmpty()) {return cells . get (0) ;}
16 + }...
17 }

If the version is older than 8.3.0, Line 7 sets robust to false. When robust is false, Line 15
returns the value as the buggy version does, i.e., what Line 12 returns.
On the C# side, we find that QuadPrefixTree is a line-by-line translation of the Java implemen-

tation. Given the identical input, Lucene.NET throws an ArgumentOutOfRangeException. Based on
the patch in Java, we prepared a patch for Lucene.NET to resolve the symptom. We report the
bug [32] and submit our pull request [33]. However, the programmers of Lucene.NET rejected our
pull request. It turns out that the latest version of Lucene.NET is still the equivalent of Lucene 4.8.0.
Lucene-8755 [3] fixes a bug in Lucene 8.3.0. The programmers of Lucene.NET believe that it is not
the right time to merge our pull request, and they want to keep the buggy behaviors for backward
compatibility. Still, they appreciate our report and pull request, admitting they are good references
for their future versions. The feedback from programmers confirms our vision. The bug reports
and patches from an implementation are useful to detect and fix bugs in the implementation in
other languages.

In summary, according to the bugs in one-sided implementations, we found new mirror bugs in
all three projects where two-sided bugs are found. In total, we have detected and fixed 9 such bugs.
Even if the programmers of NTS actively learn and fix mirror bugs, we found two new bugs, and
one of them has been accepted by their programmers.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 19

Table 3. The successful cases of our manual study
C# Id Java Id Original Naming Keyword API replacement

LUCENENET#559 LUCENE-5716 ✗ ✓ - -
LUCENENET-598 LUCENE-6001 ✗ ✗ ✗ ✓
NH#1244 HHH-13456 ✗ ✗ ✗ ✓
NH-2011 HHH-15359 ✗ ✗ ✗ ✓
NH#1730 HHH-5210 ✗ ✗ ✗ ✓

6.2 RQ5. Challenge of Automation
As we summarize in Section 5, it is feasible to apply automated program repair techniques to
automate the process of repairing mirror bugs. For instance, Liu et al. [74] propose template-based
techniques to repair bugs. In this section, we conduct a preliminary study to explore the challenges
of automation.

6.2.1 Protocol. Liu et al. [74] propose a template-based approach called TBar. We analyze this tool
since it is a recent approach and mirror bugs provide a feasible way to construct templates. This
tool does not include a technique to mine templates from C# patches. Even if we implement such a
technique for C# code, templates from C# patches are unlikely to repair bugs in Java code. It takes
too much effort to implement a tool that can extract templates from C# patches and translate them
to templates in Java. Although we cannot provide the results of an automated tool in this RQ, we
conduct a small-scale manual study to inspect the challenges of implementing such a tool.

In Section 4.2.2, we identified 9 mirror bugs with fixed bug reports on both sides. In this RQ, we
analyze all the 9 mirror bugs. Following the idea of Liu et al. [74], we manually construct templates
from their C# patches. After that, we use TBar to repair the corresponding Java bugs with original
templates. If they fail to repair a Java bug, we sequentially apply the following modifications to the
templates and use the revised templates to repair bugs:
1. Naming convention:We replace the names of method calls from the Pascal cases in C# to

the camel cases in Java.
2. Keyword mapping: We replace C# keywords with corresponding Java keywords.
3. API replacement:We replace C# APIs with the corresponding Java APIs. This type of modifi-

cation is quite challenging. Although researchers [52, 79, 108] have proposed various approaches to
mine API mappings across languages, these approaches typically consider only the mappings of API
methods. Besides replacing called API methods, we consider the replacements of their parameters,
e.g., swapping parameter orders and deleting unnecessary parameters.
We continue this process until a modified template works.

6.2.2 Learned Lesson. Our study leads to the following results:
1.Modified templates can repair fivemirror bugs. Table 3 shows the fivemirror bugs. Column

“C# Id” and “Java Id” list the issue numbers of Java bug reports and C# bug reports, respectively.
Column “Original” lists the result of original templates. Columns “Naming”, “Keyword”, and “API”
list the results after we apply the corresponding modifications. For instance, NH-2011 [40] reports
that many-to-many relationships within a component are not correctly persisted when using
SaveOrUpdateCopy or Merge in NHibernate. In particular, its TypeHelper class mishandles components
during associations. As shown in Figure 11a, the buggy code calls ReplaceAssociations to replace
the associations of the original component with the target component. It is buggy since it does
not properly assign the transformed component to the target object. As shown in Figure 11a, the
fixed code correctly sets the transformed component values and recognizes the many-to-many
associations inside components. Based on this patch, we extract a template as depicted in Figure 11b.
The dashed squares in Figure 11a and Figure 11b show the links between the patch and the template.
This template fails to repair the mirror bug in Java. We applied all the three modifications, and
Figure 11c shows our modified template. The links between Figure 11b and Figure 11c show

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

20 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

1 Object[] objects =
 replaceAssociations(...,
 session, ...);
2 if(target[i] != null
 && componentType != null)
3 componentType.
 setPropertyValues(target[i],
 objects);

2 + object [] var_copy =
 ReplaceAssociations(...,
 var, ...);
3 + if(!componentType.IsAnyType
 && target[i] != null)
4 + componentType.
 SetPropertyValues(target[i],
 var_copy,
 var.EntityMode);

2 + object[] componentCopy =
 ReplaceAssociations(...,
 session, ...);
3 + if(!componentType.IsAnyType
 && target[i] != null)
4 + componentType.
 SetPropertyValues(target[i],
 componentCopy,
 session.EntityMode);

1 replaceAssociati-
ons(..., var, ...);

(a) The original patch (C#). (b) The original template (C#). (c) The migrated template (Java).

(d) The fixing process of HHH-15359.

Input

Output1 Object[] componentCopy =
 replaceAssociations(...,
 session, ...);
2 if(!componentType isinstanceof
Anytype && target[i] != null)
3 componentType.
 setPropertyValues(target[i],
 componentCopy);

Output

The migrated
template (Java)

Abstract variable

Abstract variable

1. Naming
Conventions

2. Keyword Mapping

3. API Replacement

2 + Object [] var_copy =
 replaceAssociations(...,var, ...);
3 + if(!componentType
 instanceof AnyType
 && target[i] != null)
4 + componentType.
 setPropertyValues(target[i],
 var_copy,
 var.getEntityMode());

1 - replaceAssociations(..., var,...);1 - ReplaceAssociations(...,
 session, ...);

1 - ReplaceAssociations(...,
 var, ...);

TBar

componentCopy

componentCopy

!componentType isinstanceof
Anytype

objects

objects

componentType != null

(e) The comparison with gold standard.

Gold standard

Semantically
Equivalent

Fig. 11. A successful template.

the modifications of naming conventions, keyword mappings, and API replacements in different
styles of lines. For instance, isAnyType is modified to isinstanceof AnyType. In addition, although
Hibernate has a corresponding method (getEntityMode()) for the EntityMode field in NHibernate,
the setPropertyValues() method in Hibernate has only two parameters. As the last parameter of
SetPropertyValues() is no longer necessary, we remove it from the template. Figure 11d shows the
Java code after applying our modified template. Figure 11e shows the comparison with the gold
standard. Although the code is different, it closely resembles the one written by programmers [41].
A notable difference between the two patches lies in Line 3. The generated patch checks whether
componentType is an instance of AnyType, but the gold standard checks whether componentType is
null. Our patch is stricter since the instanceof operator in Java will check whether an object is null
before checking its type.
2. We failed to extract templates from the other four patches since they have hunks

with only additions. For instance, NH-3931 [42] reports that inserting multiple parent entities
leads to an incorrect order and a foreign key exception is thrown. Its patch has the hunk as shown
in Figure 12a. As this hunk has no modified source, we cannot build the templates as described
by Liu et al. [74]. Figure 12b shows the corresponding hunk in Java. Most code segments in the
modified C# and Java code are similar. Although it is infeasible to define templates to fix this bug,
we envisage that translating the fixed code and applying the translated code to the proper code
location can fix the bug in Java. During the translation, many approaches such as API mapping [108],
learning-based methods [81], and large language models [46] can be useful.
In summary, we confirm that templates can repair five mirror bugs, but they cannot fix the

remaining four bugs. Still, the original templates cannot repair mirror bugs, and need modifications
before they can work. Although templates cannot repair the remaining four bugs, mirror bugs
provide details that are useful to repair bugs through other technical paths.

7 THREAT TO THE VALIDITY
Our study has the following threats.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 21

1 //ActionQueue.java
2 + private void addParentChildEntityNames(
 AbstractEntityInsertAction action,
 BatchIdentifier batchIdentifier) {
3 + Object[] propertyValues = action.getState();
4 + Type[] propertyTypes = action.getPersister().
 getClassMetadata().getPropertyTypes(); ...
5 for (int i = 0; i < propertyValues.length; i++) {
6 + Object value = propertyValues[i];
7 + Type type = propertyTypes[i]; ...
8 +} }

1 //ActionQueue.cs
2 + private void UpdateChildrenDependencies(
 int batchNumber,
 EntityInsertAction action) {
3 + var propertyValues = action.State;
4 + var propertyTypes = action.Persister.
 EntityMetamodel?.PropertyTypes; ...
5 +for(var i = 0; i < propertyValues.Length; i++)
6 +{ var type = propertyTypes[i]; ...
7 + var children = propertyValues[i];
8 }}

Method signature

Implementation

Variable Name
and Type

(a) An added method from the patch of NH-3931. (b) An added method from the patch of HHH-9864.
Fig. 12. A failure due to hunks with only additions.

The threat to internal validity includes possible errors in our manual classification of bugs. As
outsiders, we have limited knowledge of the subjects and introduce wrong classification results. We
carefully design protocols and report our patches to programmers to reduce this threat. To enhance
transparency and allow for independent verification, we also release our inspection results on our
website, so other researchers can check our inspection results.

The threat to external validity arises from the limited number of projects. Our focus on Java and
C# may restrict the generalizability of our findings to projects in other programming languages.
While these two languages represent a significant portion of modern software development, future
work should explore additional programming languages.

8 RELATEDWORK
Our study is related to the following research themes:
Empirical studies on bugs. Researchers conduct various empirical studies about bug reports.

Anvik et al. [48] investigate the patterns and the standard life cycle of bug reports. Bettenburg et
al. [50] chose duplicate reports as their research target. Guo et al. [62] propose the factors (e.g.,
the reputations of the reporter) affecting which bug shall be fixed. Guo et al. point out that poor
bug reports may lead to a great number of reassignments [63]. Some researchers focus on how to
improve the quality of bug reports [49, 111]. Other researchers target more specific topics regarding
bugs. Lin et al [73] compare two bug assignment approaches. Xia et al. [96] investigate bug report
field reassignment. Ding et al [57] analyze bugs detected by fuzzing from open-source projects.
Some empirical studies are about bug fixing time [104, 105], and some investigate bug fixing in
open source projects [51, 59]. Some researchers focus on bugs in specific systems, e.g. deep learning
frameworks [88, 89, 102, 106], industrial financial systems [98], and smart contracts projects [92].
Mondal et al. conduct studies on bug propagation through code cloning [65, 76]. Li and Zhong [71]
conduct an empirical study on the impacts of obsolete bug fixes. Non-reproducible bugs are also
analyzed in some recent studies [60, 86]. Yan et al. [100] report that many bug fixes are workarounds.
Our work is the first study on mirror bugs, complementing the above studies.
Detecting cross-language clones. A few approaches are proposed to detect cross-language

clones. Based on the .NET intermediate representation (IR), Kraft et al. propose the first approach
called C2D2 [69] to detect clones between C# and Visual Basic code, and Al-Omari et al. [44]
propose an approach to detect clones in more .NET languages. Many programming languages do
not have such IRs. For such languages, Cheng et al. propose the first approach called CLCMiner [56]
to detect clones by analyzing revision histories. Vislavski et al. propose LICCA [91] to use high-
level representations to detect cross-language clones. Nichols et al. [82] propose an approach that
combines the similarity of both code structures and identifiers. Nafi et al. [77] propose CLCDSA
that trains DNN models based on extracted syntactic features. Perez et al. [84] and Yahya et al. [99]
use abstract syntax trees (ASTs) as input to train their models. Tao et al. [90] propose C4 that tunes

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

22 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

the pre-trained model CodeBERT to detect cross-language clones. The above approaches make it
feasible to implement a tool for detecting mirror bugs based on our results.
Cross-language code migration. To support the migration across languages, researchers

proposed various approaches that mine API mappings. Zhong et al. propose MAM [108], which
utilizes heuristics on textual or structural similarity to mine API mappings from translated bilingual
projects. Nguyen et al. present StaMiner [78] extend their MAM and use a statistical model to learn
the mappings. Gu et al. [61] propose DeepAM that uses sequence-to-sequence learning to support
cross-language API migrations. Nguyen et al. [79] propose API2API that utilizes Word2Vec to mine
API mappings. Bui et al. [52] use generative adversarial networks (GAN) to reduce the amount of
training data. Some unsupervised learning methods [54, 58] are proposed to mine analogical APIs.
As the models are language agnostic, they have the potential to be applied to cross-language tasks.
Besides APIs, Karaivanov et al. [66] and Nguyen et al. [81] propose approaches that treat source
code as a sequence of tokens and apply statistical machine translation (SMT) models to translate
code. Qin et al. [85] propose an approach to infer the UI event mappings between Android and iOS.
Our study highlights the importance of the above approaches, since we find that many source files
are not migrated due to the huge effort of manual migration.
Cross-language fault localization. Researchers have proposed various approaches to locate

the faulty files of a bug report [43]. These approaches compare source files with a bug report and
determine similar source files as the faulty files of the bug report. Source files can be implemented in
multiple languages, and bug reports can be written in different natural languages. Some researchers
consider the above issue, and work on a subfield called cross-language fault localizations. For
instance, Xia et al. [95] translate bug reports to English and then compare translated bug reports
to locate their faulty files. Yang et al. [101] customize position encoding and facilitate attention
mechanisms to locate cross-language faulty files. Chakraborty et al. [53] employ dynamic chunking
to segment source code and utilize hard example learning for model fine-tuning. In our study, we
find some two-side bugs with bug reports. As the same bugs are implemented in different languages,
these bug reports can be used as labeled data to train their models.

9 CONCLUSION AND FUTUREWORK
Although researchers have conducted many studies to analyze the characteristics of bugs, to
the best of our knowledge, no previous study explores mirror bugs that appear in the different
versions of an application. Mirror bugs are important, since many applications have versions in
different programming languages. To complement the knowledge about bugs, we conducted the
first empirical study on mirror bugs. In particular, we analyzed 638 bugs that were collected from the
Java and C# versions of four projects. Based on our study, we conclude that (1) 15.0% of bugs appear
in both Java and C# implementations; (2) 76.2% of fixed two-sided bugs are actively identified by
programmers; (3) 81.8% of unfixed two-sided bugs can be reproduced in the other implementations;
and (4) bugs in a version are useful to detect bugs of its versions in other languages.

In future work, we plan to extend our work from the following perspectives: (1) analyzing mirror
bugs in projects that are implemented in more programming languages; (2) exploring the detection
techniques of mirror bugs; and (3) exploring the evolution patterns of mirror bugs.

REFERENCES
[1] 2017. https://issues.apache.org/jira/browse/LUCENE-7894.
[2] 2018. https://issues.apache.org/jira/browse/LUCENE-8175.
[3] 2019. https://issues.apache.org/jira/browse/LUCENE-8755.
[4] 2020. https://hibernate.atlassian.net/browse/HHH-14216.
[5] 2020. https://github.com/nhibernate/nhibernate-core/issues/2552.
[6] 2020. https://github.com/hibernate/hibernate-orm/pull/3590.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://issues.apache.org/jira/browse/LUCENE-7894
https://issues.apache.org/jira/browse/LUCENE-8175
https://issues.apache.org/jira/browse/LUCENE-8755
https://hibernate.atlassian.net/browse/HHH-14216
https://github.com/nhibernate/nhibernate-core/issues/2552
https://github.com/hibernate/hibernate-orm/pull/3590

Understanding Mirror Bugs in Multiple-Language Projects 23

[7] 2020. https://github.com/nhibernate/nhibernate-core/pull/2576.
[8] 2020. https://logging.apache.org/log4net/.
[9] 2020. https://github.com/NetTopologySuite/NetTopologySuite/issues/380.
[10] 2021. https://github.com/NetTopologySuite/NetTopologySuite/commit/60eed6b2f2b5cfcf01fcc07fdb0cdac40ee44702.
[11] 2021. https://issues.apache.org/jira/browse/LUCENE-9661.
[12] 2021. https://github.com/NetTopologySuite/NetTopologySuite/issues/567.
[13] 2021. https://issues.apache.org/jira/browse/LUCENE-10118.
[14] 2021. https://issues.apache.org/jira/browse/LUCENE-10118.
[15] 2021. https://issues.apache.org/jira/browse/LUCENE-10042.
[16] 2021. https://github.com/apache/lucenenet/issues/492.
[17] 2022. https://locationtech.github.io/jts/.
[18] 2022. https://github.com/NetTopologySuite/NetTopologySuite.
[19] 2022. http://lucenenet.apache.org/.
[20] 2022. https://nhibernate.info/.
[21] 2022. https://hibernate.org/orm/.
[22] 2022. https://lucene.apache.org/.
[23] 2022. https://logging.apache.org/log4j/2.x/.
[24] 2022. https://issues.apache.org/jira.
[25] 2022. https://github.com/locationtech/jts/issues/827.
[26] 2022. https://issues.apache.org/jira/browse/LUCENE-10401.
[27] 2022. https://gradle.org/.
[28] 2022. https://issues.apache.org/jira/browse/LUCENE-10598.
[29] 2022. https://github.com/locationtech/jts/issues/919.
[30] 2022. https://github.com/apache/lucene-solr/pull/824/commits/ccab563122ca33860e0af759acf90b711ba502be.
[31] 2022. https://github.com/apache/lucene-solr/pull/824/commits/3798f3625320877d3085555237983308e113bc57.
[32] 2022. https://github.com/apache/lucenenet/issues/644.
[33] 2022. https://github.com/apache/lucenenet/issues/738.
[34] 2022. Java Language Specifications. https://docs.oracle.com/javase/specs/jls/se18/html/jls-12.html#jls-12.4.
[35] 2024. https://42matters.com.
[36] 2024. https://www.linkedin.com.
[37] 2024. https://42matters.com/how-many-american-mobile-apps-are-available-on-both-ios-and-android.
[38] 2024. https://github.com/apache/lucenenet/issues/964.
[39] 2024. https://github.com/dongle-the-gadget/TestLucene.
[40] 2024. https://nhibernate.jira.com/browse/NH-2011.
[41] 2024. https://github.com/hibernate/hibernate-orm/pull/5230/files.
[42] 2024. https://nhibernate.jira.com/browse/NH-3931.
[43] Pragya Agarwal and Arun Prakash Agrawal. 2014. Fault-localization techniques for software systems: a literature

review. ACM SIGSOFT Software Engineering Notes 39, 5 (2014), 1–8.
[44] Farouq Al-Omari, Iman Keivanloo, Chanchal K. Roy, and Juergen Rilling. 2012. Detecting Clones Across Microsoft

.NET Programming Languages. In Proc. WCRE. 405–414.
[45] Wajdi Aljedaani, Meiyappan Nagappan, Bram Adams, and Michael Godfrey. 2019. A comparison of bugs across the

ios and android platforms of two open source cross platform browser apps. In Proc. MOBILESoft. 76–86.
[46] Aylton Almeida, Laerte Xavier, and Marco Tulio Valente. 2024. Automatic Library Migration Using Large Language

Models: First Results. In Proc. ESEM. 427–433.
[47] Giuliano Antoniol, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta. 2002. Analyzing cloning evolution in

the linux kernel. Information and Software Technology 44, 13 (2002), 755–765.
[48] J. Anvik, L. Hiew, and G.C. Murphy. 2006. Who should fix this bug?. In Proc. ICSE. 361–370.
[49] Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul Premraj, and Thomas Zimmermann. 2008.

What makes a good bug report?. In Proc. ESEC/FSE. 308–318.
[50] Nicolas Bettenburg, Rahul Premraj, Thomas Zimmermann, and Sunghun Kim. 2008. Duplicate bug reports considered

harmful? really?. In Proc. ICSM. 337–345.
[51] Pamela Bhattacharya, Liudmila Ulanova, Iulian Neamtiu, and Sai Charan Koduru. 2013. An empirical analysis of bug

reports and bug fixing in open source android apps. In Proc. CSMR. 133–143.
[52] Nghi DQ Bui, Yijun Yu, and Lingxiao Jiang. 2019. SAR: learning cross-language API mappings with little knowledge.

In Proc. ESEC/FSE. 796–806.
[53] Partha Chakraborty, Mahmoud Alfadel, and Meiyappan Nagappan. 2024. BLAZE: Cross-Language and Cross-Project

Bug Localization via Dynamic Chunking and Hard Example Learning. arXiv preprint arXiv:2407.17631 (2024).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://github.com/nhibernate/nhibernate-core/pull/2576
https://logging.apache.org/log4net/
https://github.com/NetTopologySuite/NetTopologySuite/issues/380
https://github.com/NetTopologySuite/NetTopologySuite/commit/60eed6b2f2b5cfcf01fcc07fdb0cdac40ee44702
https://issues.apache.org/jira/browse/LUCENE-9661
https://github.com/NetTopologySuite/NetTopologySuite/issues/567
https://issues.apache.org/jira/browse/LUCENE-10118
https://issues.apache.org/jira/browse/LUCENE-10118
https://issues.apache.org/jira/browse/LUCENE-10042
https://github.com/apache/lucenenet/issues/492
https://locationtech.github.io/jts/
https://github.com/NetTopologySuite/NetTopologySuite
http://lucenenet.apache.org/
https://nhibernate.info/
https://hibernate.org/orm/
https://lucene.apache.org/
https://logging.apache.org/log4j/2.x/
https://issues.apache.org/jira
https://github.com/locationtech/jts/issues/827
https://issues.apache.org/jira/browse/LUCENE-10401
https://gradle.org/
https://issues.apache.org/jira/browse/LUCENE-10598
https://github.com/locationtech/jts/issues/919
https://github.com/apache/lucene-solr/pull/824/commits/ccab563122ca33860e0af759acf90b711ba502be
https://github.com/apache/lucene-solr/pull/824/commits/3798f3625320877d3085555237983308e113bc57
https://github.com/apache/lucenenet/issues/644
https://github.com/apache/lucenenet/issues/738
https://docs.oracle.com/javase/specs/jls/se18/html/jls-12.html#jls-12.4
https://42matters.com
https://www.linkedin.com
https://42matters.com/how-many-american-mobile-apps-are-available-on-both-ios-and-android
https://github.com/apache/lucenenet/issues/964
https://github.com/dongle-the-gadget/TestLucene
https://nhibernate.jira.com/browse/NH-2011
https://github.com/hibernate/hibernate-orm/pull/5230/files
https://nhibernate.jira.com/browse/NH-3931

24 Ye Tang, Honghao Chen, Zhixing He, and Hao Zhong

[54] Chunyang Chen, Zhenchang Xing, Yang Liu, and Kent Ong Long Xiong. 2019. Mining likely analogical apis across
third-party libraries via large-scale unsupervised api semantics embedding. IEEE Transactions on Software Engineering
47, 3 (2019), 432–447.

[55] Honghao Chen, Ye Tang, and Hao Zhong. 2024. An Empirical Study on Cross-language Clone Bugs. In Proc. ICSE.
280–281.

[56] Xiao Cheng, Zhiming Peng, Lingxiao Jiang, Hao Zhong, Haibo Yu, and Jianjun Zhao. 2016. Mining revision histories
to detect cross-language clones without intermediates. In Proc. ASE. 696–701.

[57] Zhen Yu Ding and Claire Le Goues. 2021. An empirical study of oss-fuzz bugs. In Proc. MSR. 131–142.
[58] Jan Eberhardt, Samuel Steffen, Veselin Raychev, and Martin Vechev. 2019. Unsupervised learning of API aliasing

specifications. In Proc. PLDI. 745–759.
[59] Chiara Francalanci and Francesco Merlo. 2008. Empirical analysis of the bug fixing process in open source projects.

In Proc. OSS. 187–196.
[60] Anjali Goyal and Neetu Sardana. 2019. An empirical study of non-reproducible bugs. International Journal of System

Assurance Engineering and Management 10 (2019), 1186–1220.
[61] Xiaodong Gu, Hongyu Zhang, Dongmei Zhang, and Sunghun Kim. 2017. DeepAM: Migrate APIs with Multi-modal

Sequence to Sequence Learning. In Proc. IJCAI. 3675–3681.
[62] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and BrendanMurphy. 2010. Characterizing and predicting

which bugs get fixed: an empirical study of Microsoft Windows. In Proc. ICSE. 495–504.
[63] Philip J Guo, Thomas Zimmermann, Nachiappan Nagappan, and Brendan Murphy. 2011. Not my bug! and other

reasons for software bug report reassignments. In Proc. CSCW. 395–404.
[64] Yoshiki Higo, Shinpei Hayashi, Hideaki Hata, and Meiyappan Nagappan. 2020. Ammonia: an approach for deriving

project-specific bug patterns. Empirical Software Engineering 25, 3 (2020), 1951–1979.
[65] Judith F. Islam, Manishankar Mondal, and Chanchal K. Roy. 2016. Bug Replication in Code Clones: An Empirical

Study. In Proc. SANER. 68–78.
[66] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. 2014. Phrase-based statistical translation of programming

languages. In Proc. SPLASH. 173–184.
[67] Miryung Kim, Vibha Sazawal, David Notkin, and Gail Murphy. 2005. An empirical study of code clone genealogies.

In Proc. ESEC/FSE. 187–196.
[68] Sunghun Kim, Kai Pan, and EE James Whitehead Jr. 2006. Memories of bug fixes. In Proc. FSE. 35–45.
[69] Nicholas A. Kraft, Brandon W. Bonds, and Randy K. Smith. 2008. Cross-language Clone Detection. In Proc. SEKE.

54–59.
[70] K. Krippendorff. 2011. Computing Krippendorff’s Alpha-Reliability. (2011).
[71] Zexuan Li and Hao Zhong. 2021. An empirical study on obsolete issue reports. In Proc. ASE. 1317–1321.
[72] Guangtai Liang, Jian Wang, Shaochun Li, and Rong Chang. 2014. Patbugs: A pattern-based bug detector for cross-

platform mobile applications. In Proc. MS. 84–91.
[73] Zhongpeng Lin, Fengdi Shu, Ye Yang, Chenyong Hu, and Qing Wang. 2009. An empirical study on bug assignment

automation using Chinese bug data. In Proc. ESEM. 451–455.
[74] Kui Liu, Anil Koyuncu, Dongsun Kim, and Tegawendé F Bissyandé. 2019. TBar: Revisiting template-based automated

program repair. In Proc. ISSTA. 31–42.
[75] Matias Martinez and Sylvain Lecomte. 2017. Towards the quality improvement of cross-platform mobile applications.

In Proc. MOBILESoft. 184–188.
[76] Manishankar Mondal, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. 2019. An empirical study on bug

propagation through code cloning. J. Syst. Softw. 158 (2019).
[77] Kawser Wazed Nafi, Tonny Shekha Kar, Banani Roy, Chanchal K. Roy, and Kevin A. Schneider. 2019. CLCDSA: Cross

Language Code Clone Detection using Syntactical Features and API Documentation. In Proc. ASE. 1026–1037.
[78] Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. 2014. Statistical learning approach

for mining API usage mappings for code migration. In Proc. ASE. 457–468.
[79] Trong Duc Nguyen, Anh Tuan Nguyen, Hung Dang Phan, and Tien N Nguyen. 2017. Exploring API embedding for

API usages and applications. In Proc. ICSE. 438–449.
[80] Tung Thanh Nguyen, Hoan Anh Nguyen, Nam H Pham, Jafar Al-Kofahi, and Tien N Nguyen. 2010. Recurring bug

fixes in object-oriented programs. In Proc. ICSE. 315–324.
[81] Anh Tuan Nguynguyenen, Tung Thanh Nguyen, and Tien N Nguyen. 2013. Lexical statistical machine translation for

language migration. In Proc. ESEC/FSE. 651–654.
[82] Lawton Nichols, Mehmet Emre, and Ben Hardekopf. 2019. Structural and nominal cross-language clone detection. In

Proc. FASE. 247–263.
[83] Jeremy R Pate, Robert Tairas, and Nicholas A Kraft. 2013. Clone evolution: a systematic review. Journal of software:

Evolution and Process 25, 3 (2013), 261–283.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

Understanding Mirror Bugs in Multiple-Language Projects 25

[84] Daniel Perez and Shigeru Chiba. 2019. Cross-language clone detection by learning over abstract syntax trees. In Proc.
MSR. 518–528.

[85] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test cases from ios to android. In Proc. ISSTA.
284–295.

[86] Mohammad Masudur Rahman, Foutse Khomh, and Marco Castelluccio. 2022. Works for Me! Cannot Reproduce - A
Large Scale Empirical Study of Non-reproducible Bugs. Empir. Softw. Eng. 27, 5 (2022), 111.

[87] Dhavleesh Rattan, Rajesh Bhatia, andManinder Singh. 2013. Software clone detection: A systematic review. Information
and Software Technology 55, 7 (2013), 1165–1199.

[88] Xiaobing Sun, Tianchi Zhou, Gengjie Li, Jiajun Hu, Hui Yang, and Bin Li. 2017. An empirical study on real bugs for
machine learning programs. In Proc. APSEC. 348–357.

[89] Florian Tambon, Amin Nikanjam, Le An, Foutse Khomh, and Giuliano Antoniol. 2024. Silent bugs in deep learning
frameworks: an empirical study of keras and tensorflow. Empirical Software Engineering 29, 1 (2024), 10.

[90] Chenning Tao, Qi Zhan, Xing Hu, and Xin Xia. 2022. C4: Contrastive cross-language code clone detection. In Proc.
ICPC. 413–424.

[91] Tijana Vislavski, Gordana Rakić, Nicolás Cardozo, and Zoran Budimac. 2018. LICCA: A tool for cross-language clone
detection. In Proc. SANER. 512–516.

[92] Yilin Wang, Xiangping Chen, Yuan Huang, Hao-Nan Zhu, and Jing Bian. 2022. An Empirical Study on Real Bug Fixes
in Smart Contracts Projects. CoRR abs/2210.11990 (2022).

[93] W Eric Wong, Vidroha Debroy, Adithya Surampudi, HyeonJeong Kim, and Michael F Siok. 2010. Recent catastrophic
accidents: Investigating how software was responsible. In Proc. SSIRI. 14–22.

[94] W Eric Wong, Xuelin Li, and Philip A Laplante. 2017. Be more familiar with our enemies and pave the way forward:
A review of the roles bugs played in software failures. Journal of Systems and Software 133 (2017), 68–94.

[95] Xin Xia, David Lo, Xingen Wang, Chenyi Zhang, and Xinyu Wang. 2014. Cross-language bug localization. In Proc.
ICPC. 275–278.

[96] Xin Xia, David Lo, Ming Wen, Emad Shihab, and Bo Zhou. 2014. An empirical study of bug report field reassignment.
In Proc. CSMR-WCRE. 174–183.

[97] Shuai Xie, Foutse Khomh, Ying Zou, and Iman Keivanloo. 2014. An empirical study on the fault-proneness of clone
migration in clone genealogies. In Proc. CSMR-WCRE. 94–103.

[98] Xiao Xuan, Xiaoqiong Zhao, Ye Wang, and Shanping Li. 2015. An empirical study of bugs in industrial financial
systems. IEICE TRANSACTIONS on Information and Systems 98, 12 (2015), 2322–2327.

[99] Mohammad A. Yahya and Dae-Kyoo Kim. 2022. Cross-Language Source Code Clone Detection Using Deep Learning
with InferCode. CoRR abs/2205.04913 (2022). https://doi.org/10.48550/arXiv.2205.04913

[100] Aoyang Yan, Hao Zhong, Daohan Song, and Li Jia. 2023. How do programmers fix bugs as workarounds? An empirical
study on Apache projects. Empirical Software Engineering 28, 4 (2023), 96.

[101] Haoran Yang, Yu Nong, Tao Zhang, Xiapu Luo, and Haipeng Cai. 2024. Learning to Detect and Localize Multilingual
Bugs. Proceedings of the ACM on Software Engineering 1, FSE (2024), 2190–2213.

[102] Yilin Yang, Tianxing He, Zhilong Xia, and Yang Feng. 2022. A comprehensive empirical study on bug characteristics
of deep learning frameworks. Information and Software Technology 151 (2022), 107004.

[103] Ruru Yue, Na Meng, and Qianxiang Wang. 2017. A characterization study of repeated bug fixes. In Proc. ICSME.
422–432.

[104] Feng Zhang, Foutse Khomh, Ying Zou, and Ahmed E Hassan. 2012. An empirical study on factors impacting bug
fixing time. In Proc. WCRE. 225–234.

[105] Hongyu Zhang, Liang Gong, and Steve Versteeg. 2013. Predicting bug-fixing time: an empirical study of commercial
software projects. In Proc. ICSE. 1042–1051.

[106] Yuhao Zhang, Yifan Chen, Shing-Chi Cheung, Yingfei Xiong, and Lu Zhang. 2018. An empirical study on tensorflow
program bugs. In Proc. ISSTA. 129–140.

[107] Hao Zhong, Suresh Thummalapenta, and Tao Xie. 2013. Exposing behavioral differences in cross-language API
mapping relations. In Proc. ETAPS/FASE. 130–145.

[108] Hao Zhong, Suresh Thummalapenta, Tao Xie, Lu Zhang, and Qing Wang. 2010. Mining API mapping for language
migration. In Proc. ICSE. 195–204.

[109] Hao Zhong, Xiaoyin Wang, and Hong Mei. 2022. Inferring bug signatures to detect real bugs. IEEE Transactions on
Software Engineering 48, 2 (2022), 571–584.

[110] Bo Zhou, Iulian Neamtiu, and Rajiv Gupta. 2015. A cross-platform analysis of bugs and bug-fixing in open source
projects: Desktop vs. android vs. ios. In Proc. EASE. 1–10.

[111] Thomas Zimmermann, Rahul Premraj, Nicolas Bettenburg, Sascha Just, Adrian Schroter, and Cathrin Weiss. 2010.
What makes a good bug report? IEEE Transactions on Software Engineering 36, 5 (2010), 618–643.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2024.

https://doi.org/10.48550/arXiv.2205.04913

	Abstract
	1 Introduction
	2 Example
	3 Methodology
	3.1 Dataset
	3.2 Analysis Overview

	4 Empirical Result
	4.1 RQ1. Overall Distribution
	4.2 RQ2. Fixed or Unfixed
	4.3 RQ3. One-sided Bug

	5 The Significance of Our Finding
	6 Repairing Mirror Bug
	6.1 RQ4. Repairing New Mirror Bugs
	6.2 RQ5. Challenge of Automation

	7 Threat to the validity
	8 Related Work
	9 Conclusion and Future Work
	References

