
TestMig: Migrating GUI Test Cases from iOS to Android

Xue Qin
xue.qin@utsa.edu

University of Texas at San Antonio
TX, USA

Hao Zhong
zhonghao@sjtu.edu.cn

Shanghai Jiao Tong University
Shanghai, China

Xiaoyin Wang
xiaoyin.wang@utsa.edu

University of Texas at San Antonio
TX, USA

ABSTRACT

Nowadays, Apple iOS and Android are two most popular
platforms for mobile applications. To attract more users,
many software companies and organizations are migrating
their applications from one platform to the other, and besides
source files, they also need to migrate their GUI tests. The
migration of GUI tests is tedious and difficult to be auto-
mated, since two platforms have subtle differences and there
are often few or even no migrated GUI tests for learning.
To address the problem, in this paper, we propose a novel
approach, TestMig, that migrates GUI tests from iOS to
Android, without any migrated code samples. Specifically,
TestMig first executes the GUI tests of the iOS version, and
records their GUI event sequences. Guided by the iOS GUI
events, TestMig explores the Android version of the applica-
tion to generate the corresponding Android event sequences.
We conducted an evaluation on five well known mobile appli-
cations: 2048, SimpleNote, Wire, Wikipedia, and WordPress.
The results show that, on average, TestMig correctly converts
80.2% of recorded iOS UI events to Android UI events and
have them successfully executed, and our migrated Android
test cases achieve similar statement coverage compared with
the original iOS test cases (59.7% vs 60.4%).

CCS CONCEPTS

• Software and its engineering → Software testing
and debugging;

KEYWORDS

Test Migration, Mobile Apps, GUI Testing

ACM Reference format:
Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. TestMig: Migrating
GUI Test Cases from iOS to Android. In Proceedings of 28th Inter-

national Symposium on Software Testing and Analysis, Beijing,

China, July 2017 (ISSTA’19), 13 pages.
https://doi.org/10.1145/3092703.3092725

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

ISSTA’19, July 2017, Beijing, China

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5076-1/17/07. . . $15.00
https://doi.org/10.1145/3092703.3092725

1 INTRODUCTION

Nowadays, a lot of mobile software producers are developing
their apps for both Apple iOS and Android. Among the top
10 (July 1𝑠𝑡, 2017) apps that are not provided by Google [8],
8 apps have their corresponding iOS versions in the Apple
Store. The only two exceptions are Clean Master [4] (a system
management tool) and Kika Emoji Keyboard [11] (a keyboard
app for inputting emotional symbols), which are closely tied
to the underlying system. While Android has a market share
over 80%, iOS devices and apps are widely reported [2] to have
a much higher profit margin. Due to this long-term evenly
matched competition between Apple iOS and Android, it is
important for software producers to target both platforms
for broader user groups.

The iOS and Android versions of an app are often not
developed and released simultaneously. Among the 8 top
apps mentioned above with both iOS and Android versions,
5 apps (Snapchat [14], Pandora [13], Instagram [9], Crossy
Road [5], and WhatsApp [18]) have their iOS versions re-
leased first, averagely 9 months before their Android versions
are released. The remaining 3 apps (FaceBook [6], FaceBook
Messenger [7], and Spotify [15]) have their iOS versions and
Android versions released at the same time. FlappyBird [1],
one of the most successful mobile application developed by a
personal developer, has its iOS version released in May 2013,
and its Android version released 7 months later. Some com-
mon reasons for the asynchronous development may include
the strategical emphasis on users from one platform, the lack
of resources or expertise, and limited time.

Due to the above facts, the migration of software cross the
two platforms becomes a common and important task in mo-
bile software development, especially from iOS to Android. In
the literature, many approaches have been proposed to sup-
port cross-platform compilation and execution of apps, such
as Cordova [3], and Unity3D [17]. However, cross-platform
execution is often too inefficient for real-world usage sce-
narios [3]. Furthermore, while developers can benefit much
from code migration tools, the fully automation of behavior-
preserving cross-platform code migration is still far from
being practical [49]. Therefore, in the practice of code mi-
gration across the two platforms, tedious and error-prone
manual effort is still unavoidable, and testing is necessary to
ensure the quality of migrated apps.

Automatic test generation [23, 42], although solving a more
general problem, suffers from various issues (e.g., how to han-
dle logins and generate valid user inputs), and often cannot
achieve sufficient coverage [31]. In this paper, to reduce the
testing effort in migrating applications, we propose a novel
approach, TestMig, to automatically generate GUI tests for

https://doi.org/10.1145/3092703.3092725
https://doi.org/10.1145/3092703.3092725

ISSTA’19, July 2017, Beijing, China Xue Qin, Hao Zhong, and Xiaoyin Wang

an application’s Android version, when its iOS GUI tests are
available. The two key insights behind TestMig are: (1) to
facilitate users, iOS and Android versions of the same appli-
cation typically have similar GUI structure and interaction
patterns (also supported by Joorabchi et al.’s study [36]), so
event sequences in an application’s iOS GUI tests can be large-
ly reused for its Android version; and (2) iOS GUI tests may
contain valuable knowledge such as testing accounts for login
and meaningful user input data, which helps to resolve well-
known limitations in automatic test generation techniques.
The idea of migrating GUI tests is general and applies to
both directions of test migration, we implement TestMig to
migrate iOS GUI tests to Android GUI tests because (1) facts
mentioned above show that iOS versions are often developed
earlier, and (2) there are more open-source automatic GUI
explorers (e.g., UIAutomator [16] and MonkeyRunner [12])
for Android, facilitating the implementation of TestMig. A
GUI test case contains two parts: an event sequence and its
test oracles. In our paper, we consider the migration of only
the event sequences, and leave the migration of test oracles
for future work. The major complication of migrating test
oracles is that wrongly migrated test oracles may cause false
positives in testing, which we will discuss in Section 5. Com-
pared with unit tests, GUI test oracles sometimes require
manual inspection, and existing studies [23, 42] also show
that some oracles (e.g., a program shall not crash) do not
need to be migrated.

The basic design of TestMig contains three components: the
iOS test recorder that records the iOS GUI event sequences
triggered by iOS GUI tests, the converter that converts iOS
GUI events to Android GUI events, and the explorer that
explores the Android version under the guidance of the con-
verter. For each iOS test case to be migrated, the converter
and explorer will take the test case’s recorded iOS event
sequence as input. During the exploration of the Android ver-
sion, at each GUI state, the explorer sends to the converter a
list of Android GUI events that can be triggered at the state,
and the converter will tell explorer which event to trigger
based on the remaining iOS GUI events in the iOS event se-
quence. Although conceptually TestMig just translates event
sequences from iOS to Android, the test migration process
faces the following two major technical challenges.

TC1: GUI design changes. Although application ver-
sions on different platforms shall have similar functionalities,
their GUIs often have subtle differences, since programmers
often change their applications (e.g., replacing tabs in iOS to
action bars in Android) to satisfy users’ habits. As a result,
some mappings between GUI events are not one-to-one (e.g.,
as shown in Figure 1, iOS users need just to tap once on
the tab “details”, when they fetch the product detail, but
Android users need to tap on the action bar and then tap
the item “details” from the drop-down list). In such cases,
our converter needs to consider all different compositions of
follow-up GUI events to decide the correct event to trigger.

TC2: mapping of GUI controls. To migrate test cases
from one platform to the other, mappings between GUI con-
trols in two application versions are necessary but unavailable.

Traditional code migration techniques [49, 59, 60] between
platforms and languages must collect many cross-platform
applications as their training data, when they mine map-
pings between API methods. Although migrated applications
present instances for API mappings, they rarely present the
mappings of GUI controls, which are required to migrate
GUI tests. As a result, we have to propose an approach that
does not rely on migrated code.

To overcome TC1, TestMig’s converter leverages the se-
quence transduction technique [47] during the guidance of
exploration. Based on a converting probability matrix (called
𝑡𝑟𝑎𝑛𝑠𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑚𝑜𝑑𝑒𝑙) between elements (called 𝑤𝑜𝑟𝑑𝑠) in two
domains, the sequence transduction technique synthesizes the
optimized sequence in the target domain with overall high-
est converting probability, while considering many-to-many
mapping up to the maximal size of 𝑤𝑜𝑟𝑑. In our application
scenario, we can deem iOS GUI events and Android GUI
events as two domains, and the remaining iOS GUI event
sequences as element sequences. However, the transduction
model still relies on predefined conversion probability be-
tween UI events, typically acquired through training which is
infeasible as mentioned in TC2. To overcome TC2, TestMig
uses similarity between labels of GUI controls to estimate
converting probability between GUI events. To sum up, this
paper makes the following main contributions.

∙ A study of the mapping between the GUI structures
and events of iOS and Android.
∙ A novel approach to automate the migration from iOS
GUI tests to Android GUI tests.
∙ An evaluation on five popular open source mobile ap-
plications that have both iOS and Android versions.
The results show that on average our approach is able
to successfully migrate 80.2% of the recorded iOS UI
events to Android UI events, and our migrated test
cases achieved a similar test coverage as the original
test cases (59.7% vs 60.4%).

2 MOTIVATION

As the two most popular mobile platforms, the UI frameworks
of Android and iOS share lots of common features. First,
although referred to with different names, both UI frameworks
have a three-level GUI hierarchy: a screen containing various
GUI controls that users can interact with (called a scene in
iOS, and an activity in Android), a group of GUI controls
forming a functional area in the window (called a UIView

in iOS, and a ViewGroup in Android), a basic GUI control
(called a UIControl in iOS, and a View in Android). Here, in
the framework design, the two lower levels of UI elements
are instances of the same abstract class, i.e., UIControl is a
subclass of UIView in iOS, and ViewGroup is a subclass of View
in Android. Second, iOS and Android UI frameworks share
a similar group of basic GUI controls (e.g., check boxes in
Android and switches in iOS), and mobile style UI controls
(e.g., date pickers, and sliders). Although naming is slightly
different, it does not need much manual effort to construct a
mapping between the GUI control types of two frameworks

TestMig: Migrating GUI Test Cases from iOS to Android ISSTA’19, July 2017, Beijing, China

Figure 1: GUI difference between iOS and Android

(i.e., 64 types in Android and 36 types in iOS). As most
UI frameworks follow similar patterns, such a mapping can
also be easily inferred manually if we want to generalize our
technique to other pairs of GUI frameworks.

Despite the commonality in the high level GUI model,
there are delicate differences between iOS and Android GUI
frameworks. First, Android supports the global return key,
and supports a context menu once with the global menu key
and now with the menu key in the action bar. By contrast,
these keys are not supported in iOS, so iOS apps tend to
define and use their own UI controls to navigate backward,
and design their own UI views for context menus. Second,
iOS apps and Android apps have different UI design styles.
For example, while iOS apps typically use tabs at the bottom
of the screen to switch between different views in one screen,
Android apps often use a drop-down menu at the top corners.
Note that, developers have the motivation to adapt their UI
design to target platform style, so that their app can fit well
with the user’s habit in that platform.

Figure 1 shows two screen shots from the iOS version
(left) and the Android version (right) of WordPress. The two
screens are both reached by starting the app, and clicking on
the “reader” button (the second icon from left in the bottom
tabs of the iOS version, and the second icon from left in the
top tabs of the Android version). However, they look very
different. For the reading feature, the iOS version organizes
the four sub-features (“followed sites”, “discover”, “search”,
“posts I like”) in a list of views, and the user can click on the
specific item in the list to reach the sub-feature. By contrast,
the Android version directly shows the sub-feature of discover,
and the user can switch to other sub-features by clicking on
the items in the drop-down list (top-left corner of the screen).
Furthermore, the iOS version has a “Add a Tag” feature
which is not supported by the Android version.

As a result, if an iOS user wants to reach the “discover”
sub-feature, she needs to trigger two events: clicking on the
“reader” icon, and clicking on the list item “Discover”, but an
Android user needs to trigger only one event: clicking on the
“reader” icon. However, for the other three features (“followed
sites”, “search”, and “posts I like ”), an iOS user still just
needs to trigger two events, but an Android user needs to
trigger three events: clicking on the “reader” icon, clicking on
the drop-down menu in the top-left, and click on the specific
menu item. From the two screen shots, we have the following
observations.

∙ The iOS and Android versions of an app have similar
features and sub-features, and they organize features
in a similar way. Therefore, it is feasible to transform
an iOS event trace to an Android event sequence.
∙ The GUI views / controls correspond to the same
feature / sub-feature are very similar. For example,
the “reader” icons in both versions look the same, and
the list items / menu items corresponding to the four
sub-features also have the same label.
∙ Due to various issues, to fulfill a certain task, it can
take different steps in one version compared to the
other. Therefore, although the mappings of the GUI
views and controls are often one-to-one, the mappings
between GUI events are typically many-to-many.

Based on the above observations, TestMig records the
event trace in the iOS version, constructs mappings between
GUI controls, and uses sequence transduction to construct
the many-to-many mapping on GUI events.

3 APPROACH

In this section, we introduce the design and structure of
TestMig, with its overview presented in Figure 2. The two
inputs of TestMig are the iOS app with GUI tests, and
the Android version of the apps. The output of TestMig is
migrated Android GUI tests. The migration process consists
of the following three phases. In the first phase (recording),
TestMig records the iOS UI event traces during the execution
of iOS GUI tests. In the second phase (exploration), for each
recorded iOS UI event trace 𝑡𝑐𝑒, TestMig explores the Android
version of the app with the guidance of sequence converter
which takes 𝑡𝑐𝑒 as its input. In the third phase (generation),
TestMig leverages Android Studio to generate Android GUI
tests from the Android GUI event trace performed during
exploration. The first and third phases are based on existing
tools and are thus straightforward, so the core of TestMig is
the exploration phase.

At the beginning of the exploration phase, the explorer
starts the app. Then at each GUI state, the explorer analyzes
the runtime GUI hierarchy to collect a set of available GUI
events and send them to the sequence converter. Then, the
sequence converter refers to the available GUI events, the iOS
GUI event trace, and a static event flow graph to determine
which event should be triggered next. Note that the static
event flow graph is generated by GATOR [53] to help TestMig
find GUI events available in future for many-to-many event

ISSTA’19, July 2017, Beijing, China Xue Qin, Hao Zhong, and Xiaoyin Wang

iOS Test

Recorder

iOS GUI Event

Traces

Input: iOS GUI

Tests

Input:

Android App

Gator

Sequence

Converter

Event Flow

Graph / GUI

Hierarchy

Runtime

Explorer

Selected

GUI Event

Android

Studio

Output: Android

GUI Tests

Android GUI

Event Traces

Available

GUI Events

Figure 2: Approach Overview

mapping. The nodes in the event flow graph are windows (e.g.,
activities and dialog windows), and the edges are GUI events
causing transitions between nodes. The sequence converter
also needs to determine whether zero, one or multiple events
should be consumed from the head of iOS GUI event trace.
This process is iteratively performed until (1) the iOS GUI
event trace is consumed up, or (2) the exploration cannot
continue (i.e., the explorer goes outside the app or no GUI
events are available at the current GUI state). The sequence
converter is the essential component of TestMig. At each
GUI state, its basic event selection mechanism synthesizes
an Android GUI event, which is the most similar one to the
prefix of the remaining iOS GUI event sequence. However, as
described in the motivation example, the mapping of events
is often not one-to-one. To handle the problem, TestMig
considers more than one event that appears at the top of
the remaining iOS GUi event sequences, and looks further
into more than one Android GUI event that can be triggered
after the next event. We refer to the number of events to be
considered in one mapping as the transduction length 𝑤.

Algorithm 1 Exploration Algorithm

1: procedure Convert(𝐼,𝐺,𝑤)
2: Explorer.startApp()
3: while 𝐼 is not Empty do
4: 𝐸 ← Explorer.getAvailableEvents()
5: 𝑒𝑣𝑡, 𝐼 ′ ← SELECTEVENT(𝐼,𝐺,𝐸,𝑤) ◁ Select

the best event 𝑒𝑣𝑡, 𝐼 ′ is the remaining iOS event trace
after 𝑒𝑣𝑡 is triggered

6: if 𝑒𝑣𝑡 is NULL then
7: break ◁ Stop Conversion if cannot proceed

8: end if
9: 𝐺′ ← Explorer.trigger(𝑒𝑣𝑡)

10: 𝐺← 𝐺′, 𝐼 ← 𝐼 ′

11: end while
12: end procedure

3.1 Runtime Exploration

Our exploration algorithm is presented in Algorithm 1. The
three inputs are 𝐼, the recorded iOS event trace, 𝐺, the
static event flow graph generated by GATOR, and 𝑤, the
transduction length. At the beginning of the conversion, the
explorer will start the app (Line 2). Here, “Explorer” refers
to our explorer component, which uses UIAutomator [16] to
communicate with the Android app. Then, while 𝐼 is not
consumed up, the explorer will fetch the set of available GUI
events at current GUI state (Line 4), and select a best event
to trigger with the 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝑉 𝐸𝑁𝑇 procedure (Line 5).
𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝑉 𝐸𝑁𝑇 will also return the remaining iOS GUI
event sequence 𝐼 ′ by removing the mapped iOS GUI events
from the head of 𝐼. Then TestMig will trigger 𝑒𝑣𝑡. Note that
when triggering 𝑒𝑣𝑡, TestMig is able to locate the actual set of
available events after 𝑒𝑣𝑡, so it will refine the estimated event
flow graph 𝐺 to 𝐺′ based on the information to remove false
positives in 𝐺 (Lines 9 and 10). In addition, it will update 𝐼
as 𝐼 ′ at the end of the iteration (Line 10), and this process
consumes a subsequence of the iOS GUI event sequence. In
any case when 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝑉 𝐸𝑁𝑇 returns NULL (i.e., when
its exploration goes to a dead end or outside the app, the
explorer will return an empty set and 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝑉 𝐸𝑁𝑇
will return NULL). When it happens, TestMig stops the
conversion and reports the migrated sequences (Line 7).

3.2 Event Selection

We present the detailed process of our event selection (i.e.,
the 𝑆𝐸𝐿𝐸𝐶𝑇𝐸𝑉 𝐸𝑁𝑇 procedure) in Algorithm 2. Our basic
idea is to select a pair of iOS GUI event sequence 𝑝𝑟𝑒𝑓𝑖𝑥
and Android GUI event sequence 𝑝𝑎𝑡ℎ (within transduction
length 𝑤) that has the highest similarity (Lines 10-19). Note
that we calculate the similarity based on the transduction
probability in sequence transduction, which will be introduced
in Section 3.3. When calculating the transduction probabil-
ity (Line 13), we will also retrieve the mappings between
events. Then, we return the first event 𝑓𝑖𝑟𝑠𝑡 in the selected
sequence 𝑝𝑎𝑡ℎ, and the updated iOS GUI event sequence 𝐼
with events mapped to 𝑓𝑖𝑟𝑠𝑡 removed (Lines 16 and 20). Be-
fore calculating the similarity, TestMig first collects in 𝑃 all
event sequences in 𝐺 starting with any event in the available
event set 𝐸 within transduction length 𝑤 (Lines 5-8). It then
collects in 𝐻 all prefixes of the remaining iOS GUI event
sequence 𝐼 within transduction length 𝑤 (Line 9). Note that
because Gator does not handle fragments now, it may also
have some false negatives (some actually trigger-able events
are missing from 𝐺), and some events in 𝐸 may not exist in
𝐺. To make sure we consider all events in 𝐸, we add the full
set of 𝐸 into 𝑃 when initializing it (Line 5). Finally, note
that Algorithms 1 and 2 are both conceptual descriptions for
clarity. The performance optimization in implementation is
not reflected. For example, TestMig stores calculated trans-
duction probabilities so that they are not re-calculated in
future event selections.

TestMig: Migrating GUI Test Cases from iOS to Android ISSTA’19, July 2017, Beijing, China

3.3 Transduction Probabilities between
GUI Event Sequences

In the event selection procedure, we need to calculate the
similarity (i.e., the transduction probability) from an arbi-
trary iOS GUI event sequence to an arbitrary Android GUI
event sequence (Line 13 of Algorithm 2). TestMig defines the
similarity matrix of the one-to-one mappings between iOS
GUI events and Android GUI events, and then calculates the
transduction probability between event sequences based on
the similarity matrix.

3.3.1 Similarity between GUI Events. Interchangeable
UI-Control categories. TestMig uses the similarity be-
tween an iOS UI control (𝐶𝑖𝑂𝑆) and an Android UI control
(𝐶𝑑𝑟𝑜𝑖𝑑) to denote the probability of converting an event on
𝐶𝑖𝑂𝑆 to the corresponding event on 𝐶𝑑𝑟𝑜𝑖𝑑. For example, the
similarity between a button 𝐵𝑖𝑂𝑆 and a menu item 𝑀𝑑𝑟𝑜𝑖𝑑

is used to denote the probability of converting a tap event
on 𝐵𝑖𝑂𝑆 to a tap event on 𝑀𝑑𝑟𝑜𝑖𝑑. To make sure a specific
event appears on both UI-controls, TestMig restricts that
the UI-control mapping between UI controls shall accept the
same set of UI events. For example, it is unreasonable to map
a text box to a button, because the button does not accept
input texts.

For the restriction purpose, we define Interchangeable UI-
Control categories as a collection of UI controls which accept
the same set of UI events. For example, a button and a menu
item belongs to the same category, because they both accept
the tap event (also the long tap event). Specifically, TestMig
considers the following four interchangeable UI-control cate-
gories: editables which include text boxes, date pickers, and
number pickers; clickables which include buttons, and menu
items; selectables including check boxes, and drop down lists;
and swipables which include swipe views, and sliders. We
calculate the similarity only for UI controls within an inter-
changeable UI-control category, so if two UI controls belong
to two different categories, their conversion probability is
set as 0. It should be noted that, to make our transduction
model flexible enough for UI design changes, we make the
interchangable UI-control categories rather general.

Similarity Calculation. For each iOS UI control, Test-
Mig calculates its similarity with all the android UI controls
in the same interchangeable UI-Control category. In partic-
ular, TestMig uses UI control attributes, which include
the ID, label, and file names of image resources, to generate
features for similarity calculation. As most IDs, titles and file
names are written in camel names, to make the calculation
more robust, TestMig splits all IDs, titles and file names by
non-alpha-numeral letters, and at capital letters to generate
a list of tokens. Then, its uses these tokens instead of the
original value of the IDs, titles and file names as features.
To differentiate tokens from different information sources, it
adds a header to each token to indicate the token source.
For example, if the ID of a UI control is “inputName”, the
string is split to three features “ID:input” and “ID:Name”,
in which the header “ID:” indicates that the three tokens are
from the ID attribute (not title or file name). After features

Algorithm 2 Event Selection Algorithm

1: procedure SelectEvent(𝐼,𝐺,𝐸,𝑤) ◁
𝐼 is the remaining iOS GUI event sequence, 𝐺 and 𝑤’s
meanings are the same as in Algorithm 1, and 𝐸 is the
set of available events

2: if 𝐸 is empty then
3: return (NULL,NULL)

4: end if
5: 𝑃 ← 𝐸
6: for Each 𝑒 ∈ 𝐸 do
7: 𝑃 ← 𝑃 ∪ GETPATHS(𝐺, 𝑒, 𝑤) ◁ GETPATHS

fetches all paths in 𝐺 starting with 𝑒 with length up to
𝑤

8: end for
9: 𝑝𝑟𝑒𝑓𝑖𝑥← HEAD(𝐼, 𝑤) ◁ HEAD fetches 𝐼’s prefix

with length up to 𝑤
10: 𝑚𝑎𝑥← 0
11: 𝑒𝑣𝑡 𝑟𝑒𝑚𝑎𝑖𝑛← NULL
12: for Each 𝑝𝑎𝑡ℎ ∈ 𝑃 do
13: 𝑚𝑎𝑝, 𝑝𝑟𝑜𝑏← TRANSPROB(𝑝𝑎𝑡ℎ, 𝑝𝑟𝑒𝑓𝑖𝑥)
14: if 𝑝𝑟𝑜𝑏 > 𝑚𝑎𝑥 then
15: 𝑓𝑖𝑟𝑠𝑡← HEAD(𝑝𝑎𝑡ℎ, 1)
16: 𝑒𝑣𝑡 𝑟𝑒𝑚𝑎𝑖𝑛← (𝑓𝑖𝑟𝑠𝑡, 𝐼 −𝑚𝑎𝑝[𝑓𝑖𝑟𝑠𝑡])
17: 𝑚𝑎𝑥← 𝑝𝑟𝑜𝑏

18: end if
19: end for
20: return 𝑒𝑣𝑡 𝑟𝑒𝑚𝑎𝑖𝑛

are generated, TestMig uses the standard 𝑡𝑓 -𝑖𝑑𝑓 formula [19]
to weight each feature, where 𝑡𝑓 is the appearance frequen-
cy of the feature in the attribute, and 𝑖𝑑𝑓 is the inverted
document frequency of the feature (here we consider all UI
control attributes as the whole set of documents). The simi-
larity is calculated with cosine similarity formula based on
the weights.

Empty UI Control. An iOS UI event may not be con-
verted to an Android UI event and vice versa. As described
in Figure 1, this may happen due to different user habits in
iOS and Android. To allow n-to-m mappings (e.g., mapping
a sequence of three iOS GUI events to a sequence of two
Android GUI events), TestMig introduces a special empty UI
control (for both iOS and Android) that can be mapped with
any of the four interchangable UI-control categories. However,
the empty UI control allows only an empty UI event 𝜒, and
the similarity between a UI event and the empty UI event
is defined as a constant 𝑝𝜒. To minimize the side effect of
the empty UI event, we set the similarity from any UI event
to the empty UI event as the minimum positive similarity
among all UI controls.

3.3.2 Sequence Transduction Probability. After calculating
similarities between single GUI events, TestMig calculates the
transduction probability between sequences as their similarity,
with the probabilistic sequence transduction. Probabilistic
sequence transduction [47] is a model that automatically
translates an element sequence from one element space to the

ISSTA’19, July 2017, Beijing, China Xue Qin, Hao Zhong, and Xiaoyin Wang

0 1/2 3

0
1

2 3

Button:

Reader

Button: Me

Button:

Menu

Button:

Reader

Button:

Notifications

Button: My

Likes

List:

Discover Item:

My Likes

 i1 i2 i3

 a1

 a2

 a3

 a4

...

...

Button:

Like

Button:

ctx_Menu

 a5

Item:

Share

 i4
...

...

Figure 3: Selection of the next GUI Action

other. It is widely used in machine translation, speech recog-
nition, bioinformatics and other applications. Consider two
spaces of elements 𝐸 = {𝑒1, 𝑒2, ..., 𝑒𝑀}, 𝐹 = {𝑓1, 𝑓2, ..., 𝑓𝑁},
and a sequence 𝑆 in space 𝐸 (𝑠 = 𝑠1𝑠2...𝑠𝐾 , 𝑠𝑖 ∈ 𝐸). A se-
quence transducer converts 𝑆 to a sequence in space 𝐹 by
finding the sequence 𝑇 = 𝑡1𝑡2...𝑡𝐿, 𝑇𝑖 ∈ 𝐹 with the highest
conversion probability 𝑝(𝑆|𝑇). Specifically, the probability
𝑝(𝑆|𝑇) can be recursively calculated with the formulas below.

𝑃 (𝜖|𝜖) = 1 (1)

𝑃 (𝑆1,𝐾 |𝑇1,𝐿) = (𝑀𝑎𝑥𝐿
𝑖=𝐿−𝑊𝑃 (𝑆1,𝐾−1|𝑇1,𝑖)× 𝑃 (𝑠𝐾 |𝑇𝑖+1,𝐿))

1/𝑀𝑎𝑥(𝐾,𝐿)

(2)

Here, we use 𝑆𝑖,𝑗 to denote the subsequence of any sequence
𝑆 from the 𝑖𝑡ℎ element to the 𝑗𝑡ℎ element. When 𝑖 = 𝑗, 𝑆𝑖,𝑗

denotes a single element 𝑠𝑖, and when 𝑖 = 𝑗 + 1, 𝑆𝑖,𝑗 denotes
an empty sequence 𝜖. 𝑊 is the maximal number of elements
in 𝐹 that a single element in 𝐸 can be converted to (i.e., the
transduction length 𝑤). The basic idea of the Formula 2 is to
split sequence 𝑇 into two parts in different ways and maximize
the probability of converting the first 𝐾 − 1 elements of 𝑆 to
the first part of 𝑇 and converting the 𝐾𝑡ℎ element of 𝑆 to the
second part of 𝑇 . The former probability can be calculated
recursively using Formula 2, until the trivial case in Formula
1 is reached. Finally the value is normalized by the length
of sequences mapped (i.e., 𝑀𝑎𝑥(𝐾,𝐿)), so that the formula
does not bias to shorter mappings. For 𝑃 (𝑠𝐾 |𝑇𝑖+1,𝐿), we
calculate it by inserting empty GUI events 𝜒 before and after
𝑠𝐾 to map the length of 𝑇𝑖+1,𝐿.

3.4 Running Example

This subsection describes how TestMig performs sequence
conversion, with a running example, i.e., the exploration of
WordPress’s GUI as shown in Figure 1. Figure 3 shows a
part of a recorded iOS GUI event sequence 𝐼 (top part) and
the corresponding part of the extracted event flow graph 𝐺
(bottom part). Here we assume the transduction length is 2.

At the beginning of sequence conversion, the remaining
iOS GUI event sequence is the whole sequence, and the
explorer reaches state 0 of the event flow graph after starting
the app. Then the explorer returns three available events
Button:Me, Button:Reader, and Button: Notifications. After
that, the event selection module crops the event graph 𝐺 to
get the paths within length 2 in 𝐺 that starts with one of the

three events. In particular, we get 𝑎1, 𝑎1𝑎4, and 𝑎1𝑎2 starting
with event Button:Reader. Note that we do not list all the
paths in the figure due to space limit. When calculating the
transduction probability with length-2 𝑝𝑟𝑒𝑓𝑖𝑥 𝑖1𝑖2, we can
see that the pair 𝑖1𝑖2 → 𝑎1𝑎4 has the highest probability. So
𝑎1 is triggered, and its mapped iOS GUI event 𝑖1 is consumed.
TestMig reaches state 1.

TestMig tries to convert 𝑖2𝑖3 from state 1, and the cropped
subgraph from 𝐺 includes 𝑎2, 𝑎2𝑎3, but not 𝑎4 because 𝑎4

is a false positive of Gator and is automatically removed as
TestMig finds it to be not trigger-able at state 1. Note that if
Gator does not report 𝑎4 as false positive, TestMig still gets
state 1 because the pair 𝑖1𝑖2 → 𝑎1𝜒 has the second highest
transduction at state 0. Recall that the empty event 𝜒 can be
mapped with any event during sequence transduction. During
sequence transduction, although 𝑖2 cannot be mapped to 𝑎2,
but the sequence 𝜒𝑖2𝑖3 can be mapped to 𝑎2𝑎3𝜒, with 𝑖2
mapped to 𝑎3. So 𝑎2 is triggered but no iOS GUI event is
consumed as 𝑎2 is mapped to 𝜒, and TestMig reaches state 2.
From state 2, pair 𝑖2𝑖3 → 𝑎3𝑎5 has the highest transduction
probability so 𝑎3 is triggered and 𝑖2 is consumed.

To show the power of TestMig on selecting the correct path,
let us assume that 𝑎4 is not a false positive but a trigger-able
event. In such a case, at state 1, 𝑎4 has a higher similarity
with 𝑖2. However, since we perform sequence transduction,

the probability of pair 𝜒𝑖2𝑖3 → 𝑎2𝑎3𝜒 is 𝑃
2/3
𝜒 ≈ 0.13. This

value is comparable with the probability of pair 𝑖2𝑖3 → 𝑎4𝜒,
which is (𝑃𝜒 × 𝑃 (“Posts I Like”, “Like”))1/2 ≈ 0.17, al-
though we will still fail to choose the correct path. However,
when the transduction length becomes 3, the probability
of pair 𝜒𝑖2𝑖3𝑖4 → 𝑎2𝑎3𝑎4𝜒 will be (𝑃 2

𝜒 × 𝑃 (“ctx Menu”,

“Menu”))1/4 ≈ 0.20. This is higher than the probability
of pair 𝑖2𝑖3𝑖4 → 𝑎4𝜒𝜒, which is (𝑃 2

𝜒 × 𝑃 (“Posts I Like”,

“Like”))1/3 ≈ 0.11. So the correct path 𝑎2𝑎3𝑎4 is chosen.

4 EMPIRICAL EVALUATION

To evaluate our approach, we conducted an empirical evalua-
tion on five open source mobile software projects. Specifically,
we try to answer the following three research questions:
∙ RQ1: How effective is our approach on migrating UI
test cases?
∙ RQ2: How does the parameter of our approach, i.e.,
the transduction length (𝑤), influence the effectiveness
of our approach?
∙ RQ3: Why does our approach fail to migrate some UI
test cases?

4.1 Study Setup

In our evaluation, we used five popular open source applica-
tions which have both iOS and Android versions.1 WordPress
has a small GUI test suite with only 5 test cases. Wire has a
GUI test suite but it is not in its code base and the devel-
opers do not want to make it open. Therefore, we manually

1All the source code and GUI tests we used in our evaluation are
packaged and available at the anonymized project website https://
sites.google.com/site/testmigicse2019.

https://sites.google.com/site/testmigicse2019.
https://sites.google.com/site/testmigicse2019.

TestMig: Migrating GUI Test Cases from iOS to Android ISSTA’19, July 2017, Beijing, China

Table 1: Evaluation Subjects

Project Name Domain Size (LOC) #Test Cases #GUI Events iOS Android

2048 Game 1.9K 5 59 30a0f15 0fd6786

SimpleNote Notepad 17.9K 6 130 4.4.2 1.5.7

Wikipeia Knowledge media 59.5K 42 475 5.6.0 2.6.203

Wire Communication 95.7K 32 316 2.41 2.41.359

WordPress Personal blog 115.3K (80.8K) 31 431 8.3 8.3

enriched the test suite of WordPress, and prepared a test
suite for Wire. Please note that it is not easy to find usable
experimental subjects because most popular mobile appli-
cations are not open source. Even if an application is open
source, it may not have GUI (and corresponding GUI tests)
and may use test libraries that are close-sourced. Although
we cannot select them as subjects, close-sourced apps can
use TestMig in their development, since their source files are
available in their own programming contexts. Therefore, the
requirement of open-source projects is a difficulty only for
evaluation, not for developers to adopt our approach.

The basic information of the projects are presented in
Table 1. In Columns 1-5 of the table, we present the subject’s
name, domain, size (Lines Of Code), number of GUI test
cases, and number of GUI events triggered in iOS GUI test
execution, respectively. From the table, we found that these
subjects cover five different major app categories, with their
iOS versions’ sizes ranging from 1.9k to 95.7K lines of code.
For WordPress, a portion of the app’s GUI are written with
web views, and are thus not covered by the original iOS
GUI tests. Therefore, when calculating coverage, we excluded
the code portion only reachable from web views (based on
a conservative call-graph), and considered only 80.8K lines
of code. In Columns 6 and 7, we present the iOS version
(commit ID) and Android version (commit iD) we used in
our evaluation. When choosing Android versions, we always
use the stable Android version (if there exists one) or commit
ID after the iOS version within smallest time gap.

During our evaluation, for each subject, we compiled the
iOS version in XCode with iOS 10.3 and Swift 3, and executed
GUI tests on an iPhone 7 simulator to acquire logs containing
GUI event sequences. Then, we used TestMig to explore the
corresponding Android app according to each GUI event
sequence (each GUI event sequence corresponds to a test
case). For each generated Android test case, we executed it
and manually examined whether it performed the same GUI
interaction as the iOS test case from which it was migrated. A
test case is considered successfully migrated if all UI events in
the iOS test case are correctly mapped to android UI events
(including correctly mapping an iOS UI event to an empty
UI event), and all mapped android UI events are successfully
invoked. In the manual inspection, we have two students
watch executions of both the iOS test case and the migrated
Android test case, and report at which GUI event the two
executions start to differ. When different events are reported,
the execution will be watched again and discussed for the
final decision. To reduce the inspection effort, when multiple
transduction lengths are observed, we start from the longest

transduction length (𝑤=5), because it is supposed to have the
highest migration rate. Then we label the triggered Android
GUI events in the migrated test cases with correct or wrong.
The other tests (𝑤¡5) are compared with labeled events and
are only manually checked if they trigger a different event
where the reference test case triggers a wrong event.

4.2 Measurements

To answer question RQ1, we need to develop a number of
measurements to measure the effectiveness of the test case
migration. The most straightforward measurement is the Test
Migration Rate (𝑇𝑀𝑅), which measures what proportion of
iOS test cases are successfully migrated.

𝑇𝑀𝑅 considers only fully successfully migrated tests. In
reality, if a test case is partially migrated, it may still cover
some code and find some bugs. We consider an iOS test case
to be partially migrated if the first 𝑘 (𝑘 larger than 0) iOS
UI events are correctly mapped to Android UI events and
are correctly executed. For a given iOS test 𝑡 as a GUI event
sequence, we use 𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑡) to denote the length of longest
prefix of 𝑡 that are correctly mapped and executed, and
𝑙𝑒𝑛𝑔𝑡ℎ(𝑡) to denote the length of 𝑡. We then calculate the mi-
grated proportion of test 𝑡 (𝑝𝑟𝑜𝑝(𝑡)) as 𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑡)/𝑙𝑒𝑛𝑔𝑡ℎ(𝑡),
and define the Partial Migration Rate (𝑃𝑀𝑅) of a set of test
cases as the arithmetic average of 𝑝𝑟𝑜𝑝(𝑡) for all test case
𝑡 in the test suite. Finally, we define 𝑃𝑀𝑅 of a test suite
𝑇 = 𝑡1, 𝑡2, ..., 𝑡𝑛 in formula below:

𝑃𝑀𝑅 =

∑︀𝑛
𝑖=1 𝑝𝑟𝑜𝑝(𝑡)

𝑛
(3)

From the formula, we found that 𝑃𝑀𝑅 deems all test
cases with equal weights. As test cases with longer GUI
event sequences may provide more code coverage, a migration
successful rate on GUI events can be helpful. We further
defined Event Migration Rate (𝐸𝑀𝑅) of a test suite as
follow:

𝐸𝑀𝑅 =

∑︀𝑛
𝑖=1 𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝑡𝑖)∑︀𝑛
𝑖=1 𝑙𝑒𝑛𝑔𝑡ℎ(𝑡𝑖)

(4)

Since the ultimate goal of the test case migration is to cover
the code of the Android version, we use the test coverage
of the generated Android test cases as a side measurement
for the effectiveness of our approach. In particular, we use
statement coverage (reported by Jacoco [10]) as XCode also
reports statement coverage of the original iOS tests so we
are able to compare the coverage values.

ISSTA’19, July 2017, Beijing, China Xue Qin, Hao Zhong, and Xiaoyin Wang

Table 2: Migrated Android test cases

Project Size (LOC) #PMT #Event

2048 1.7K 5 54

SimpleNote 9.3K 6 88

Wikipeia 73.2K 42 433

Wire 71.2K 32 240

WordPress 109.2K (77.5K) 31 404

4.3 Migration Effectiveness

The basic information of the migrated Android test cases
is presented in Table 2. Columns 1-4 provides the subject’s
name, the size of Android version, the number of partially
migrated tests (#PMT), and the number of GUI events
invoked in the migrated tests, respectively. Comparing the
table with Table 1, we have the following observations. First,
the Android versions of 2048, Wikipedia, and WordPress
have similar sizes with their iOS versions, but the Android
versions of SimpleNote and Wire are much smaller than their
iOS versions. This reflects that some features may be missing
in their Android versions, compared with their iOS versions.
This may have impact in the test migration results as we will
introduce later. Second, TestMig is able to fully or partially
migrate all iOS GUI tests, which shows that the iOS and the
Android versions of the five subject apps all have very similar
main activities. Third, the migrated tests trigger less events
than original tests as some tests are not fully migrated. Note
that the numbers in Column 4 cannot be directly used for
calculating 𝐸𝑀𝑅, as one iOS events can be translated to 0
to 𝑊 (longest transduction length) Android GUI events.

Our evaluation results on migration rates are presented in
Figure 4. In the figure, for each subject, the three columns
from left to right represent the 𝑇𝑀𝑅, 𝑃𝑀𝑅, and 𝐸𝑀𝑅 of
the project, respectively.

From the figure, we found that, in 2048, Wikipedia, and
WordPress, TestMig achieves over 80% on all three migration
rates: 𝑇𝑀𝑅 values are 80.0%, 83.3%, and 83.9%; 𝑃𝑀𝑅
values are 88.0%, 91.2%, and 89.1%; and 𝐸𝑀𝑅 values are
89.8%, 89.3%, and 87.5%. Generally, if an EMR value of a
project is more than its PMR value, it denotes that TestMig
achieves better results on longer test cases, and vice versa.
For SimpleNote and Wire, our approach has lower migration
rates with 66.7% and 65.6% 𝑇𝑀𝑅, 73.5% and 69.6% 𝑃𝑀𝑅,
and 64.6% and 69.9% 𝐸𝑀𝑅. We found that the Android
versions of SimpleNote and Wire are still under development,
and some modules are not migrated from their iOS versions.
As TestMig cannot migrate a test case that invokes a non-
existing modules, it achieves relatively low 𝑃𝑀𝑅 and 𝐸𝑀𝑅
values. However, this actually does not hurt the effectiveness
of migrated tests, and non-existing moduless do not need
to be tested. In Figure 5, we present an exemplar missing
modules in SimpleNote, where the “Tag Edit” button appears
in the iOS version (the left screenshot), but does not appear
in the Android version (the right screenshot).

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

2048 SimpleNote Wikipedia Wire WordPress

TMR PMR EMR

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

2048 SimpleNote Wikipedia Wire WordPress

TMR PMR EMR

Figure 4: The overall 𝑇𝑀𝑅, 𝑃𝑀𝑅, and 𝐸𝑀𝑅

 (a) (b)

Figure 5: Example of a missing feature

The test coverage of the migrated Android tests are pre-
sented in Figure 6. In the figure, for each subject, the left
column represents the test coverage of the iOS test cases on
the iOS version, and the right column represents the test
coverage of the migrated test cases on the Android version.

From the figure, we found that, for the three apps such
as 2048, Wikipedia, and WordPress, our migrated Android
tests achieved almost the same coverage as their iOS tests.
In particular, the migrated tests achieve test coverage of
72.3%, 54.2%, and 55.4%, compared with the test coverage
of 75.6%, 62.0%, and 59.6% for the original iOS tests. An
interest finding is that in SimpleNote and Wire, which have
lower migration rates, our migrated test cases achieve even
higher coverage than the original iOS tests. As we mentioned
earlier, the Android versions of SimpleNote and Wire are still
under development, so it is easier to achieve a higher code
coverage as their total code sizes are smaller. By contrast,
Wikipedia has a larger Android version than iOS version,
so the achieved test coverage is relatively low despite the
high migration rates. However, we believe that the cases
of Wire and SimpleNote are more common for real-world
migration scenarios, as the migrated versions tends to have
fewer features than the original versions, at least during or
shortly after the migration, when test migration is mostly
required.

TestMig: Migrating GUI Test Cases from iOS to Android ISSTA’19, July 2017, Beijing, China

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

2048 SimpleNote Wiki Wire WordPress

Android Coverage iOS Coverage

Figure 6: Statement Coverage

Here, the test coverage of the original iOS GUI tests is
not very high (ranging from 44.3% to 75.6%), so the test
coverage of the generated Android test cases are also not very
high. However, as revealed in previous studies [56], manual
tests often achieve relatively lower coverage but cover most
popular and error-prone software features. Our approach
achieves similar test coverage (not only coverage values, but
also the covered code) on the new platform. On the execution
time of TestMig, it ranges from 10 minutes (2048) to 65
minutes (Wikipedia), which are acceptable for the application
scenario.

4.4 Impact of Transduction Lengths

To explore RQ2, we studied how the average 𝑇𝑀𝑅, 𝑃𝑀𝑅,
and 𝐸𝑀𝑅 of four subjects change, when the transduction
length 𝑤 increases from 1 to 5. Here, we consider 𝑤 value
from only 1 to 5, since it is unlikely that an iOS GUI event is
translated to more than five Android GUI events, according
to our inspection.

Figure 7 shows the results. From the figure, we can observe
that, as 𝑤 increases, all three migration rates grows more and
more slowly, and the migration rate becomes very stable after
𝑤 reaches 3. This actually shows that almost all successfully
translated iOS GUI events are mapped to at most three
Android events. Therefore, we believe that 3 is a proper value
for longest transduction sequence, and in our evaluation we
use 𝑤=3 as the default value of TestMig. Furthermore, the
figure shows that TestMig gains a lot on all migration rates
(18.2, 10.2, and 12.3 percentage points gain for 𝑇𝑀𝑅, 𝑃𝑀𝑅,
and 𝐸𝑀𝑅, respectively) when 𝑤 increases from 1 to 2. The
result shows that one-to-one event match is not sufficient,
and our sequence-transduction-based exploration mechanism
is helpful.

We further inspected the many-to-many mappings that
are observed by TestMig, and found that they account for
65 out of 1125 mappings (5.8%, including 58 1-to-many map-
pings and 7 many-to-1 mappings). Note that many-to-many
mappings can be naturally decomposed to 1-to-1 mappings
and many-to-1 / 1-to-many mappings naturally by sequence

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

1 2 3 4 5

Longest Transduction Lengths

TMR PMR EMR

Figure 7: The impact of 𝑊 on migration rates

transduction. Despite the sparsity of 1-to-many and many-to-
1 mappings, they have a large impact on the test migration
rate. Figure 7 shows that turning off many-to-1 / 1-to-many
mapping (using transduction length 1) will cause TMR to
drop 23 percentage points. The reason is that, as long as
there is one many-many mapping in the migration process of
a test case, it will cause a migration failure if not properly
handled. Furthermore, failing to handle a 1-to-many / many-
to-1 mapping will cause failures on converting all following
events, no matter they should be mapped 1-to-1, 1-to-many,
or many-to-1.

4.5 Categorization of Migration Failures

In our evaluation, we failed to fully migrate 26 out of 116
test cases. The main reason is that the generated Android UI
event sequence stuck at a certain place and cannot invoke the
next UI event, or the event sequence goes to a “wrong way”.
It should be noted that, although failures in code migration
may significantly undermine the technique’s usability, failures
in test migration may not affect usability much, as long
as the failing rate is relatively low. The reason is that, an
unsuccessfully migrated test case is still a test case and
may detect bugs in the target app version, although it may
not be as good as the successfully migrated ones, and miss
part of the consistency checking between versions. Since it
partially leverages information from the original test, it may
be still better than automatically generated test cases (e.g.,
on passing log-in guard). Furthermore, as shown in Figure 4,
our 𝑃𝑀𝑅 values are larger than 𝑇𝑀𝑅 values, indicating
that TestMig may have successfully migrated a large portion
of a test case before the failure happens.

To answer question RQ3, we further investigated these,
and found the root cause mainly falls into 3 categories.

Missing Features. The first category of migration fail-
ures are due to missing features in Android versions, so that
an original GUI event cannot be matched to anything. This
reason accounts for 14 out of 26 migration failures, including
8 migration failures in SimpleNote and Wire. Please note that
these migration failures are harmless, because the testing

ISSTA’19, July 2017, Beijing, China Xue Qin, Hao Zhong, and Xiaoyin Wang

(a) (b)

(c) (d) (e)

Figure 8: Example of a misleading GUI event

and migration themselves are unnecessary due to the missing
features.

System Events. The second category of failures are due
to TestMig’s inability to handle system events, so the Android
tests will stuck when a system event is simulated in iOS tests.
This accounts for 8 out of 26 migration failures, including
5 migration failures from Wire, which is a communication
software and relies more on system events. In the future, we
plan to further map system events between Android and iOS
to reduce such failures.

Similar UI Events. The third category of failures happen
when multiple GUI events will enable similar following GUI
events (accounting for 3 migration failures). Longer trans-
duction lengths will typically solve such issues, but when
the future events are not visible by GATOR, TestMig will
make mistake. Figure 8 shows an example from Wikipedia,
where the user is reading an article. Figure 8a and Figures 8b
are screenshots from iOS, and the rest are from Android.
In this example, the menu at the bottom of Figure 8a and
Figures 8b have different orders in iOS and Android. In the
iOS version, the third and fourth icons from left, triggers
“save to history” and “share”, respectively. In the iOS ver-
sion, they are the first and second icons. All the icons have
simple ids as item1 through item5 / item6, so the similarity
measurement does not work on them, and we have to rely on
the sequence transduction to find the similarity on following
GUI events. In the Android version, the following event of
clicking on the “save to history” button is “save to reading
list”, which is presented in Figures 8d. However, in the iOS
version, this feature happen to be deleted, and the “share”
feature is followed by the screen shot in Figures 8b, which
can trigger a GUI event to “Add to reading list”. Here, as
the reading list in the iOS version is the reading list of the
system instead of the Wiki app, it is a part of “share” feature.
In such a case, TestMig mistakenly explores to the “save to
list” feature, instead of the “share” feature in the original

iOS test case. Since the events after “share” are outside the
app, they are not visible to GATOR, and TestMig cannot
get sufficient guidance. To reduce such failure, it is possible
to extend GATOR with some common system GUI events
for further guidance of TestMig.

4.6 Threats to Validity

There are two major threats to the internal validity of our
evaluation. First, there can be mistakes in our data process-
ing and bugs in the implementation of TestMig. To reduce
this threat, we carefully double checked all the code and
data in our evaluation. Second, the manual validation of test
and event migrations may involve subjective bias. From our
experience, the GUI semantics of the iOS version and the
Android version are very similar although the design can be
different. As a result, it is not difficult to determine whether
two features from two versions can be matched to each other.
We further reduce this threat by having multiple evaluators
examining the test executions. The major threat to the ex-
ternal validity of our evaluation is that our conclusion may
apply to only the apps being evaluated. To reduce this threat,
we use apps from different domains to cover more testing
scenarios.

5 DISCUSSION

System Events. TestMig currently does not convert system
events such as incoming calls and low battery warnings. One
reason is that we did not observe much test code related to
system events in our subject projects. To support the conver-
sion of system events, we need to construct their mappings
between iOS and Android. The good part of system events
is that, unlike GUI controls and events, they are predefined
in the system and platform API, so we can construct a map-
ping in advance (although it may still need updates over
time due to new iOS and Android versions). Furthermore,
we need to record the system events being invoked when
executing the iOS tests. After that, we should be able to
use the same approach presented in this paper to convert
a trace of interleaving UI and system events from iOS to
Android. A potential technical challenge in the process lies
in the dependencies and changes on the order of GUI events
and system events in Android and iOS. However, GUI events
and system events are often independent from each other
(e.g., a phone call can come at any time) so such cases should
be rare, and the order changes can be solved using the same
idea of sequence transduction as described in this paper.

Migration of UI Test Oracles. Automatic test oracle is
an essential part in automatic software testing, but has been
one of the most difficult problem in the area. In our approach,
we focus on the migration of iOS UI event traces to explore
the Android app, and do not consider the migration of test
oracles (e.g., assertions in the iOS test script). However, just
as using any other automatic UI-test-case generation tool,
developers can still use with our approach the general auto-
matic UI test oracles such as crashes, unhandled exceptions,
bad presentation, and unresponsive UI controls. We observe
at least two more technical challenges in the migration of

TestMig: Migrating GUI Test Cases from iOS to Android ISSTA’19, July 2017, Beijing, China

UI test oracles. First of all, test-oracle migration requires
more precise mapping of UI controls cross platforms. In the
transduction of UI event traces, we can explore the Android
app with multiple mapping options to double confirm the
mapping. This is not possible for test oracles and the impre-
cision in mapping will cause imprecision in the test results.
Second, values in the UI test assertions may be platform spe-
cific. For example, some assertions refer to absolute positions
of UI controls and padding sizes, which are affected by the
resolutions and various default settings which are different
between iOS and Android. However, despite the technical
challenges, migration of UI test oracles is still potentially
feasible. We plan to work in near future on overcoming the
challenges mentioned above and examining the feasibility of
UI-test-oracle migration.

UI-Test-Case Migration in General. Migration of UI
test cases among various UI frameworks is a general problem,
and our approach just solves an specific instance of migrat-
ing iOS UI test cases to Android. One reason that we start
from iOS to Android test migration is the existence of UIAu-
tomator [16] (available for Android) which extracts runtime
GUI-view hierarchy and provides nice APIs. iOS provides
a similar driver in XCodeTest with GUI but no APIs are
available. Another reason is our observation that commercial
app developers often start from iOS (See Section 1), maybe
because iOS is more profitable.

6 RELATED WORKS

Test Migration. Researchers have proposed techniques on
migrating or learning to generate GUI tests from other apps.
In particular, Behrang and Orso [27, 28] proposed to migrate
tests between different Android apps of the same category,
based on mapping of GUI events. Although TestMig is also
based on mapping of GUI events, we further developed the
event mapping between iOS and Android GUI infrastruc-
tures. Furthermore, we use sequence transduction to tolerate
design difference between the two infrastructures. Addition-
ally, Mariani et al. [43] developed Augusto, a technique to
generate GUI tests for common app features that are reusable
among different apps. Rau et al. [52] proposed to learn GUI
interaction rules from tests of other apps. However, these
approaches do not migrate individual test cases but try to
learn general testing rules.

Mobile GUI Analysis. Since the emergence of graphical
user interfaces, there have been a large number of research
efforts focusing on the extraction of an abstract model to
describe the GUI, and summarize the relations among the
GUI controls [38, 55]. To describe the runtime behavior of
GUI, a number of models which summarize possible GUI
event sequences at runtime have been studied, mainly by
researchers working on GUI testing. These models may be
in forms of automaton [32, 57], grammar [25], and AI Plan-
ning [39], etc. Also, a lot of techniques for the automatic
extraction of these models are proposed, either based on
dynamic analysis [20, 45] or static analysis [29, 54]. Based on
these models, various researchers have developed techniques

for automatic GUI testing of Android apps. GUIRipper [21]
(MobiGUITAR [22]), A3E [26], and SwiftHand [30] build fi-
nite state models for UI and generate events to systematically
explore states in the model. Contest [24] generates events
based on a concolic execution approach and prunes search
spaces. Liu et al. [41] introduced new ways to generate text
inputs. These GUI analysis techniques may further enhance
TestMig, but they do not directly work on test migration.

Cross-Platform Code Migration. The academia has
noticed the difficulties in the library migration, and many
research efforts have been made on the topic. There have been
many empirical studies [51] [44] [48] to explore the prevalence
of backward incompatibility in library upgrade. Furthermore,
Linares-Vsquez et al. [40] studied the relationship between
change proneness of APIs methods and the success of client
software using the methods. The research topic more rele-
vant to our work is support for library migration, including
the mapping of APIs between two consecutive versions of a
software library. Godfrey and Zou [34] proposed a number of
heuristics based on text similarity, call dependency, and other
code metrics, to infer evolution rules of software libraries.
Later on, S. Kim et al. [37] further improved their approach
to achieve fully automation. Dagenais and Robillard [33] pro-
posed SemDiff, which infers rules of framework evolution via
analyzing and mining the code changes in the software library
itself. Wu et al. developed AURA [58], which further involves
multiple rounds of iteration applying call-dependency and
text-similarity based heuristics on the code of software li-
brary itself. HIMA [46] further enhances AURA by involving
historical information [35] between two consecutive versions
of software libraries. Nguyen et al. [50] proposed techniques
to mine code-change patterns for API migrations, and to
recommend code changes. Although they are relevant, all
these techniques cannot be applied directly to test migration
because unlike APIs, GUI events are unique for each app so
no training or preparation steps can be taken.

7 CONCLUSION

In this project2, we propose a novel approach that migrates
iOS UI test cases to Android UI test cases. Specifically, we
record the iOS UI event sequences invoked during the iOS
UI testing, and use the sequence transduction technique to
convert this sequence to a sequence of Android UI events.
Then, we explore the Android version of the software with the
Android UI events and record the test cases. We evaluate our
approach on four popular cross platform mobile apps, and
the result shows that our approach can successfully convert
on average 80.2% of the iOS UI test cases to Android test
cases, and achieve an average test coverage of 59.7%, which
is close to the 60.4% average test coverage of the original iOS
test cases on the IOS versions of the apps.

2The UTSA authors are supported in part by NSF awards 1748109 and
1846467. Hao Zhong is supported by National Key R&D Program of
China No. 2018YFC0830500, and National Nature Science Foundation
of China No. 61572313.

ISSTA’19, July 2017, Beijing, China Xue Qin, Hao Zhong, and Xiaoyin Wang

REFERENCES
[1] Flappy bird. https://en.wikipedia.org/wiki/Flappy Bird, 2013.
[2] iOS torches Android when it comes to developer profit-

s. http://bgr.com/2016/07/20/ios-vs-android-developers-profits-
app-store-google-play/, 2016.

[3] Apache cordova. https://cordova.apache.org/, 2017.
[4] Clean master. https://play.google.com/store/apps/details?

id=com.cleanmaster.mguard, 2017.
[5] Crossy road. https://play.google.com/store/apps/details?

id=com.yodo1.crossyroad, 2017.
[6] Facebook. https://www.facebook.com/, 2017.
[7] Facebook messager. https://www.messenger.com/, 2017.
[8] Google play store. https://play.google.com/store, 2017.
[9] Instagram. https://www.instagram.com/, 2017.

[10] Jacoco. http://www.eclemma.org/jacoco/, 2017.
[11] Kika emoji. https://play.google.com/store/apps/details?

id=com.qisiemoji.inputmethod, 2017.
[12] Monkey runner. https://developer.android.com/studio/test/ mon-

keyrunner/index.html, 2017.
[13] Pandora radio. https://www.pandora.com/, 2017.
[14] Snapchat. https://www.snapchat.com/, 2017.
[15] Spotify. https://www.spotify.com/, 2017.
[16] Ui automator. https://developer.android.com/training/testing/ui-

automator.html, 2017.
[17] Unity 3d. https://unity3d.com/, 2017.
[18] Whatsapp. https://www.whatsapp.com/, 2017.
[19] A. Aizawa. An information-theoretic perspective of tf–idf mea-

sures. Information Processing & Management, 39(1):45–65, 2003.
[20] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,

and A. M. Memon. Using gui ripping for automated testing of
android applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering,
pages 258–261, 2012.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine,
and A. M. Memon. Using gui ripping for automated testing of
android applications. In Proceedings of the 27th IEEE/ACM
International Conference on Automated Software Engineering,
pages 258–261. ACM, 2012.

[22] D. Amalfitano, A. R. Fasolino, P. Tramontana, B. D. Ta, and
A. M. Memon. Mobiguitar: Automated model-based testing of
mobile apps. IEEE software, 32(5):53–59, 2015.

[23] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, 2012.

[24] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated
concolic testing of smartphone apps. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations
of Software Engineering, page 59. ACM, 2012.

[25] M. Auguston, J. B. Michael, and M.-T. Shing. Environment
behavior models for scenario generation and testing automation.
SIGSOFT Softw. Eng. Notes, 30(4):1–6, 2005.

[26] T. Azim and I. Neamtiu. Targeted and depth-first exploration
for systematic testing of android apps. In Acm Sigplan Notices,
volume 48, pages 641–660. ACM, 2013.

[27] F. Behrang and A. Orso. Automated test migration for mobile
apps. In Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, pages 384–385.
ACM, 2018.

[28] F. Behrang and A. Orso. Test migration for efficient large-scale
assessment of mobile app coding assignments. In Proceedings of
the 27th ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 164–175. ACM, 2018.

[29] K. Z. Chen, N. M. Johnson, V. D’Silva, S. Dai, K. MacNamara,
T. Magrino, E. X. Wu, M. Rinard, and D. X. Song. Contextual
policy enforcement in android applications with permission event
graphs. In Network and Distributed System Security Symposium,
2013.

[30] W. Choi, G. Necula, and K. Sen. Guided gui testing of android
apps with minimal restart and approximate learning. In Acm
Sigplan Notices, volume 48, pages 623–640. ACM, 2013.

[31] S. R. Choudhary, A. Gorla, and A. Orso. Automated test input
generation for android: Are we there yet? (e). In Proceedings of the
2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pages 429–440, 2015.

[32] J. Clarke. Automated test generation from a behavioral mod-
el. In Proceedings of the Pacific Northwest Software Quality

Conference, 1998.
[33] B. Dagenais and M. P. Robillard. Recommending adaptive changes

for framework evolution. In Proc. ICSE, pages 481–490, 2008.
[34] M. W. Godfrey and L. Zou. Using origin analysis to detect merging

and splitting of source code entities. IEEE TSE, 31(2):166–181,
February 2005.

[35] F. Hassan and X. Wang. Hirebuild: An automatic approach
to history-driven repair of build scripts. In 2018 IEEE/ACM
40th International Conference on Software Engineering (ICSE),
pages 1078–1089. IEEE, 2018.

[36] M. E. Joorabchi, M. Ali, and A. Mesbah. Detecting inconsistencies
in multi-platform mobile apps. In 2015 IEEE 26th International
Symposium on Software Reliability Engineering (ISSRE), pages
450–460, 2015.

[37] S. Kim, K. Pan, and E. J. Whitehead, Jr. When functions change
their names: Automatic detection of origin relationships. In Proc.
WCRE, pages 143–152, 2005.

[38] A. Kull. Automatic gui model generation: State of the art. In
Software Reliability Engineering Workshops (ISSREW), 2012
IEEE 23rd International Symposium on, pages 207–212, 2012.

[39] W. K. Leow, S. C. Khoo, and Y. Sun. Automated generation of
test programs from closed specifications of classes and test cases.
In Proceedings of the 26th International Conference on Software
Engineering, pages 96–105, 2004.

[40] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta,
R. Oliveto, and D. Poshyvanyk. Api change and fault proneness:
A threat to the success of android apps. In Joint Meeting of the
European Software Engineering Conference and the ACM SIG-
SOFT Symposium on The Foundations of Software Engineering,
pages 477–487, 2013.

[41] P. Liu, X. Zhang, M. Pistoia, Y. Zheng, M. Marques, and L. Zeng.
Automatic text input generation for mobile testing. In Soft-
ware Engineering (ICSE), 2017 IEEE/ACM 39th International
Conference on, pages 643–653. IEEE, 2017.

[42] R. Mahmood, N. Mirzaei, and S. Malek. Evodroid: Segmented
evolutionary testing of android apps. In Proceedings of the 22Nd
ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pages 599–609, 2014.

[43] L. Mariani, M. Pezzè, and D. Zuddas. Augusto: Exploiting popular
functionalities for the generation of semantic gui tests with oracles.
In 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE), pages 280–290. IEEE, 2018.

[44] T. McDonnell, B. Ray, and M. Kim. An empirical study of api
stability and adoption in the android ecosystem. In Proceed-
ings of the 2013 IEEE International Conference on Software
Maintenance, ICSM ’13, pages 70–79, 2013.

[45] A. Memon, I. Banerjee, and A. Nagarajan. Gui ripping: Reverse
engineering of graphical user interfaces for testing. In Proceedings
of the 10th Working Conference on Reverse Engineering, WCRE
’03, pages 260–269, 2003.

[46] S. Meng, X. Wang, L. Zhang, and H. Mei. A history-based
matching approach to identification of framework evolution. In
Proceedings of the 34th International Conference on Software
Engineering, ICSE ’12, pages 353–363, Piscataway, NJ, USA,
2012. IEEE Press.

[47] M. Mohri. Finite-state transducers in language and speech pro-
cessing. Comput. Linguist., 23(2):269–311, June 1997.

[48] S. Mostafa, R. Rodriguez, and X. Wang. Experience paper: a
study on behavioral backward incompatibilities of java software
libraries. In Proceedings of the 26th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis, pages
215–225. ACM, 2017.

[49] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen.
Statistical learning approach for mining api usage mappings for
code migration. In Proceedings of the 29th ACM/IEEE Interna-
tional Conference on Automated Software Engineering, pages
457–468, 2014.

[50] H. A. Nguyen, T. T. Nguyen, G. Wilson, Jr., A. T. Nguyen,
M. Kim, and T. N. Nguyen. A graph-based approach to api
usage adaptation. In Proceedings of the ACM International
Conference on Object Oriented Programming Systems Languages
and Applications, pages 302–321, 2010.

[51] S. Raemaekers, A. van Deursen, and J. Visser. Measuring software
library stability through historical version analysis. In Software
Maintenance (ICSM), 2012 28th IEEE International Conference
on, pages 378–387, 2012.

[52] A. Rau, J. Hotzkow, and A. Zeller. Poster: Efficient gui test gen-
eration by learning from tests of other apps. In 2018 IEEE/ACM

TestMig: Migrating GUI Test Cases from iOS to Android ISSTA’19, July 2017, Beijing, China

40th International Conference on Software Engineering: Com-
panion (ICSE-Companion), pages 370–371. IEEE, 2018.

[53] A. Rountev and D. Yan. Static reference analysis for gui objects in
android software. In Proceedings of Annual IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization, CGO
’14, pages 143:143–143:153, New York, NY, USA, 2014. ACM.

[54] S. Staiger. Reverse engineering of graphical user interfaces using
static analyses. In Reverse Engineering, 2007. WCRE 2007.
14th Working Conference on, pages 189–198, 2007.

[55] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux, and
J. Niu. Guileak: Tracing privacy policy claims on user input data
for android applications. In Proceedings of the 40th International
Conference on Software Engineering, pages 37–47. ACM, 2018.

[56] X. Wang, L. Zhang, and P. Tanofsky. Experience report: How is
dynamic symbolic execution different from manual testing? a study

on klee. In Proceedings of the 2015 International Symposium
on Software Testing and Analysis, pages 199–210, 2015.

[57] L. White and H. Almezen. Generating test cases for gui respon-
sibilities using complete interaction sequences. In Proceedings
of the 11th International Symposium on Software Reliability
Engineering, pages 110–123, 2000.

[58] W. Wu, Y. Guéhéneuc, G. Antoniol, and M. Kim. AURA: A
hybrid approach to identify framework evolution. In Proc. ICSE,
pages 325–334, 2010.

[59] H. Zhong and H. Mei. An empirical study on API usages. IEEE
Transaction on Software Engineering, 2018.

[60] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang.
Mining API mapping for language migration. In Proc. ICSE,
pages 195–204, 2010.

	Abstract
	1 Introduction
	2 Motivation
	3 Approach
	3.1 Runtime Exploration
	3.2 Event Selection
	3.3 Transduction Probabilities between GUI Event Sequences
	3.4 Running Example

	4 Empirical Evaluation
	4.1 Study Setup
	4.2 Measurements
	4.3 Migration Effectiveness
	4.4 Impact of Transduction Lengths
	4.5 Categorization of Migration Failures
	4.6 Threats to Validity

	5 Discussion
	6 Related Works
	7 Conclusion
	References

