
Which Exception Shall We Throw?
Hao Zhong

Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
zhonghao@sjtu.edu.cn

ABSTRACT

With the support of exception handling mechanisms, when an error
occurs, its corresponding typed exception can be thrown. A thrown
exception can be caught and the handling code will resolve the error
(e.g., closing resources), if the type of the thrown exception matches
the type of the expected exceptions. Although this mechanism is
critical for resolving runtime errors, bugs inside this process can
have far-reaching impacts. Therefore, researchers have proposed
various approaches to assist catching and handling such thrown
exceptions and to detect corresponding bugs.

If the thrown exceptions themselves are incorrect, their errors
will never be correctly caught and handled. Like bugs in catching
and handling exceptions, wrong thrown exceptions have caused
real critical bugs. However, to the best of our knowledge, no ap-
proach has been proposed to recommend which exceptions shall be
thrown. Exceptions are widely adopted in programs, often poorly
documented, and sometimes ambiguous, making the rules of throw-
ing correct exceptions rather complicated. A project team can lever-
age exceptions in a way totally different from other teams. As a
result, even experienced programmers can have difficulties in de-
termining which exception shall be thrown, although they have the
skills to implement its surrounding code. In this paper, we propose
the first approach, ThEx, to predict which exception(s) shall be
thrown under a given programming context. The basic idea is to
learn a classification model from existing thrown exceptions in
source files. Here, the learning features are extracted from various
code information surrounding the thrown exceptions, such as the
thrown locations and related variable names. Then, given a new
context, ThEx can automatically predict its best exception(s).

We have evaluated ThEx on 12,012 thrown exceptions that were
collected from nine popular open-source projects. Our results show
that it can achieve high f-scores and mcc values (both around 0.8).
On this benchmark, we also evaluated the impacts of our under-
lying technical details. Furthermore, we evaluated our approach
in the wild, and used ThEx to detect anomalies from the latest
versions of the nine projects. In this way, we found 20 anomalies,
and reported them as bugs to their issue trackers. Among them, 18
were confirmed, and 13 have already been fixed.
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1 INTRODUCTION

In many programming languages, the exception handling mecha-
nism is critical to resolve runtime errors [50, 67], and the bugs in
exception handling have far-reaching impacts on software qual-
ity [25, 63]. When a runtime error occurs, a corresponding exception
can be thrown, and its type indicates the type of the error [20]. For
example, a Cassandra bug report [8] complains that the disk fail-
ure policy is not correctly activated. Figure 1a shows the handling
code to activate the disk failure policy. The input of this method
is an exception. As shown in Figure 1a, Line 3 checks whether the
input exception is an instance of FSError or CorruptSSTableException.
If it is, Line 6 calls a method to execute the code that handles the
disk failure. Figure 1b shows an example that calls the handling
code. In this example, the method uses a try statement to enclose
many called methods. If one of such methods throw an exception,
Line 4 catches the exception, and Line 5 calls the handling code
as shown in Figure 1a. However, a disk failure is not handled, and
Figure 1c shows its patch. In the buggy code, if the disk is full,
Line 2 returns null to directory, and Line 4 throws RuntimeException.
Even if the getWriteDirectory method is called inside a try statement
like Figure 1b, its thrown exception will not be handled by the
code in Figure 1a. As RuntimeException is not a subclass of FSError

or CorruptSSTableException, the check in Line 3 of Figure 1a is not
satisfied, and the disk failure policy is not activated. To fix this bug,
in Figure 1c, Line 5 throws FSWriteError. As it is a subclass of FSError,
the check in Line 3 of Figure 1a is satisfied, and the disk failure
policy is activated. As illustrated in this example, thrown exceptions
belong to the essential chain of the exception handling mechanism.
Besides failing to activate the disk failure policy, throwing wrong
exceptions can cause all critical bugs (e.g., resource leaks caused by
unhandled errors) that can be triggered by other components of
the exception handling mechanism.

Some prior approaches [10, 38, 52] assist handling exceptions,
and they recommend samples or method calls that shall appear
in Line 5 of Figure 1b and the code of Figure 1a. The other prior
approaches [39, 48, 49] assist catching exceptions, e.g., predicting
which exception shall be caught in Line 4 of Figure 1b. As the buggy
code line lies in the wrong thrown exception (Line 4 of Figure 1c),
none of the prior approaches can detect this bug. In summary, all
the prior approaches aim to assist catching and handling exceptions.

Our contributions. Instead of another approach to assist pro-
gramming in catching or handling thrown exceptions [10, 38], we
propose ThEx, the first approach to predict which exceptions shall
be thrown under a given programming context. The basic idea of
ThEx is to learn a classification model from existing thrown excep-
tions in different contexts of the training set. Here, the learning
features are extracted from various code information surrounding
the thrown exceptions, such as the thrown locations and related
variable names. Then, given a new context, ThEx can automatically
predict its best exception(s).
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1 public s t a t i c void i n s p e c t T h r o w a b l e ( Throwable t ) {
2 boolean i s U n s t a b l e = f a l s e ; . . .
3 i f ( t instanceof F S E r r o r | | t instanceof C o r r u p t S S T a b l e E x c e p t i o n )
4 i s U n s t a b l e = true ; . . .
5 i f ( i s U n s t a b l e )
6 k i l l e r . k i l l C u r r e n t J V M ( t ) ;
7 }

(a) The handling code

1 public int l o a d S a v e d ( ) { . . .
2 try { . . .
3 i n = new Data Inpu tS t r eam ( . . . ) ; . . .
4 } catch ( Throwable t ) {
5 J V M S t a b i l i t y I n s p e c t o r . i n s p e c t T h r o w a b l e ( t ) ; . . .
6 } f ina l l y { . . . }
7 }

(b) An example that calls the handling code

1 protected D a t a D i r e c t o r y g e t W r i t e D i r e c t o r y ( long w r i t e S i z e ) {
2 D a t a D i r e c t o r y d i r e c t o r y = g e t D i r e c t o r i e s ( ) .

g e t W r i t e a b l e L o c a t i o n ( w r i t e S i z e ) ;
3 i f ( d i r e c t o r y == null )
4 − throw new Runt imeExcept ion ( . . . ) ;
5 + throw new F S W r i t e E r r o r ( . . . ) ;
6 return d i r e c t o r y ;
7 }

(c) The patch

Figure 1: CASSANDRA-11448

This paper makes the following unique contributions:
• A new direction in researching exception handling

mechanisms.This paper introduces a new type of exception-
related bugs, i.e., the thrown exceptions themselves can be
problematic. Like bugs in catching and handling exceptions,
throwing wrong exceptions can cause serious real bugs.

• The first approach in our new direction. Towards our
new direction, we proposed the first approach, called ThEx,
that predicts which exception shall be thrown under a given
programming context. It uses Eclipse JDT [2] to extract fea-
tures from programming contexts, and trains a model that is
the combination of Adaboost [30] and J48 [51].

• Promising empirical evidences. We conducted an evalua-
tion on 12,012 thrown exceptions collected from nine popular
open-source projects. Our results show that ThEx achieves
high f-scores and mcc values (both around 0.8), and it works
well on most types of thrown exceptions. Our evaluation
also covers other interesting aspects such as the impacts of
features and the effectiveness of learning from other projects.

• Positive feedback from programmers. We used ThEx to
predict thrown exceptions in the wild. We find that ThEx
can predict better exceptions than what were already writ-
ten in source files. We reported 20 such cases as bugs to the
corresponding developers, and 13 have already been fixed.
The positive feedback from programmers highlights the im-
portance of our work.

2 ILLUSTRATING EXAMPLE

Apache Commons IO [1] is a popular Java io framework. In this
section, we use this project to illustrate how ThEx predicts thrown
exceptions and its usage scenarios.

Theprocedure of ThEx.We call the code surrounding a thrown
exception as its programming context. When an error occurs in a
programming context, programmers shall throw its corresponding

1 public s t a t i c void c o p y F i l e T o D i r e c t o r y ( f ina l F i l e s r c F i l e ,
f ina l F i l e d e s t D i r , f ina l boolean p r e s e r v e F i l e D a t e )

2 throws I O E x c e p t i o n {
3 i f ( d e s t D i r == null ) {
4 throw new N u l l P o i n t e r E x c e p t i o n ( . . . ) ;
5 }
6 i f ( d e s t D i r . e x i s t s ( ) && d e s t D i r . i s D i r e c t o r y ( ) == f a l s e ) {
7 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
8 } . . .
9 c o p y F i l e ( s r c F i l e , d e s t F i l e , p r e s e r v e F i l e D a t e ) ;

10 }

(a) The copyFileToDirectory method

1 public s t a t i c void m o v e F i l e T o D i r e c t o r y ( f ina l F i l e s r c F i l e ,
f ina l F i l e d e s t D i r , f ina l boolean c r e a t e D e s t D i r )

2 throws I O E x c e p t i o n { . . .
3 i f ( ! d e s t D i r . e x i s t s ( ) ) {
4 throw new F i l e N o t F o u n d E x c e p t i o n ( . . . ) ;
5 }
6 i f ( ! d e s t D i r . i s D i r e c t o r y ( ) ) {
7 throw new I O E x c e p t i o n ( . . . ) ;
8 }
9 moveF i l e ( s r c F i l e , new F i l e ( d e s t D i r , s r c F i l e . getName ( ) ) ) ;

10 }

(b) The moveFileToDirectory method

1 try { . . .
2 c o n n e c t i o n = openConnect ion ( . . . ) ;
3 s r c F i l e = . . . ; d e s t D i r = . . . ;
4 c o p y F i l e T o D i r e c t o r y ( s c r F i l e , d e s t D i r , true ) ;
5 c o n n n e c t i o n . c l o s e ( ) ;
6 } catch ( I O E x c e p t i o n e ) {
7 / / o t h e r h a n d l i n g code
8 c o n n n e c t i o n . c l o s e ( ) ;
9 }

(c) A possible resource leak caused by this bug

Figure 2: Our found bug

exception, so that this error can be correctly handled. Given each
throw location, ThEx encodes its programming context into a vector.
For example, from Figure 2a, it builds two vectors (Lines 4 and 7).
In total, a vector records nine features of the thrown exceptions
(see Table 1 for the list our defined features). For example, the
vector of Line 4 includes the checked variable name (destDir), its
type (File), and the checked constant (null). The type of a thrown
exception is extracted as the true label of a vector. In this example,
the labels of the above two vectors are NullPointerException and Il-

legalArgumentException, respectively. Taking these labeled vectors as
the training data, we then train a classification model. After the
model is built, ThEx predicts which exception shall be thrown in
each programming location. With the predictions, ThEx can have
the following two usage scenarios:

Scenario 1. Assisting programming. ThEx is able to recom-
mend suitable exceptions, since it encodes the consensuses into
its mined models. Although it takes time to train our model, once
it is trained, the prediction is sufficiently fast to be used in assist
programming. ThEx is useful for programmers who have skills
to implement programming tasks but are unfamiliar with the lo-
cal consensus in throwing exceptions. For example, in Figure 2,
as destDir is a method argument and it is checked against null, a
new member of the IO project can be confused in throwing Ille-

galArgumentException or NullPointerException. The consensus of this
project is that IOException and its subclasses are more suitable in
these programming contexts, but the new member may not know
this consensus. For example, in Figure 1, RuntimeException is vaguely
defined, and FSWriteError is defined by cassandra. When a program-
mer does not know the handling code in Figure 1a, this programmer
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Figure 3: The overview

is unlikely to throw the correct exception, even if this program-
mer is experienced and all the programming contexts are already
written. As programmers can join and leave a project, especially in
open source communities [43], they often are unfamiliar with the
consensus of thrown exceptions. Wrong thrown exceptions affect
the exception handling mechanism, and they often do not hinder
programmers from implementing a programming task. As a result,
the other approaches [48, 49] also assist writing exceptions, under
the assumption that complete programming contexts are available.
As both commercial companies and open source projects have strict
criteria to select programmers, it is reasonable to assume that their
programmers have the skills to implement assigned programming
tasks, and the programming contexts of thrown exceptions shall
be complete. Even if programmers have difficulties in fully imple-
menting a task, our results in Section 4.5 show that ThEx can make
reasonably good predictions, even if programmers cannot written
full programming contexts.

Scenario 2. Detecting bugs in thrown exceptions. In this
example, for the two locations in Figure 2a, ThEx predicts that they
shall throw IOException and FileNotFoundException, respectively. After
we reported this problem [3], it was confirmed and fixed. ThEx
makes these predictions, because its model is trained on many
thrown exceptions and most other locations of this project throw
the two exceptions, when destination files are illegal. For example,
the method in Figure 2b also checks a destDir variable that calls sim-
ilar methods (e.g., exists()). This bug can cause unhandled errors.
For example, Figure 2c shows a call site of the copyFileToDirectory

method. If the programmer is familiar with other methods of IO,
this program can blindly believe that the copyFileToDirectory method
also throws IOException and its subclasses, especially when the
copyFileToDirectory method declares that it throws IOException. As a
result, this programmer can catch IOException as shown in Line 6 of
Figure 2c. When destination files are illegal, as thrown exceptions
are different from the excepted ones, Line 6 fails to catch the er-
ror. For simplicity, we ignore the handling code in Line 7, but this
programmer can write complicated code to handle the error, but
such code will not be executed. Programmers are used to catching
the same type of exceptions when the problems belong to the same
type. As introduced in Section 1, this behavior has caused uncaught
exceptions in real code. Besides the direct influence, unhandled
errors can cause other problems. In this example, Line 5 opens a
connection. When destination files are illegal, this connection is
not closed, since Line 5 and Line 8 are both bypassed. As a result, it
causes a resource leak.

When ThEx is used to detect bugs in thrown exceptions, its basic
idea is in line with other anomaly detections [19]. For example, after
Wasylkowski et al. [62] mine usage models of objects, they report
the violations of their mined models as bugs. As an analogy, ThEx
mines the majority of thrown exceptions as its model, and reports
its violations as bugs. In summary, the second scenario is to detect

1 S t r i n g c a l c u l a t e R a w E n c o d i n g ( f ina l S t r i n g bomEnc , f ina l S t r i n g
xmlGuessEnc , f ina l S t r i n g xmlEnc ) throws I O E x c e p t i o n { . . .

2 i f ( bomEnc . e q u a l s ( UTF_8 ) ) {
3 i f ( xmlGuessEnc != null && ! xmlGuessEnc . e q u a l s ( UTF_8 ) ) { . . .
4 throw new XmlSt reamReaderExcept ion ( . . . ) ;
5 }
6 return bomEnc ;
7 } . . .
8 }

Figure 4: A method that throws XmlStreamReaderException, a sub-

class of IOException

bugs in thrown exceptions. It works as other anomaly detectors do,
and reports bugs when its predictions are inconsistent with what
were written in source files. In our evaluations in Section 4, some
predictions are different from the true labels. Although such predic-
tions are considered as false, some false predictions are violations,
indicating bugs in thrown exceptions.

3 APPROACH

As shown in Figure 3, ThEx has three phases: extracting (Sec-
tion 3.1), encoding (Section 3.2), and learning (Section 3.3).

Problem Definition. From the programming context of each
throw location (𝑙), we extract a vector, ®𝑙𝑐 = {𝑓1, . . . , 𝑓9}. Table 1
defines the nine features of programming contexts. We then reduce
our target problem to a classification problem:

𝑐𝑙𝑎𝑠𝑠𝑖 𝑓 𝑖𝑒𝑟 ( ®𝑙𝑐 ) = 𝑙𝑒 (1)
where 𝑙𝑒 is the exception type that is thrown at 𝑙 . In the training
data, 𝑙𝑒 is extracted from thrown exceptions that were written by
programmers. Our trained classification model can predict which
exception shall be thrown at a throw location, if its programming
context is given.

Java and many other languages (e.g., C++) allow both checked
and unchecked exceptions. As unchecked exceptions are not checked
at compile-time, programmers are allowed to throw other unchecked
exceptions. Figure 2 shows an example of unchecked exceptions.
For checked exceptions, a method can declare multiple exceptions,
and each exception can have more subclasses. It can become diffi-
cult to determine which exception shall be thrown. For example,
the method in Figure 4 declares only a checked exception, but Line
4 throws another exception. It is legal to throw this exception, since
XmlStreamReaderException is a subclass of IOException. In summary, our
target problem is valid for both checked and unchecked exceptions.

3.1 Extracting Thrown Exceptions

From each throw statement, ThEx extracts a pair ⟨𝑡, 𝑐⟩, where 𝑡

denotes the type of the thrown exception and 𝑐 denotes the context
of 𝑡 . To extract the pairs, ThEx builds Abstract Syntax Trees (ASTs)
from source files, and analyzes ASTs to collect features and labels:

3.1.1 Extracting exception types. To extract 𝑡 (the label) from a
throw statement, ThEx analyzes four cases:

1. Instance creations. In source files, throw keywords are often
followed by the creations of exceptions. ThEx resolves the types of
created exceptions as 𝑡 .

2. Variables. If a throw keyword is followed by a variable, ThEx
resolves the type of the variable as 𝑡 .
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1 public Runnable a s s o c i a t e W i t h ( Runnable r u n n a b l e ) {
2 i f ( r u n n a b l e instanceof Thread ) { . . .
3 throw new U n s u p p o r t e d O p e r a t i o n E x c e p t i o n ( msg ) ;
4 }
5 return new S u b j e c t R u n n a b l e ( this , r u n n a b l e ) ; }

(a) An exception thrown from if statements

1 public O b j e c t invoke ( . . . ) throws NoSuchMethodException ,
I l l e g a l A c c e s s E x c e p t i o n , I n v o c a t i o n T a r g e t E x c e p t i o n {

2 try { . . .
3 } catch ( E x e c u t i o n E x c e p t i o n e ) {
4 throw new NoSuchMethodException ( ) ;
5 } }

(b) An exception thrown from catch statements.

1 pr ivate H a s h i n g P a s s w o r d S e r v i c e a s s e r t H a s h i n g P a s s w o r d S e r v i c e (
P a s s w o r d S e r v i c e s e r v i c e ) {

2 i f ( s e r v i c e instanceof H a s h i n g P a s s w o r d S e r v i c e ) {
3 return ( H a s h i n g P a s s w o r d S e r v i c e ) s e r v i c e ;
4 }
5 S t r i n g msg = . . . ;
6 throw new I l l e g a l S t a t e E x c e p t i o n ( msg ) ; }

(c) An exception thrown from the end of a method.

Figure 5: The locations of thrown exceptions

3. Method invocations. If a throw keyword is followed by a method
invocation, ThEx extracts the return type of the method as 𝑡 .

4. Cast expressions. If a throw keyword is followed by a cast expres-
sion, ThEx extracts casted types as 𝑡 of these thrown exceptions.

3.1.2 Extracting contexts. Table 1 shows our features that are ex-
tracted from the contexts of thrown exceptions. Column “Context”
shows our considered programming contexts. Row “The direct par-
ent” lists the direct parent of a thrown exception. If an exception
is thrown in an if statement within a catch clause, this feature is
set to if. If 𝐹1 is if/switch, ThEx extracts 𝐹2 to indicate whether
method arguments are checked by the if or switch statements. If 𝐹1
is catch, ThEx extracts the caught exception as 𝐹3. Exceptions can
be propagated [28]. For the thrown exception in Line 4 of Figure 5b,
ThEx extracts ExecutionException as the caught exception. We select
this feature, because caught exceptions have some connections to
thrown exceptions. As shown in Figure 1, handling exceptions often
requires global features from call chains, but it typically requires
only local features to determine which exceptions shall be thrown
at a code location. As a result, if an exception is thrown inside
multiple statements, 𝐹1 considers only the direct parent statement.
The information from call chains provides more inputs, but their
impacts are mixed. Due to the polymorphism and other issues, if
we use static analysis, the features from call chains can contain
noises. It needs advanced techniques to handle the mixed impacts.

As shown in Figure 5c, some exceptions are thrown from other
locations, and most of them are thrown from the ends of methods.
These methods often contain if or switch statements before the throw

statements. As these statements determine the condition of thrown
exceptions, ThEx extracts 𝐹2 from such if or switch statements. As
exceptions thrown from if/switch statements, 𝐹2 are boolean values
indicating whether method arguments are checked.

As shown in Table 1, ThEx extracts variable names, constant
values, called types and methods as 𝐹4 to 𝐹7. When it extracts
the four features, ThEx analyzes different scopes according to the
locations of thrown exceptions. In particular, for exceptions thrown
in if/switch statements and at the ends of methods, it analyzes the

Table 1: Our features.

Context Feature Context
The direct parent dp 𝐹1 if/switch, catch, or other

if/switch 𝐹2 arguments are checked
catch 𝐹3 caught exceptions
other 𝐹2 arguments are checked

Elements in dp

𝐹4 variable names
𝐹5 constant values
𝐹6 called types
𝐹7 called methods

Element outside dp
𝐹8 exceptions in method headers
𝐹9 exceptions thrown by other lines

if/switch, 𝐹2: arguments are checked in this if or switch statement; other, 𝐹2: arguments
are checked before this exception is thrown.

scope of checked conditions, because the variables, constants and
methods in checked conditions are useful to determine the types of
exceptions. For example, in Figure 5a, the comparison between two
types determines whether the argument is supported or not. As a
result, from Line 2 of Figure 5a, it extracts runnable as 𝐹4, and Runnable

and Thread as 𝐹6. It does not extract 𝐹5 and 𝐹7 from Line 2, because
this line does not compare the variable against any constants or
call any methods. For exceptions thrown in catch clauses, ThEx
extracts 𝐹4 to 𝐹7 from the bodies of try statements. For example, in
Figure 5b, it extracts the features (𝐹4 to 𝐹7) from Line 3.

A method header can declare its thrown checked exceptions.
ThEx extracts such exceptions as 𝐹8. For example, from Line 1 of Fig-
ure 5b, ThEx extracts NoSuchMethodException, IllegalAccessException,
and InvocationTargetException as 𝐹8. As they are checked exceptions,
when programmers call the invoke method, they have to handle
the three exceptions. However, it is legal for the code inside the
invoke method to throw any other exceptions. As a result, even if
exceptions are listed in 𝐹8, programmers may not determine which
exceptions shall be thrown at a given code location, and ThEx can
predict other exceptions to throw than those listed in 𝐹8.

A method can throw more than one exception. For a thrown
exception, ThEx extracts the types of other thrown exceptions as its
𝐹9. For example, 𝐹9 of the thrown exception in Line 4 of Figure 5b
includes IllegalAccessException and InvocationTargetException.

3.2 Encoding Features

The second step is to encode thrown exceptions into vectors. 𝐹1, 𝐹2,
𝐹3, 𝐹8, and 𝐹9 have limited values. ThEx encodes them into nominal
values. 𝐹4 to 𝐹7 have many values, especially when exceptions are
thrown from catch clauses. ThEx considers only the top ten items.

In natural language processing [26], words are often translated
to their lower cases. The lower case and the upper case of a natural
language word often denote the same item, and treating them as
two words can reduce the frequency of the item. 𝐹4 is like words
in natural languages, in that variables are often named in an ad
hoc way. If two variable names across methods are the upper case
and the lower case of a word, they often refer to the same thing.
In addition, variable names can be written in camel cases, and
the combination of their words is similar to phrases in natural
languages. Due to the above consideration, ThEx splits variable
names into words by capitalized characters, and transfers their split
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words into lower cases. After splitting, some words become too
short to convey meanings. We remove a split word, if it contains
fewer than three characters.

As Java is case sensitive, the upper case and lower case of a
method/class name or a constant value denote different things. As
these names and values are extracted from source code, program-
mers will not accidentally write wrong cases either. As a result, we
do not translate the features from 𝐹5 to 𝐹7 into lower cases. Another
difference is that these names and values can be written in camel
cases, we leave them as they are, because the combinations of camel
cases denote different methods, classes or values. Here, variable
names (𝐹4) are more ad-hoc than constants (𝐹5) and method names
(𝐹7), since variable names are usually defined locally. As a result,
we handle them differently.

For 𝐹4 to 𝐹7, we encode their items with Tf-Idf [60]. Tf-Idf is a
classical technique to encode words into vectors by their Tf and Idf
frequencies. A document of 𝐹4/𝐹7 is all the split variable names or
fully qualified names of called methods that appear in the context
of a thrown exception. A corpus is the documents of all the thrown
exceptions. Some recent techniques [47] can present more meaning
comparison between words. Their models are trained on Google
newspapers, but our extracted words are code names that do not
appear in their training set. As a result, we do not choose them to
encode our features.

3.3 Learning Model

ThEx combines two classification techniques: J48 [51] and Ad-
aBoost [30]. J48 is an algorithm to generate decision trees, and is a
supervised classification technique. A built decision tree classifies
instances by its if-else nodes. Each interior node denotes a check on
a variable, and each leaf denotes a class. Adaboost is a meta-level
learning technique that combines the outputs of weak classifiers
into a weighted sum to predict the final output. The training set of
ThEx is a set of labeled data (®𝑓𝑖 , 𝑙𝑖 ), where ®𝑓𝑖 is the feature vector,
and 𝑙𝑖 is the label of a node. Adaboost repeatedly tunes its weights
during the training process. We use 𝑑𝑡 (𝑖) to denote the weight of
the ith instance of the training data in the tth iteration. In the next
iteration 𝑡 + 1, the weight is updated as follows:

𝑑𝑡+1 (𝑖) =
𝑑𝑡 (𝑖)𝑒𝑥𝑝 (−𝛼𝑡ℎ𝑡 ( ®𝑓𝑖 )𝑙𝑖 )

𝑧𝑡
(2)

where 𝛼𝑡 = 1
2 𝑙𝑛(

1−Y𝑡
Y𝑡

) is the weight updating parameter, ℎ𝑡 ( ®𝑓𝑖 ) is
the prediction on feature vector ®𝑓𝑖 , and 𝑧𝑡 is a normalization factor
that ensures that the all new weights sum to one. Here, Y𝑡 is the
error in the current model over the training set. After imposing
cost 𝑐𝑜𝑠𝑡 (𝑖) on the 𝑖th instance, the above equation is modified to:

𝑑𝑡+1 (𝑖) =
𝑑𝑡 (𝑖)𝑒𝑥𝑝 (−𝛼𝑡𝑐𝑜𝑠𝑡 (𝑖)ℎ𝑡 ( ®𝑓𝑖 )𝑙𝑖 )

𝑧𝑡
(3)

Adaboost can be integrated with various classifiers, and can lead
to minor differences [69]. We select J48, because its result is the best
after we tried other classifiers of WEKA and our evaluation results
show that its f-scores are already around 0.8. As we discussed in
Section 7, more advanced classification techniques can improve our
effectiveness, which we leave for other researchers.

Our basic idea is to learn the knowledge of throwing exceptions
from known instances. In a project, some exceptions are rarely used,
and it is infeasible even for programmers to learn their usages. To
handle the problem, we remove an exception if its instances are
fewer than ten. For each instance (®𝑓𝑖 , 𝑙𝑖 ), we predict 𝑙𝑖 based on ®𝑓𝑖 .
As we introduced in Section 3.1, ®𝑓𝑖 does not contain any information
to leak the label 𝑙𝑖 .

4 EVALUATION ON BENCHMARK

We build the extractor of ThEx upon JDT [2], because it is the Java
compiler of Eclipse. JDT parses each source file into an abstract
syntax tree (AST), and allows customized visitors to traverse the
tree. Based on JDT, our visitors traverse the ASTs to collect our fea-
tures. We build the encoder and the miner of ThEx on WEKA [34],
because WEKA is a popular mining framework. In particular, our
Tf-Idf encoder is built on the StringToWordVector filter, and our miner
is built on the J48 and Adaboost classifiers of WEKA. We use the
default settings of the two classifiers. With ThEx, we conducted
evaluations to explore the following research questions:

(RQ1) What is the overall effectiveness (Section 4.3)?
(RQ2) What are the impacts of exception types (Section 4.4)?
(RQ3) What are the impacts of features (Section 4.5)?
(RQ4) How effective is ThEx, if its model is learned from other

projects (Section 4.6)?

Our project website is as follows: https://github.com/drhaozhong/thex

4.1 Benchmark

Table 2 shows the benchmark of our evaluation. Throwing which
exceptions is a programming issue. We select libraries, since it is
feasible to discuss programming issues with library developers. In
the contrast, it is odd for end users to discuss programming issues
with application developers. We select the nine libraries, because
they are popular and under careful and active maintenance. In to-
tal, the nine libraries have more than two million lines of code,
and contain 12,012 thrown exceptions. Column “Location” lists
the locations of thrown exceptions. In total, 69.7% exceptions are
thrown inside if statements, and 15.4% exceptions are thrown in-
side catch clauses. Column “Exception” lists the types of thrown
exceptions. In total, the nine projects throw 399 types of excep-
tions, and 31.3% of them are frequent. We consider that a type is
frequent, if at least ten exceptions of this type are thrown from a
project. Among the frequent ones, Subcolumn “J2SE” lists the types
defined by J2SE. In total, about half of frequent types are defined
by J2SE. Some J2SE exception types appear in most projects. For
example, in six out of the nine projects, the most popular exception
type is java.lang.IllegalArgumentException. Column “Frequent loca-
tion” shows the locations that throw frequent exceptions. In total,
the frequent exceptions account for more than 90% locations.

Despite of a different research angle, as the prior approaches [48,
49] did, we use the exception code that is written by programmers
as the true labels. Our features in Table 1 do not contain any indirect
hints of the true labels, and do not leak them as our inputs.

https://github.com/drhaozhong/thex
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Table 2: Our subjects.

Project LOC
Location Exception

Frequent locationif switch catch other total J2SE frequent total
asm 43,552 267 (69.7%) 76 (19.8%) 10 (2.6%) 30 (7.8%) 383 4(66.7%) 6(46.2%) 13 367

commons-io 29,988 369 (84.8%) 3 (0.7%) 16 (3.7%) 47 (10.8%) 435 7(77.8%) 9(40.9%) 22 394
itext 225,099 1,140 (79.7%) 40 (2.8%) 198 (13.8%) 52 (3.6%) 1,430 7(46.7%) 15(32.6%) 46 1,331

jfreechart 133,284 430 (87.4%) 4 (0.8%) 46 (9.3%) 12 (2.4%) 492 4(57.1%) 7(46.7%) 15 464
jmonkey 209,110 1,035 (62.6%) 153 (9.3%) 313 (18.9%) 152 (9.2%) 1,653 8(53.3%) 15(41.7%) 36 1,572
lucene 1,727,376 2,835 (71.2%) 143 (3.6%) 540 (13.6%) 466 (11.7%) 3,984 18(62.1%) 29(34.5%) 84 3,818
pdfbox 157,676 313 (68.0%) 25 (5.4%) 104 (22.6%) 18 (3.9%) 460 7(53.8%) 13(43.3%) 30 425

poi 398,693 1,689 (61.4%) 198 (7.2%) 519 (18.9%) 343 (12.5%) 2,749 11(45.8%) 24(25.8%) 93 2,546
shiro 34,209 297 (69.7%) 1 (0.2%) 109 (25.6%) 19 (4.5%) 426 3(42.9%) 7(11.7%) 60 296
total 2,958,987 8,375 (69.7%) 643 (5.4%) 1,855 (15.4%) 1,139 (9.5%) 12,012 69(55.2%) 125(31.3%) 399 11,213

if: exceptions thrown inside if statements; switch: exceptions thrown inside switch statements; catch: exceptions thrown inside catch clause; and other: exceptions thrown from
other locations; J2SE: exceptions defined in J2SE; and frequent: exception types with more than 10 thrown locations.

Table 3: Overall result.

Project Precision Recall F-score MCC ROC
asm 0.883 0.883 0.883 0.831 0.967

commons-io 0.885 0.886 0.884 0.843 0.979
itext 0.842 0.846 0.843 0.819 0.969

jfreechart 0.927 0.927 0.925 0.874 0.983
jmonkey 0.801 0.803 0.800 0.768 0.955
lucene 0.845 0.847 0.845 0.814 0.965
pdfbox 0.871 0.866 0.865 0.836 0.958

poi 0.722 0.724 0.722 0.671 0.920
shiro 0.708 0.709 0.704 0.604 0.890

4.2 Measures

By comparing true labels with outputs, we classify results into false
negatives (FNs), false positives (FPs), true negatives (TNs), and true
positives (TPs). We then calculate the following metrics:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP
(4)

𝑟𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN
(5)

𝑓 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (6)

𝑀𝐶𝐶 =
TP × TN − FP × FN√︁

(TP + FP) (TP + FN ) (TN + FP) (TN + FN )
(7)

Besides the above precisions, recalls, f-scores and Matthews
correlation coefficient (MCC), we use the area under a receiver op-
erating characteristic curve (ROC) as an addition measure. F-score
shows the balance between precision and recall; MCC shows the
robustness of a classifier on imbalanced data; and ROC shows the
robustness of a classifier on threshold settings. They are indeed
complementary. For all the three measures, a value closer to one
indicates a better classifier. All the above measures are calculated
by WEKA. In particular, for each type of predicted exceptions, it cal-
culates the above measure values, and further calculates weighted
averages of all the types. In our research questions, we report their
weighted averages.

4.3 RQ1. Overall Effectiveness

4.3.1 Setup. In this research question, we evaluated the overall
effectiveness of ThEx. To ensure the reliability of our results, we
conducted a ten-fold cross validation on each project of our bench-
mark. In each fold, the thrown exceptions are randomly divided into
ten portions of the same size. Among them, nine portions construct
the training set, and the remaining one is used as the testing set.
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Figure 6: The f-score values of thrown exception types.

4.3.2 Result. Table 3 shows the results. The results are quite posi-
tive. In seven out of the nine projects, the f-scores of ThEx are more
than 0.8. In jfreechart, the f-score is 0.925, which is close to a perfect
classifier. Column “Instance” shows that lucene has more than 3,000
instances. Even for this project, our f-score is 0.845. Table 2 shows
that about 30% exception types are frequent. Exception types, es-
pecially those defined by J2SE, can be considered as API classes,
and the frequencies of API calls are typically imbalanced [68]. For
imbalanced benchmarks, MCC is a more reliable measure than f-
score [13]. Column “MCC” shows that the MCC values of the seven
projects are also close to one, and it reconfirms that the results of
the seven projects are quite positive.

The f-scores of pdfbox and shiro are still reasonably high (>0.7).
Columns ROC and F-score indicate the interplay between precision
and recall at various threshold settings. The values are close to 1,
indicating ThEx achieved a reasonable balance between them. Our
f-score values vary among projects, since some projects have more
training data and throw exceptions more consistently than others.
A higher f-score value indicates that its exceptions are thrown more
consistently, and can indicate better code quality. Our observations
lead to a finding:

Finding 1. ThEx achieved 0.7 to 0.8 f-score and MCC values in
predicting correct thrown exceptions.

The high f-score and MCC values indicate that ThEx makes accu-
rate recommendations, once programmers write complete contexts.
This is useful for skillful programmers who are unfamiliar with
the local consensus on how to throw exceptions. For infrequent
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Table 4: The impacts of features.

Δfeature asm common-io itex jfreechart jmonkey lucene pdfbox poi shiro reduce
-F1 -0.015 -0.013 0.009 -0.010 -0.005 -0.010 0.000 0.002 -0.018 5
-F2 -0.012 -0.012 -0.003 -0.008 -0.005 -0.019 -0.001 -0.032 -0.020 5
-F3 -0.008 0.005 0.006 -0.002 0.002 -0.008 0.032 0.003 0.026 -
-F4 -0.008 -0.031 0.020 -0.007 -0.001 -0.011 -0.002 -0.017 0.007 4
-F5 0.002 0.010 0.007 0.001 -0.004 -0.005 -0.005 -0.018 -0.001 2
-F6 -0.006 0.001 -0.003 -0.006 -0.003 -0.010 -0.002 -0.027 -0.005 2
-F7 -0.008 -0.010 0.001 0.000 -0.008 -0.040 0.000 -0.015 0.026 3
-F8 -0.009 -0.008 -0.013 0.002 -0.018 -0.048 -0.078 -0.031 -0.001 5
-F9 -0.021 -0.007 -0.007 -0.018 -0.034 -0.070 -0.021 -0.049 -0.036 7

exceptions, a heuristic approach can work better, and we discuss
this issue in Section 7.

4.4 RQ2. The Impacts of Exception Types

4.4.1 Setup. Programmers can define their own exceptions to han-
dle a specific type of errors. We call such exceptions as self-defined
exceptions. In this research question, we explore how consistent
programmers throw self-defined exceptions and library exceptions.
In addition, to present more detailed results of each category, we
draw plot boxes, so that it is feasible to present the distributions of
all exception types.

4.4.2 Result. Figure 6 shows the results. For the asm project, asm-self
denotes the exceptions defined by asm, and asm-lib denotes the ex-
ceptions defined by the libraries of asm. The other projects have
similar names in the horizontal axis. Except poi-lib, the medians of
all the situations are more than 0.7. This result indicates that ThEx
works well on most exception types, albeit frequent or less frequent
ones. Except jmonkeyengine, all the other projects have higher f-score
values for self-defined exceptions than those for exceptions in li-
braries. Even for jmonkeyengine, the minimum and the third quartile
of self-defined exceptions are more than those of the libraries. The
observations lead to the following finding:

Finding 2. ThEx achieves better f-score values when it predicts
self-defined exceptions than those defined in libraries.

The result indicates that programmers have more consensus on
how to throw their self-defined exceptions than those defined in
their libraries. If wrong exceptions are thrown in libraries, client
programmers cannot fix them directly, but have to report them to
library developers. Although the process is not straightforward,
our results in Section 5 show that libraries developers pay attention
to wrong thrown exceptions, and fixed our reported bugs.

4.5 RQ3. The Impacts of Features

4.5.1 Setup. As a reference, the prior approaches [48, 49] also need
complete programming contexts to predict which exceptions shall
be caught. Still, it is interesting to explore the impacts of missing
features. We use the results in RQ1 as the baselines. With the same
setting, for each project, we iteratively remove one feature, and
conduct ten-fold cross validation to collect the f-scores. We compare
the f-scores with RQ1 to show the impacts of removing a feature.

4.5.2 Result. Table 4 shows the results. In this table, we highlight a
delta, if it is greater or equal to 0.01. If removing a feature reduces a
f-score by at least 0.01, we consider this feature as a key feature. We
have to choose a small threshold (0.01) to determine key features,

because Table 4 shows that the impact of a feature is typically small.
Even the worst case reduces the f-score by only 0.049, and after the
reduction, the f-score is reasonably high (0.673). Indeed, removing
features can even increase f-scores, in that in some projects, the
quality of these features can be low and misleading. Due to the
above consideration, instead of the values of deltas, we use numbers
of influenced projects to show the impacts of features.

Column “reduce” shows reduced cases. The results show that 𝐹9
ranks the first: when a method throws more than one exception,
the exceptions thrown from other lines are strong indicators to
which exceptions shall be thrown. The other important features
are 𝐹1, 𝐹2, and 𝐹5. The results show that the thrown locations,
caught exceptions, and exceptions defined in method headers are
also strong indicators. The observations lead to a finding:

Finding 3. The scopes (𝐹1), checked arguments (𝐹2), exceptions
thrown in method headers (𝐹8), and exceptions defined in other
lines (𝐹9) have more visible impacts than other features.

The results indicate that ThEx can assist selecting which ex-
ceptions to throw even if programmers do not have the sufficient
skills to write full programming contexts. Feature selection tech-
niques [44] can identify redundant features, and refine our model.

4.6 RQ4. Cross-Project Learning

4.6.1 Setup. ThEx learns from thrown exceptions that are written
in a project, but some new projects may not throw many exceptions.
To enable ThEx for new projects, it is interesting to explore the
effectiveness of cross-project learning. In this research question,
we use the data of a project as the testing set, and the data from all
the other eight projects as the training set.

As we did in RQ1, if the instances of an exception type are fewer
than ten, we remove them from our benchmarks, in that there are
no sufficient instances for mining. The training set has no instance
of those self-defined exception types. As their instances do not
appear in the training set, the trained model cannot predict such
exceptions. For those exceptions, we remove their instances from
the testing set. For all the strategies, we conduct ten-fold cross
validations as we did in RQ1 to collect the measure values.

4.6.2 Result. Table 5 shows the results. Each row denotes a project
that is used as the testing data. For example, the first row is the
result, when asm is used as the testing set and the other projects
are used as the training set. To help the comparison, in this table,
we present the deltas over Table 3. The numbers inside brackets
denote that values are reduced. The results show that on all the
projects, learning from all other projects is less effective than learn-
ing from the same projects. For asm, itext, lucene, pdfbox, and shiro,
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Table 5: The results of learning from other projects.

Project Δ𝑃 Δ𝑅 Δ𝐹 Δ𝑀 Δ𝑅𝑂 Δ𝐸

asm -0.198 -0.204 -0.211 -0.356 -0.163 -2
commons-io - -0.174 - - -0.094 -3

itext -0.240 -0.234 -0.266 -0.426 -0.151 -8
jfreechart -0.100 -0.105 -0.107 -0.236 -0.052 -3
jmonkey -0.234 -0.310 -0.340 -0.368 -0.182 -6
lucene -0.140 -0.189 -0.182 -0.234 -0.103 -17
pdfbox -0.230 -0.263 -0.259 -0.356 -0.116 -6

poi - -0.156 - - -0.114 -13
shiro -0.057 -0.114 -0.122 -0.288 -0.141 -4

Δ: the changes over Table 3; -: a value is not a number.

their f-scores are reduced to around 0.6. As two extreme cases, the
f-score of jmonkey is reduced to 0.460, but the f-score of jfreechart

is still high (0.818). For commons-io and poi, their precisions become
not a number. After manual inspection, we found that their predic-
tions do not include some types of exceptions. For these types of
exceptions, their true positives and false positives are both zero, and
according to Equation 4, their precisions become not a number. Col-
umn “ΔE” shows the number of predictable exception types. When
it learns from all other projects, although the training sets become
much larger, Column “ΔE” shows that for all the projects, their
predictable exception types become fewer, in that other projects
have no instances of self-defined exception types. The above results
lead to a finding:

Finding 4. When the training data come from all other projects,
f-scores of six projects are reduced to around 0.6, and fewer types
of exceptions can be predicted.

When constructing our dataset, we did not select projects that
are developed by overlapped leaders or select projects from the
same companies. If other researchers do that, their results can be
better than what we reported. Still, ThEx already achieved high
f-score values on some projects (e.g., jfreechart) under our setting.
Besides the above workaround, more advanced techniques can be
useful (see Section 7 for more discussions).

5 EVALUATION IN THEWILD

In Section 4, when we construct our benchmark, we use what were
written in source files as the gold standards. Although it thus allows
us to calculate the f-score values as shown in Table 3, this gold stan-
dard is not fully correct. Like most other gold standards, in the wild,
there are anomalies, and researchers have used anomalies to detect
bugs in source files [62] or network intrusions [55]. Motivated by
their work, we use ThEx to detect anomalies in thrown exceptions.

5.1 Setup

In this section, we use ThEx to detect anomalies from the latest
versions of all the projects in Table 2. To locate those anomalies,
we dump the inconsistent predictions. For each pair of inconsistent
predict and label, we manually inspect them to determine whether
such anomalies indicate bugs in source files. In particular, for a
given thrown exception in source files and a predicted exception
that shall be thrown, we use the following criteria one by one to
determine which one is better:

1. Which exceptions are thrown under similar program-

ming contexts? For a thrown exception, we search for its similar
programming contexts by our defined features, and check their

thrown exceptions. If our prediction is identical with the majority,
we consider that our prediction is better.

2. Which exceptions are thrown by similar API methods?

As all our subjects are libraries, if a wrong exception is thrown
by an API method, we locate its similar API methods (e.g., an API
method with the identical name, but its parameters are different),
and check their thrown exceptions. If our prediction is identical
with the majority, we consider that our prediction is better.

3. Which exception is more suitable according to their

documents? We read the documents and the names of excep-
tions to learn which is the best under a given programming con-
text. If we the contexts are similar, we consider that an excep-
tion is better if it is more specific. For example, we consider that
IllegalArgumentException is better than Exception, since IllegalArgument-

Exception is a subclass of Exception.
To obtain the feedback from developers, we reported twenty

better predictions to their developers. For example, itext defines
PdfException, and it defines more than two hundred constant strings.
After we read these strings, we find that itext uses such strings to
distinguish different types of problems. For example, a string is “Un-
supported XObject type”, and another string is “Cannot flush object”.
Typically, programmers in other projects will throw Unsupported-

OperationException and IOException for the above two problems, re-
spectively. As even some itext programmers would rather not throw
the same exception for different problems, our trained model some-
times predicts to replace PdfException with other exceptions. As such
recommendations can violate the design principles of itext, we do
not consider them as better predictions.

5.2 Feedback from Library developers

Table 6 shows our reported 20 bugs, and 13 of them were fixed. We
next introduce some samples:

1. The commons-io project. As described in our bug report [7],
the FileUtils class throws inconsistent exceptions:

1 public . . . t oBy t eArr ay ( f ina l I n p u t S t r e a m input , f ina l int s i z e ) {
2 i f ( s i z e < 0 ) {
3 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
4 } . . .
5 i f ( o f f s e t != s i z e ) {
6 throw new I O E x c e p t i o n ( . . . ) ;
7 } . . . }

This bug report is marked as fixed, after we report it. When
fixing this bug, a programmer left a message:

This case in particular is interesting because the exception is thrown because the expected input

does not match the actual file, so either the input is wrong (IAE) OR something went wrong while

reading the file (IOEx). So either exception might be valid here. One general rule could be that IOEx

all come from the JRE...

As we introduced in Section 2 and illustrated in this bug report,
it is acceptable to throw multiple exceptions at many code locations.
However, in a single project, programmers shall consistently throw
the same type of exceptions, when the encountered problems belong
to the same type. The common-io programmers agree that their code
shall be consistent to throw exceptions, and they pointed out that
this consensus roots from JRE.

2. The pdfbox project. As described in our bug report [9], the
Type1Parser class throws inconsistent exceptions:

1 pr ivate void p a r s e A S C I I ( byte [ ] b y t e s ) {
2 i f ( b y t e s . l e n g t h == 0 ) {
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3 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( " b y t e [ ] ␣ i s ␣ empty " ) ;
4 }
5 i f ( b y t e s . l e n g t h < 2 | | . . . ) ) {
6 throw new I O E x c e p t i o n ( " I n v a l i d ␣ s t a r t ␣ . . . " ) ;
7 } . . .
8 }

Lines 2 and 4 throw different exceptions, when the lengths of
bytes are checked. This bug report is confirmed and fixed after we
reported it. A programmer left a message:

I agree it’s better to have a checked exception, thanks for pointing that out.

3. The asm project. As described in our bug report [6], the
InstructionAdapter class has the following method:

1 public void i n v o k e v i r t u a l ( . . . ) {
2 i f ( a p i < Opcodes . ASM5 ) {
3 i f ( i s I n t e r f a c e ) {
4 throw new I l l e g a l A r g u m e n t E x c e p t i o n ( . . . ) ;
5 } . . . } . . . }

ThEx predicted that Line 4 shall throw UnsupportedOperationException

in that all the other methods of this class throw this exception. This
bug report is fixed after we reported it.

4. The itext project. As described in our bug report [4], the
MatrixUtil class has a method:

1 public s t a t i c void makeType In foB i t s ( . . . ) . . . {
2 i f ( ! QRCode . i s V a l i d M a s k P a t t e r n ( maskPa t t e rn ) ) {
3 throw new W r i t e r E x c e p t i o n ( " I n v a l i d ␣ mask ␣ p a t t e r n " ) ;
4 }
5 . . . }

ThEx predicted that Line 3 shall throw IllegalArgumentException,
because other methods throw this exception. We submitted a pull
request, and it is merged.

5. The poi project. As we described in our bug report [5], the
SXSSFCell class has the following method:

1 pr ivate boolean c o n v e r t C e l l V a l u e T o B o o l e a n ( ) { . . .
2 switch ( c e l l T y p e ) {
3 case BOOLEAN :
4 return g e t B o o l e a n C e l l V a l u e ( ) ;
5 . . .
6 defaul t : throw new Runt imeExcept ion ( " Unexpected . . . " ) ;
7 }

ThEx predicted that Line 6 shall throw IllegalStateException in
that other methods throw this exception. This bug is fixed, after we
reported it. After reading discussions of our bug reports, we find that
even experienced programmers can disagree with which exceptions
shall be thrown. The observation highlights the significance of an
automatic tool like ThEx. Although it is reasonable to throw either
exception in some cases, once it is decided, all the code locations
of a library shall throw the decided one. Otherwise, its client code
can fail to catch thrown exceptions.

Our found bugs confirm that even professional programmers can
be unfamiliar with the consensus of throwing exceptions. These
bugs can be avoided, if ThEx recommends the correct thrown
exceptions at the development phase. Our target bugs are across
the borderline of libraries and clients. For example, the Cassandra
bug in Section 1 involves RuntimeException that is defined in J2SE
and FSWriteError that is defined by Cassandra itself. When a wrong
exception is thrown in library code, client programmers have to fix
them as workarounds [59], since they cannot access library code.
We notice that many bug reports on libraries are silently ignored,
since library developers have heavy workload. As our subjects
are libraries, most of our found bugs reside in the library side.

Table 6: Our reported bugs

URL Status
https://issues.apache.org/jira/browse/IO-661 fixed
https://issues.apache.org/jira/browse/IO-696 fixed
https://issues.apache.org/jira/browse/IO-704 not a problem
https://issues.apache.org/jira/browse/IO-705 fixed
https://github.com/itext/itext7/pull/51 fixed
https://github.com/jMonkeyEngine/jmonkeyengine/issues/1313 fixed
https://issues.apache.org/jira/browse/LUCENE-9296 open
https://issues.apache.org/jira/browse/LUCENE-9343 open
https://issues.apache.org/jira/browse/PDFBOX-5084 duplicated
https://issues.apache.org/jira/browse/PDFBOX-5080 fixed
https://github.com/jfree/jfreechart/issues/205 fixed
https://bz.apache.org/bugzilla/show_bug.cgi?id=64274 won’t fix
https://bz.apache.org/bugzilla/show_bug.cgi?id=64964 fixed
https://bz.apache.org/bugzilla/show_bug.cgi?id=65085 fixed
https://bz.apache.org/bugzilla/show_bug.cgi?id=65084 open
https://issues.apache.org/jira/browse/SHIRO-751 fixed
https://issues.apache.org/jira/browse/SHIRO-810 open
https://gitlab.ow2.org/asm/asm/-/issues/317922 fixed
https://gitlab.ow2.org/asm/asm/-/issues/317930 fixed
https://gitlab.ow2.org/asm/asm/-/issues/317931 fixed

However, even if these bugs in libraries do not introduce visible and
serious bugs as they do in client code, our results show that library
developers are willing to fix wrong thrown exceptions, since they
have far-reaching impacts on many clients.

6 THREATS TO VALIDITY

The threat to internal validity includes our true labels in Section 4.
We consider thrown exceptions that are written in source files as
true labels, but our results in Section 5 show that ThEx can predict
better exceptions than those labels. This threat can be reduced
by inspecting more bug fixes on thrown exceptions. The threat
to external validity includes our limited subjects. This threat can
be reduced by selecting more projects. The threat to constructive
validity includes the availability of our extracted features.

7 RESEARCH ROADMAP

Our research direction has at least two application scenarios:
1. Recommending thrown exception. When they join a new

project, programmers are often unfamiliar with the consensus of
throwing correct exceptions. For this application, Finding 1 in our
evaluation shows that the f-score values of ThEx are around 0.8.
The results are obtained, when programming contexts are complete.
Practically, a tool can make predictions after most programming
contexts are already written, and the assumption is reasonable, since
unknowing the correct exceptions often does not hinder program-
ming tasks. Indeed, other approaches [48, 49] also need complete
programming contexts to predict which exceptions shall be caught.
As we did, they also assume that programming can write complete
programming contexts, even if they fail to identify missing excep-
tions. Even if a programmer cannot write complete programming
contexts, it is feasible to make early predictions. Table 4 shows
that losing a feature does not significantly reduce our prediction
results. Although losing more features can further reduce our ef-
fectiveness, Zhou et al. [70] use code synthesis [37, 46] to generate
code according to what is already written, and search the clones
of generated code. The synthesized code can be used as a seed to
find real-code clones. Similar ideas can be used to complement the
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features of ThEx. Meanwhile, many exceptions are poorly docu-
mented. Buse and Weimer [16] proposed approaches to document
exception handling code snippets. Their approach can generate
exception documents that are useful to select suitable exceptions.
Barbosa et al. [12] propose a domain-specific language to enforce
handling exceptions. Their language can be extended to enforce
writing correct thrown exceptions.

2. Detecting bugs in thrown exceptions. A trained model can
make predictions that are different from labels. Although mispre-
dictions are less common, Wasylkowski et al. [62] show that such
anomalies can indicate bugs. Indeed, after inspecting our wrong
predictions, we have detected twenty bugs. As we have identi-
fied, such bugs can be introduced, if programmers are unfamiliar
with exceptions. Meanwhile, bugs in thrown exceptions can indi-
cate design flaws in exceptions. After the flaws are resolved, such
bugs can be avoided at the early stage. After bugs are detected, it
can also be interesting to analyze their impacts, and some static
approaches [21, 53] can assist the analysis. It is also feasible to
generate test cases to highlight the impacts of wrong thrown ex-
ceptions, since in another research topic, Wang et al. [61] generate
stack traces to highlight dependency conflict issues. It is worth
exploring the impacts, and the results are useful to understand the
importance of wrong thrown exceptions.

For both applications, it is feasible to extend ThEx to more lan-
guages. Even if a language has no exceptions, it typically has dif-
ferent categories of errors. ThEx can be extended to predict which
type of errors to throw. Other languages can require other features
and learning techniques to train their prediction models. In addi-
tion, as driven by techniques, researchers can adapt two ways to
make further improvements.

1. More advanced techniques. As the first exploration, we
build ThEx upon a classical classifier, but deep learning techniques
have been used to resolve software engineering problems (e.g.,
malware detection [41]). Still, a project can throw quite imbalanced
exceptions. Gong and Zhong [32] show that even deep learning
techniques may not effectively handle such situations. It needs
more advanced techniques to handle those challenging situations.

2.Handling exceptionswith few instances. Like other mining-
based approaches, we can encounter the cold start problem [14],
which occurs in all recommendation systems. In the literature, the
cold start problem is intensively studied [29, 36, 45]. For these ex-
ceptions, heuristic-based approaches and the recent research on
small benchmarks [54] can work better, but such approaches can be
imprecise due to various analysis challenges. With their support, it
can eventually accumulate sufficient data, and thus enable learning-
based approaches like ours. Alternative, as project leaders often
decide which exceptions shall be thrown, it is feasible to learn from
the other projects of the project leaders, although cross-project
learning is still an open challenge in mining software repositories.

8 RELATEDWORK

The empirical studies on exception handling. Researchers have
conducted various empirical studies to understand exception han-
dling. Cabral and Marques [17] analyzes the differences between
Java and DotNet. Sena et al. [56] analyze the exception handling

inside a Java library. Cacho et al. [18] analyze the evolution of ex-
ception handling code across versions. Coelho et al. [24] analyze
the exception handling in Android code. Asaduzzaman et al. [11]
analyze how exceptions are used in Java code. Bruntink et al. [15]
analyze the exception handling in embedded systems. Koopman
and DeVale [42] analyze the exception handling in operating sys-
tems. Shah et al. [57] analyze different viewpoints on exception
handling. Chen et al. [22] analyze exception-related bugs in clouds.
The above studies show the importance of handling thrown excep-
tions. Kechagia et al. [40] report that most crashes were caused by
memory exhaustion, race conditions or deadlocks, and missing or
corrupt resources. Our work shows that thrown exceptions can
also be faulty, and need to be improved.

Testingwith exceptions. Exceptions are useful in testing. Sinha
et al. [58] construct control flow graphs for exceptions and use
such graphs as the criteria for test generation. Cornu et al. [27]
inject faults to trigger exceptions. Zhang et al. [66] enumerate the
patterns of external resources to trigger exceptions. Goffi et al. [31]
infer the conditions of thrown exceptions from API documents,
and test whether such exceptions are thrown. Xu and Zhong [65]
compare the inconsistencies between exception types and their
messages. The above approaches use thrown exceptions to guide
test generation or their inconsistencies, but ThEx predicts which
exceptions shall be thrown given programming locations.

Analyzing stack traces. Various approaches have been pro-
posed to analyze stack traces. Gu et al. [33] identify faults from
stack traces. Han et al. [35] mine stack traces to locate performance
bugs. Wong et al. [64] use stack traces to assist fault localization.
Chen and Kim [23] reproduce crashes based on stack traces. Our
work shows that thrown exceptions can be wrong, and stack traces
can contain errors. The above approaches can be improved, if such
errors are removed.

9 CONCLUSION

The exception handling mechanism is critical to throw, catch, and
handle runtime errors. The prior approaches work on the bugs in
catching and handling exceptions, but ignore the bugs in throwing
exceptions. Like bugs in other phases of the exception handling
mechanism, an incorrectly thrown exception can lead to disastrous
consequences. It is often legal to throw multiple types of excep-
tions, but programmers must follow the local consensuses. Such
consensuses are difficult to be obtained and often are unknown to
new members. To the best of our knowledge, no prior approach
can assist throwing proper exceptions nor detect bugs in thrown
exceptions. To improve the state of the art, we propose the first
approach that predicts which exceptions shall be thrown. Its ba-
sic idea is to learn a classification model from what were already
written in source files. We evaluated our approach on nine open
source projects, its f-scores and mcc values are both around 0.8. We
reported twenty found anomalies as bugs to their developers, and
they fixed 13 bug reports.
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