Reinforcement Learning: From Theory to Algorithm (CS7309)
Time and Venue :
- Time : 14:55 - 17:40 , Thursday , Week 1 - 16
- Venue : Chenruiqiu Building 310
Instructor :
- Prof : Junni Zou
- Email : zoujunni@sjtu.edu.cn
- Office : 3-437, SEIEE Building
Teaching Assistant :
- Teaching Assistant : Tianchi Zhang
- Email : zhangtianshi@sjtu.edu.cn
Reference Book :
- Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, Second Edition, 2018
Grading Policy :
- Presentation: 30%
- Final Project: 70%
Lecture Slides :
We use the lecture slides of Prof. David Silver as a reference: David Silver
-
Lecture 1: Introduction
-
Lecture 2: Markov Decision Processes
-
Lecture 3: Dynamic Programming
-
Lecture 4: Model-Free Prediction (1)
-
Lecture 5: Model-Free Prediction (2)
-
Lecture 6: Model-Free Control
-
Lecture 7: Value Function Approximation
-
Lecture 8: Advanced DQN
-
Lecture 9: Policy Gradient
-
Lecture 10: A3C & PPO
-
Lecture 11: DDPG & Soft AC
-
Lecture 12: Optimal Control and Planning
-
Lecture 13: Model-Based Reinforcement Learning
-
Lecture 14: Variational Inference
-
Lecture 15: Meta-Reinforcement Learning
Lecture Slides :
-
Requirements for Final Project
Reinforcement Learning (CS489)
Time and Venue :
- Time : 10:00 - 11:40 , Friday , Week 1 - 16
- Venue : East Zhongyuan 3-103
Instructor :
- Prof : Junni Zou
- Email : zoujunni@sjtu.edu.cn
- Office : 3-437, SEIEE Building
Teaching Assistant :
- Teaching Assistant : Yuankun Jiang
- Email : yuankunjiang@sjtu.edu.cn
Reference Book :
- Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction, Second Edition
Grading Policy :
- Homework and Project: 50%
- Final Exam : 50%
Lecture Slides :
We use the lecture slides of Prof. David Silver as a reference: David Silver
-
Lecture 0: Experiments Setup
-
Lecture 1: Introduction and Course Overview
-
Lecture 2: Markov Decision Processes
-
Lecture 3: Dynamic Programming
-
Lecture 4: Model-Free Prediction (1)
-
Lecture 5: Model-Free Prediction (2)
-
Lecture 6: Model-Free Control
-
Lecture 7: Value Function Approximation
-
Lecture 8: Convolutional Neural Network
-
Lecture 9: DQN Variants
-
Lecture 10: Policy Gradient
-
Lecture 11: Integrating Learning
Assignments :
-
Assignment 1: Dynamic Programming
-
Assignment 2: Model-Free Prediction
-
Assignment 3: Model-Free Control
-
Assignment 4: Value Function Approximation
-
Assignment 5: Policy Gradient
Discrete Mathematics (MA115)
Time and Venue :
- Time : 14:00 - 15:40 , Friday , Week 1 - 16
- Venue : East Shangyuan 509
Instructor :
- Prof : Junni Zou
- Email : zoujunni@sjtu.edu.cn
- Office : 3-437, SEIEE Building
Teaching Assistant :
- Teaching Assistant : Qiaoyu Lu
- Email : luqiaoyu@sjtu.edu.cn
Reference Book :
- Kenneth H.Rosen, Discrete Mathematics and Its Applications, Seventh Edition
-
Logic :
Chapter 1
Chapter 2
Chapter 3
Chapter 4
Chapter 5
-
Graph :
Ch1
Ch2
Grading Policy :
- Attendence and Homework : 30%
- Final Exam : 70%
Last Updated: Dec. 5, 2017